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Abstract

The primary objective of the MEXICO (Model Experiments in Controlled Conditions)
project was to generate experimental data for validation of models for wind turbines.
Kulite ¢ pressure sensors were used for pressure measurements while Particle Image Ve-
locimetry was used with the aim of tracking the tip vortex trajectory. The pressure
measurements were carried out for both axial and yawed ow conditions with yaw angles
of 15°%;30° and 45°. For the Particle Image Velocimetry measurements data was gathered
for axial ow and for the 30° yaw cases at a single tip speed ratio.

In this work, an inverse free wake lifting line model, a direct free wake model and a
BEM model are validated with the MEXICO data. Particular emphasis is placed on the
study of yawed ow conditions. The inverse free-wake model makes use of the experi-
mental loads as input in order to nd the distribution of inductions and angle of attack.
The predictive capability of BEM may therefore be assessed based on this. Validation
of the inverse free-wake model was performed by investigating the stagnation pressure
prediction as well as the vortex trajectory prediction. This was done by means of the PIV
data gathered from the MEXICO experiment. This PIV data was also used for validation
purposes of the direct free-wake model. The di erences in the angle of attack distributions
in yawed ow with these models was studied in order to assess the di erence in results
between the use of 2D and 3D airfoil data.

Introduction

The MEXICO experiment was performed in the German-Dutch Wind Tunnels (DNW).
Figure 1 shows the rotor model used for this experiment. The rotor has a diameter of
4.5m and a hub diameter of 0.42m. The DNW wind tunnel has an open jet test cross
section of 9.5  9.5m. The measurements consisted of pressure distributions along the
chord at ve spanwise locations of the blade and Stereo Particle Image Velocimetry at
certain locations of the ow eld, including the tip vortex. The measurements included
both yawed and axial conditions. The reader is referred to [1], [2] and [3] for more
information regarding the setup, rotor con guration and measurements which were taken.
Furthermore, experimental data validation along with some preliminary analysis has been
done in [4].

In this work, the results from the MEXICO data are analyzed using blade element
momentum (BEM), inverse and direct free-wake models. Particular attention for yawed
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Figure 1: MEXICO rotor used for the experimental campaign.

ow conditions is given. Particle Image Velocimetry (PIV) data in yawed ow is only
available for the 30° cases with a tunnel wind speed of 15m/s and tip speed ratio (TSR)
of 6.68.

With the inverse free-wake(IFW) method, the loads gathered from the experiment can
be used as an input in order to derive the velocity eld due to the wake. The model uses
3D airfoil data as input. On the other hand, the direct free-wake(DFW) method uses 2D
airfoil data as input. A detailed analysis on the sensitivity of the solution to the airfoil
data input is performed. First, the di erences between the wake geometry due to both
models are studied. Furthermore, an investigation on the di erences between various ow
conditions and loading on the rotor is done.

The major aim of this work is therefore to understand the importance of having 3D
airfoil data in a free-wake methodology by means of a validation of models with the MEX-
ICO experimental results.

Models Used in the Analysis

The BEM model for yawed conditions used in this work is based on that proposed in
in [5]. Tip/root loss, wake expansion and wake rotation corrections are employed. The
Glauert correction due to the turbulent wake state in yawed ow is not implemented. The
reader is referred to [4] for more details on the BEM model.

The lifting-line, inverse free-wake model methodology is shown in gure 2. The experi-
mental loads are used as input for the model, and assuming an angle of attack distribution,
the velocity eld solution is obtained. The new calculated angle of attack is used for the
next iteration until a suitable convergence criterion is satis ed as explained in [6]. A
number of corrections have been employed in the simulations including vortex lament
stretching, Lamb-Oseen vortex core as well as core expansion model [7]. Various veri ca-
tion tests have been performed to ensure a good grid independence of the results. Table 1
shows the wake discretization parameters under the IFW coloumn. The veri cation tests
led to errors in bound circulation lower than 1.5% for the discretization used in these
cases.

The direct free-wake model also uses a lifting line approach. The methodology is
shown in gure 3. The reader is referred to [10] for further information on the model.


https://www.researchgate.net/publication/40736376_Comparison_and_validation_of_BEM_and_free_wake_unsteady_panel_model_with_the_Mexico_rotor_experiment?el=1_x_8&enrichId=rgreq-d267cb24b088ff3c4aee67279f08d62f-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA4OTc5MTtBUzoxOTA2MTQ3Mzk5NzIwOTdAMTQyMjQ1NzUwMzk3Nw==
https://www.researchgate.net/publication/40220163_Development_of_the_near_wake_behind_a_horizontal_axis_wind_turbine_-_including_the_development_of_a_free_wake_lifting_line_code?el=1_x_8&enrichId=rgreq-d267cb24b088ff3c4aee67279f08d62f-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA4OTc5MTtBUzoxOTA2MTQ3Mzk5NzIwOTdAMTQyMjQ1NzUwMzk3Nw==
https://www.researchgate.net/publication/27350107_Improving_BEM-based_Aerodynamic_Models_in_Wind_Turbine_Design_Codes?el=1_x_8&enrichId=rgreq-d267cb24b088ff3c4aee67279f08d62f-XXX&enrichSource=Y292ZXJQYWdlOzI1OTA4OTc5MTtBUzoxOTA2MTQ3Mzk5NzIwOTdAMTQyMjQ1NzUwMzk3Nw==

Pressure Assume AOA Wake and rotor
measurements ———> and find bound > pjane velocity field
from experiment vorticity

N

New AOA

Figure 2: Inverse free wake methodology.

The same corrections as in the inverse free-wake approach are used. Grid independence
tests have been also carried out. The wake discretization parameters are shown in table
1 under the DFW coloumn.
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Figure 3: Direct free wake methodology.

IFW DFW

Blade elements (N) 21 18

Azimuthal Steps per revolution (N ) 36 36
Number of revolutions (Nyey) 4 4

Table 1: Wake discretization parameters to ensure grid independence.
Wake Geometry Predictions

The PIV results were used to obtain the vorticity for each measurement window down-
stream in the wake. The position of the maximum vorticity is considered to be the position
of the vortex core. This is shown in gure 4. The tip vortex is observed to grow with
increasing vortex age. The vorticity is also seen to decrease with wake age due to the dif-
fusion of the vortex. The 30° PIV measurements can be combined to give the positions
of the tip vortices on a horizontal plane in the wake.

These results can be compared with the IFW and DFW results. With such models,
due to the roll up of the trailing vortices, it is di cult to determine the centre of a single
tip vortex. Figure 5 shows the results from the IFW simulation. There is a very good
agreement of the core positions at the 90° azimuthal position. At the 270° position, the
agreement is also relatively good but with increasing wake age, the positions of the tip
vortices as established from PIV measurements seem to be slighltly more upward than the
positions predicted by the IFW model. Figure 6 shows the wake geometry prediction as
obtained from the DFW simulation. In this case there is an appreciable di erence in the
locations of the vortex cores as obtained from the PIV measurements. The tip vortices
from the simultation travel faster downstream than the tip vortices observed experimen-
tally. The reason for this has its roots in what is happening at the rotor plane.



Figure 4: Tip vortex evolution. Vorticity is shown on the contour plot which is obtained
from the PIV measurements.
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Figure 5. Wake geometry comparison between the inverse free-wake model results and
PIV measurements. Yaw = 30°, = 6:68.
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Figure 6: Wake geometry comparison between the direct free-wake model results and PIV
measurements. Yaw = 30°, = 6:68.

Conditions at the Rotor Plane

The derived angle of attack for all three methods is highly dependent on the type of
airfoil data which is used. For both BEM and DFW models, 2D steady airfoil data is
used. On the other hand, the IFW model makes use of experimental load data which
includes 3D e ects and unsteadiness. The three results are compared for the entire rotor
plane by means of contour plots in gure 8. There is quite a good agreement between the
result from BEM and that from the IFW result. However when the axial blade induction
factors are considered, a large disagreement can be observed as shown in gure 7. The
agreement in inductions between the DFW and IFW is much better over an entire blade
revolution except at the tips. A di erence in inductions is also apparent in the region of
the rotor from around 0° to 180°. The DFW model shows a lower induction in this region
due to the faster downstream convection of the trailing vortices.

Hence, the agreement in angle of attack is suspected to occur due to errors in azimuthal
induction cancelling with the errors in the axial induction. On the other hand, the
di erences in angle of attack between the DFW and IFW results is quite large. The
di erences between the the DFW and IFW angle of attack is shown in gure 9, where a
maximum di erence of around 4.5 degrees can be observed towards the inboard stations
around the 0 degrees azimuthal position.

This di erence in angle of attack causes a high di erence between the lift coe cients
obtained. Lift coe cient against angle of attack for the 92% span position is shown in

gure 10. Towards the tip region, the reduced frequency is low and the ow can be
assumed to be steady. Tip e ects cause a reduction in lift as was also observed in the
NREL Phase VI experiment as shown in [8] and [9]. This can also be observed with the
IFW result. Thus, not only is there a di erence in the resulting angle of attack due to the
2D data, which is input in a DFW model, but also, the 3D airfoil performance towards
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Figure 7: Blade axial induction contours at the rotor plane as calculated from (a) BEM,
(b) IFW and (c) DFW
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Figure 8: Angle of attack contours at the rotor plane as calculated from (a) BEM, (b)
IFW and (c) DFW



Figure 9: Angle of attack di erences between DFW and IFW results.

the tip shows a reduced lift. This causes quite a large di erence in the loading of the
rotor which is predicted by these models.
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Figure 10: C_ data for =30° U, = 14.97m/s, TSR =6.68, Span = 92%

As an explanation to the wake geometry di erences found with DFW and IFW sim-
ulations the di erence in lift causes a proportional di erence in bound circulation on the
blades. This large bound circulation enhances the downwind convection of the vortices.
The trailing circulation with the IFW model is found to be slightly higher than that
found by means of the DFW model which means that the di erence in bound circulation
between two adjacent horse-shoe vortices is indeed larger than that predicted with 2D
airfoil data. A close up of the near wake is shown in gures 11 and 12. The e ect of this
lower trailing vortex circulation is to hinder the wake to skew as it should and as was
observed with the PIV measurements (see gure 6).
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Figure 11: Trailing circulation obtained with the IFW model. Yaw = 30°,
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Figure 12: Trailing circulation obtained with the DFW model. Yaw = 30°,

Conclusions
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In this work three models are used to simulate the MEXICO experiment in condi-
tions of yawed ow of 30°; the simulation results are validated with experimental load
measurements and with PIV measurements for tip vortex tracking. Direct free-wake and
inverse free-wake are used to predict tip vortex locations for yawed ow conditions. The
di erence between these two models is due to the prescribed airfoil data. In both BEM
and the DFW model, the input is the 2D airfoil data. In the IFW model the input is

experimental 3D data.

The results of the IFW model are in better agreement with the experimental results for
the convection of the tip vortex, when compared with the results from the DFW model.
This di erence is due to the airfoil data input. The wake geometry is therefore quite
sensitive to the 3D nature of the ow present at the blades. The IFW and DFW showed



a di erence between angles of attack of a maximum of 4:5°. The resulting lift di erence
was therefore not only attributable to the drop in lift occuring due to the tip vortex but
also due to the di erence in calculated angles of attack, causing quite a high di erence
in lift coe cient. The BEM model showed good agreement in angle of attack but when
axial induction factors were compared, BEM failed.

The di erences in loading conditions at the rotor turn out to a ect the shape of the
wake which results due to di erences in trailing circulation of the vortex laments used in
both IFW and DFW models. From this validation study it may therefore be concluded
that in conditions of yawed ow, the resulting load and wake geometry predictions are
quite sensitive to the type of airfoil input which is employed. BEM proved unsuitable in
predicting the induction at the rotor plane.
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