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Abstract. A new category of connective spaces is defined, which includes topo-
logical spaces and simple graphs, and generalizes the concept of connectedness.
Not every connective space has a compatible topology; those that do are charac-
terized by compatible partial orders.

1. Connective Spaces

1.1. Introduction. As a topological concept connectedness is of somewhat differ-
ent character than most other important properties, such as the covering properties,
studied in the category TOP. Its aim is to topologically explain the intuitive no-
tion of continuity of a point set. Roughly speaking, a connected space is one which
cannot be represented as the sum of two pieces far from each other.

The contemporary definition of connectedness is that a topological space X is
connected if it cannot be represented as the sum X1 ⊕X2 of two non-empty sub-
spaces of X, that is it cannot be decomposed into two disjoint non-empty closed
(open) subsets. This definition was introduced by Jordan in 1893 [4] for the class
of compact subsets of the plane. The definition for general topological spaces was
given by Hausdorff in 1914 [3] although the notion was given earlier by Lennes [7].
A systematic study of connected topological spaces was carried out by Hausdorff
[3] and by Knaster and Kuratowski [5]. If a space is not connected then it is said
to be disconnected. An excellent exposition of connected spaces is given in [6].

Another form of connectedness is path-connectedness. A topological space X
is said to be path-connected if for any two points x and y in X there exists a
continuous function f from the unit interval [0, 1] to X such that f(0) = x and
f(1) = y (This function is called a path from x to y). Every path-connected space is
connected. Examples of connected spaces that are not path-connected include the
extended long line. However, subsets of the real line R are connected if, and only
if, they are path-connected; these subsets are the intervals of R. Also, open subsets
of Rn or Cn are connected if, and only if, they are path-connected. Additionally,
connectedness and path-connectedness are the same for finite topological spaces.
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A related notion is that of connectedness in simple graphs. A graph is said to be
connected if there is a path consisting of edges from any point to any other point
in the graph. A graph that is not connected is said to be disconnected.

The aim of this article is to axiomatize certain properties of connected sets and
form a category of connective spaces as defined in the next section.

1.2. Definition.

Definition 1.1. A connective space is a set X together with a collection of
subsets C, such that the following axioms hold:

(i) ∀C ⊆ C ⋂
C 6= ∅ =⇒ ⋃

C ∈ C,
(ii) ∀x ∈ X {x} ∈ C,
(iii) Given any nonempty sets A,B ∈ C with A ∪B ∈ C then

∃x ∈ A ∪B : {x} ∪ A ∈ C and {x} ∪B ∈ C,
(iv) if A,B,Ci ∈ C are disjoint and A ∪B ∪⋃

i∈I Ci ∈ C then
∃J ⊆ I, A ∪⋃

j∈J Cj ∈ C and B ∪⋃
i∈I−J Ci ∈ C.

The collection C is called the connective structure or connectology of X,
and its elements are called the connected sets of X. One can add the axiom that
the empty set is connected although this follows from (i). Connected sets with
two elements are called edges. Spaces that satisfy (i) and (ii) only, will be called
c-spaces, and the corresponding C a c-structure.

1.2.1. Examples.

• The real line R together with the intervals is a connective space.
• Connective structures are partially ordered by set inclusion C1 ⊆ C2; C2

is called coarser/weaker than C1 and the latter finer/stronger than the
former. The weakest connectology is the power set, P(X), called the totally
connected space on X; the strongest consists of the single points and ∅, and
is called the totally disconnected space on X.

• Finite simple graphs are connective spaces on finite sets, with the connected
sets being the ‘edge-connected’ subgraphs. It will be shown later that every
connective spaces on a finite set is a graph.

• Topological spaces, with the connected sets defined as usual by the non-
existence of non-trivial open partitions, are connective spaces. Axiom (iv)
is an equivalent formulation of a theorem of Kuratowski [6]. Finer topolo-
gies (with more open sets) induce finer connectologies (with less connected
sets).

A topology is an additional structure on top of a connectology: later
it will be shown that homeomorphic topological spaces must have ‘iso-
morphic’ connectologies, but the converse is false. For example, the to-
tally disconnected connectology can arise from several non-homeomorphic
topologies on the same set (e.g. Q and N have ‘isomorphic’ connectologies
but different topologies.)

• There are connective spaces that are not topologizable. In fact there are
graphs such as the pentagon C5 (or any Cn with n ≥ 5 odd), which do not
admit any topology having the same connected sets.
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• The cofinite connective space on a set has connected sets consisting of ∅,
the singletons and the infinite subsets.

• The connected sets of X which contain a particular point x ∈ X, together
with all the singletons, form a connective space, called the connective struc-
ture of X rooted at the point x.

1.3. Touching Sets.

Definition 1.2. A point x is said to touch a set A when there is a non-empty
subset C ⊆ A such that {x} ∪ C is connected. Subsets A and B are said to touch
when there is a point x ∈ A ∪B which touches both A and B.

The set of points touching a set A will be denoted by t(A). The following are
some trivial consequences:

Proposition 1.1.

(i) A ⊆ t(A);
(ii) When A is connected, x touches A ⇐⇒ {x} ∪ A is connected;
(iii) For A,B 6= ∅ connected, A ∪B connected ⇐⇒ A,B touch;
(iv) If A touches B ⊆ C then A touches C;
(v) A ⊆ B =⇒ t(A) ⊆ t(B);
(vi) t(

⋂
i Ai) ⊆

⋂
i t(Ai).

Proposition 1.2. There is a partition on X of maximally connected sets, called
components. Every non-empty connected set is contained in a unique component.
Components do not touch, and contain all points that touch them.

Proof. The relation defined by {x, y} ⊆ C for some C ∈ C is reflexive by axiom
(ii), trivially symmetric and transitive by axiom (i). Moreover,

{x, y} ⊆ C ∈ C ⇐⇒ y ∈
⋃
{C ∈ C : x ∈ C},

so that the component of x is the union of all the connected sets containing x. This
shows that it is maximally connected and that every connected set with a point x
must be in its component.

If components C and D touch then their union C ∪D would also be connected,
and this is possible only when C = D. Finally, if x touches a component C, then
C ∪ {x} is connected, so that x ∈ C by maximality of components. ¤

Note that these components agree with the distinct definitions of “connected
components” in graphs and in topological spaces.

Axiom (i) can be replaced by the following: if Ci, i ∈ I are non-empty connected
sets and ∃i0 ∈ I such that Ci0 and Ci touch ∀i ∈ I, then

⋃
i∈I Ci is connected.

Simply note that the sets Ci ∪ C0 have non-empty intersection so that their union
is connected. The following is also true: a set C0 is connected if, and only if, every
cover of non-empty connected sets touching C0 has connected union. (Proof: for
the converse, take the cover of touching components.)

Axiom (iv) is equivalent to the either of the following statements due to Kura-
towski [6]:
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(a) If A ⊆ B are both connected and C is maximally connected in B − A, then
B − C is connected;

(b) If Ai, Bj are finite families of connected sets with
⋃

i Ai ∪
⋃

j Bj connected,

then ∃i, j Ai∪Bj connected. (The proof is by induction on the sizes of the families);

(c) If Ai, 0 ≤ i ≤ N, is a finite family of connected sets with
⋃N

i=0 Ai connected
then the Ai, 1 ≤ i, can be rearranged so that A0 ∪

⋃n
i=1 Ai is connected for n =

1, . . . , N .
Proposition (a) is a rewording of axiom (iv), while a careful reading of Kura-

towski’s proofs shows that (b) and (c) do not use strictly topological properties of
connected sets, but only proposition (a). A particular case of (c) is the following:

(1) A,B,C ∈ C, A ∪B ∪ C ∈ C =⇒ A ∪B ∈ C OR A ∪ C ∈ C.
Proposition 1.3. Every finite connective space is a simple graph.

Proof. Let A = {a1, . . . , an} be a connective space. Assume, by induction, that
every connective space with m elements is a graph for m < n. Let C ⊆ A be
any non-empty connected subset. We need to show that any two vertices in C are
connected by a path of edges. Let a, b be any two vertices in C. The connective
subspace C − {a} is a graph, by induction, and applying statement (b) to the
vertex a and the vertices of C − {a}, we deduce that {a, c} is connected (an edge)
for some c ∈ C − {a}. Hence C is a connected graph, and there must be path of
edges joining a to b. Conversely, every edge-connected subset of A is connected,
by repeated use of axiom (i), so that the connected subsets of A are precisely the
edge-connected ones. ¤
1.4. Morphisms.

Definition 1.3. A function f : X → Y on connective spaces, is called
c-continuous or catenuous when it maps connected sets of X to connected sets
of Y . A catenomorphism is an isomorphism i.e. a bijective map f : X → Y for
which f and f−1 are c-continuous.

One can also define c-continuity at a point when the map preserves the connective
structure rooted at that point.

Any function which maps components of X to constants is obviously
c-continuous; for example, every function on a totally disconnected space. Hence
X is connected if, and only if, every c-continuous map into the totally disconnected
space {0, 1} is constant.

These are indeed morphisms because when f : X → Y and g : Y → Z are
c-continuous, then so is g ◦ f ; and the identity maps are obviously c-continuous.

The c-continuous mappings on graphs are precisely the graph homomorphisms
i.e. those that preserve edges or join adjacent vertices.

Continuous mappings between topological spaces are c-continuous, but the con-
verse is false e.g. f(x) = sin(1/x), f(0) = 0 is c-continuous on R but not continuous.
Homeomorphisms are catenomorphisms; in fact the standard examples in textbooks
showing that the circle, the real line and the real plane are not homeomorphic, in
effect show that they are not catenomorphic.
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It is not hard to show that for R with the usual topology, order-preserving
c-continuous maps are continuous; and that bijective c-continuous maps are order-
preserving.

The space of c-continuous functions from X to C is an algebra, since addition
and multiplication are continuous on C2.

1.5. Subspaces.

Definition 1.4. A subset Y ⊆ X can be given the connectivity structure CY :=
{A ∈ CX : A ⊆ Y }.

It is easily checked that this is a connectology. The restriction of a c-continuous
map to a subspace remains c-continuous.

This definition agrees with that of subgraphs, and is consistent with the con-
nected sets of topological subspaces with the relative topology.

1.6. Quotient Spaces.

Definition 1.5. A partition of connected sets, X =
⋃

i Ei induces a connective
quotient space, with a collection of equivalence classes being connected when their
union in X is connected.

Proof. Axioms (i), (ii) and (iv) are trivially satisfied. For axiom (iii), let A, B be
connected sets in the quotient space, with A ∪ B connected. Then they are both
connected as subsets of X, so that there is a point x ∈ X with {x}∪A and {x}∪B
connected in X. But x ∈ Ej for some j, implying that Ej ∪ A and Ej ∪ B are
connected in X, and hence in the quotient space. ¤

The map φ : x 7→ [x] where x ∈ Ei = [x], is c-continuous, as follows: let C be a
non-empty connected set in X; then

⋃
φC =

⋃
x∈C [x] =

⋃
x∈C C ∪ [x] is connected

in X by axiom (i).
The partition of components induces a totally disconnected quotient space.

1.7. Bases.

Proposition 1.4. Any collection of sets B can generate a c-structure defined as
the unique smallest c-structure containing B.

Proof. Let C =
⋂{D c-structure : B ⊆ D}. Note that P(X) is a valid D. C is a

c-structure since let Ci ∈ C such that
⋂

i Ci 6= ∅. Then for any D, Ci ∈ D, hence⋃
i Ci ∈ D and

⋃
i Ci ∈ C. Similarly the points are in any c-structure D and hence

must be in C. Moreover B is in C since it is in all the D. ¤

The sets in B will be called basic connected sets. In the above examples, the
closed bounded intervals generate the connective structure of R; the edges generate
that of graphs.

Definition 1.6. A chain of connected sets is a map C from a finite index set I to
C such that each set Ci intersects its successor Ci+1.
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We will sometimes abuse the notation and speak of Ci as the chain. Chains can
obviously be concatenated and reversed. Moreover induction on axiom (i) shows
that chains are connected sets.

Proposition 1.5. The non-trivial (i.e. non-empty non-punctal) connected sets of
a c-structure generated by B are characterized by the condition that any two points
of such a connected set C can be joined by a finite chain of basic connected sets in
C i.e. for all x, y ∈ C there is a chain B : I 7→ B such that Bi ⊆ C, x ∈ B0 and
y ∈ B1.

Proof. Let E be the collection of subsets C ⊆ X for which every two points in C
can be joined by a finite chain of basic connected sets in C, together with the set
of singletons {x}.
E is a c-structure on X: let Ci ∈ E with non-empty intersection. Let x, y ∈ ⋃

i Ci

so that x ∈ C1, y ∈ C2, say, and z ∈ ⋂
i Ci. There then exist chains joining x to z

in C1 and z to y in C2, and hence their concatenation joins x to y in C1 ∪ C2. It
follows that

⋃
i Ci ∈ E .

Moreover every basic connected set B satisfies this condition by taking the con-
stant chain i 7→ B, implying B ⊆ E . Also, E ⊆ D for any connective structure
D ⊇ B since chains are connected. E must therefore equal the c-structure generated
by B. ¤

1.8. Products.

Theorem 1.6. There is a categorical product of c-spaces.

Proof. Let X be a set and (Xi, Ci) connective spaces for all i ∈ I. Let fi : X → Xi

be a set of maps indexed by I. We define a c-structure C on X as follows: C ∈ C
if, and only if, fi(C) ∈ Ci for all i ∈ I. Then C is indeed a c-structure, for if
D ⊆ C and

⋂D 6= ∅ then we have that fi(A) ∈ Ci for all A ∈ D and i ∈ I, so
that ∅ 6= fi(

⋂D) ⊆ ⋂
fi(D). Thus, fi(

⋃D) =
⋃

fi(D) ∈ Ci for all i ∈ I and
consequently,

⋃D ∈ C. Evidently, {x} ∈ C since fi{x} ∈ Ci for all i ∈ I.
We next show that C is an initial c-structure on X, that is, for any connective

space (Y,D), a map g : Y → X is c-continuous if, and only if, fi ◦ g : Y → Xi is
c-continuous for every i ∈ I. Indeed, if g : Y → X is c-continuous then evidently
fi ◦ g : Y → X is c-continuous for every i ∈ I. Conversely, if fi ◦ g : Y → Xi

is c-continuous for every i ∈ I then for any A ∈ D and any i ∈ I we have that
fi ◦ g(A) ∈ Ci so that g(A) ∈ C and hence, g is c-continuous. It is not difficult to
see that this initial c-structure is unique (just take g = id : (X, C1) → (X, C2) and
vice versa, if both C1 and C2 where initial c-structures with respect to fi : X → Xi,
i ∈ I).

One can see that this initial c-structure is the coarsest c-structure on X such
that fi is c-continuous for every i ∈ I.

We now apply the above to the product connective space of a family of c-spaces
(Xi, Ci), i ∈ I. One defines the product c-structure C =

∏
i∈I Ci on X =

∏
i∈I Xi

as the initial c-structure with respect to the projections πi : X → Xi. Thus, A ∈ C
if, and only if, πi(A) ∈ Ci for all i ∈ I.
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Thus, if (Y,D) is a c-space then f : Y → X is c-continuous if, and only if,
πi ◦ f : Y → Xi is c-continuous for every i ∈ I.

We next see that the product as defined above is categorical. Consider (X, πi, i ∈
I) where πi : X → (Xi, Ci) are the projections. Let fi : (Y,D) → (Xi, Ci), i ∈ I be a
collection of c-continuous maps. We need to find a c-continuous map f : (Y,D) →
(X, C) such that πi ◦ f = fi. Such a map can be defiined by f(y) = (fi(y))i∈I ∈ X.
Evidently we have πi ◦ f = fi, so that for any A ∈ D, πi ◦ f(A) ∈ Ci for every i ∈ I
and hence f(A) ∈ C. This shows that f is c-continuous and that the product is
categorical. ¤
1.9. Connective Closure.

Definition 1.7. A set is called t-closed when it contains its touching points,
t(F ) = F . The connective closure of a set is defined as the smallest t-closed set
containing it,

Ā :=
⋂
{F ⊆ X : t(F ) = F and A ⊆ F}.

For example, X and the ∅ are t-closed, and these are the only t-closed sets in a
totally connected space. A space is totally disconnected if, and only if, every set is
t-closed.

For graphs, a subset is t-closed if, and only if, it is a union of components of the
graph.

Proposition 1.7. If f : X → Y is c-continuous and

(i) x touches A then f(x) touches fA;
(ii) F is t-closed in Y then f−1F is t-closed in X;

Proof. (i) There is a non-empty subset C ⊆ A such that {x} ∪ C is connected.
Therefore {f(x)} ∪ fC is connected and fC ⊆ fA is non-empty.

(ii) follows from (i). ¤
Proposition 1.8.

(i) A ⊆ t(A) ⊆ Ā; t(A) = A ⇐⇒ Ā = A;
(ii) the intersection of t-closed sets is t-closed;

(iii) Ā = Ā;
(iv) A ⊆ B =⇒ Ā ⊆ B̄;

(v)
⋃

i Āi =
⋃

i Ai;

(vi) fĀ ⊆ fA.

Proof. To prove (i) let F ⊇ A be t-closed; then t(A) ⊆ t(F ) = F and hence
t(A) ⊆ Ā. Moreover when a set A is t-closed, Ā = A. Part (ii) follows from
proposition 1.1(vi), and this in turn implies (iii). For (iv) and (v) note that A ⊆
B =⇒ ⋂

A⊆F F ⊆ ⋂
B⊆F F , and

⋃
i Ai ⊆ F =⇒ Ai ⊆ F and use (i) and (iv).

Also with the same reasoning, if F is t-closed and contains fA then f−1F is t-closed
and contains A, so that Ā ⊆ ⋂

F f−1F , which proves (vi). ¤
Corollary 1.9. The connective closure of a set A in a t-closed subspace B is that
induced by the closure in X i.e. ĀB = Ā ∩B.
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Note that A ∪B 6= Ā ∪ B̄ in general, even for topological spaces e.g. R+ =
Q+ ∪ Q′+ but 0 ∈ R+ and 0 6∈ Q+ ∪ Q′+. In general Ā includes not just the
touching points of A but also the touching points of t(A) etc.

Proposition 1.10.

(i) A connected =⇒ t(A) connected;
(ii) A connected =⇒ Ā connected;
(iii) the components of X are t-closed, t-open and non-touching;
(iv) for A, B non-empty connected sets, Ā ∩ B̄ 6= ∅ ⇐⇒ Ā ∪ B̄ is connected.
(v) for A, B connected, t(A ∪B) = t(A) ∪ t(B), and A ∪B = Ā ∪ B̄.

Proof. (i) For each point x touching A, the set A∪{x} is connected and intersects
the connected set A. So their union t(A) is also connected by axiom (i).

(iii) Let C be a component. If x touches X − C then {x} ∪ B is connected for
some non-empty set B ⊆ X − C. But then {x} ∪ B ⊆ C (since components are
maximally connected), unless x ∈ X − C. The rest was proved in 1.2

(ii) Let B be the component of A in Ā. Therefore, B is t-closed in Ā, and hence
in X. This forces Ā = B which is connected.

(iv) is a restatement that two connected sets have a connected union precisely
when they touch.

(v) Let x touch A ∪ B. Then {x} ∪ A ∪ B or {x} ∪ A or {x} ∪ B is connected.
In any case, by (1), {x} ∪ A or {x} ∪ B is connected, which proves the first part.
Next, for A, B connected, t(Ā ∪ B̄) = t(Ā) ∪ t(B̄) = Ā ∪ B̄; this, combined with
proposition 1.8(v), proves the second part. ¤

Note that if A is connected and A ⊆ B ⊆ Ā then B need not be connected. For
example, in graphs, let A be a single vertex; then Ā is its component, and may
contain several disconnected subgraphs that include A.

1.9.1. Associated Topologies. Every connective space gives rise to at least two
topologies:

• A topology generated by the t-closed sets; in this case the closed sets would
be intersections of finite unions of t-closed sets, and will be called c-closed
sets.

• A weaker topology generated by the t-closed connected sets; the closed sets
would be intersections of finite unions of t-closed connected sets, and will
be called s-closed sets.

Hence we get a c-closure Ã and an s-closure Â of a set A, with c-closureA ⊆
Ā ⊆ Â.

In general, these topologies may not be compatible with the connective structure.
For example for an infinite totally disconnected space, the associated s-topology
is the cofinite one, with the s-closed sets being the finite subsets, resulting in the
cofinite connective space. One consequence is that c-continuous maps need not
be continuous relative to either of these topologies, although catenomorphisms are
necessarily homeomorphisms.
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For graphs both these topologies are equal to the topology generated by the
components.

1.9.2. Other Constructs. One can define the t-interior, t-boundary, t-compactness
analogously to the topological definitions, replacing ‘open’ and ‘closed’ by ‘t-open’
and ‘t-closed’; and similarly for c-interior and s-interior etc. Several parallel state-
ments are true e.g. every set induces a partition of X into its c-interior, c-exterior
and c-boundary; c-continuous maps preserve t-compact sets; t-closed subsets of
t-compact sets are t-compact. Note however that for the real line at least, the
t-compact sets are the countable subsets (consider the c-open cover consisting of
the cosets of the rationals.)

Analogues of the separation axioms are also interesting, in particular the ana-
logue of the topological T1 axiom, here termed

Axiom C1: Distinct points are disconnected.
This is equivalent to saying that distinct points do not touch or that {x} = {x}

or that finite sets are c-closed. A totally disconnected space is obviously C1.

1.10. Pathconnectedness. Every connective structure has two important sub-
structures:

(a) The graph substructure of edge-connected sets, that is, sets such that any
two elements have a path of edges connecting them. Equivalently, a set A is
edge-connected when for any two points a, b ∈ A, there is a c-continuous function
f : N → A which covers a and b. Here N is taken to be the connective space
consisting of the natural numbers together with all its intervals [m,n] (plus ∅ and
N).

(b) The substructure of path-connected sets, namely those sets A such that for
any two points a, b ∈ A, there is a c-continuous function f : R → A which covers
a and b.

Proposition 1.11. The path-connected structure and the graph structure are con-
nectologies.

Proof. Axiom (i). Let Ci be path-connected sets in X with a common point z ∈
Ci, ∀i. Then for any two points in their union, say x ∈ C0, y ∈ C1 we get a
c-continuous path from x to z in C0 and from z to y in C1; joining these paths
gives the desired c-continuous path from x to y in C0 ∪ C1.

Axiom (ii) is trivially true using the constant paths. For axiom (iii), consider
two path-connected sets A and B, whose union is also path-connected. If A and
B are not disjoint, the proof is immediate; so assume they are disjoint. Pick any
two points x ∈ A and y ∈ B; there is a c-continuous path f from x to y in A ∪B.
Consider the non-empty set W = {t : f(t) ∈ A}; W has an upperbound since
f(β) = y 6∈ A, and hence a least upperbound α, with f(α) = z. Now B ∪ {z}
is path-connected by f : [α, β] → B which joins z to y, and hence to all other
points of B. If z ∈ A then the assertion is proved. If instead z ∈ B, then take
a sequence an → α with an ∈ A, and c-continuous paths φn : [an, an+1) → A
with φn+1(an) = φn(an+1). Replace the original path by φ : [0, α) → A defined by
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φ(x) = φn(x) for x ∈ [an, an+1), still c-continuous. Then φ joins x to z in A, and
A ∪ {z} is path-connected.

Axiom (iv). Let M be a path-component of A in X −B. Then M must contain
any path-connected sets Ci wholly. Let x ∈ B and y ∈ X −M . Then there is a
c-continuous path joining x to y in X. The set W = {t : f [t, 1] ⊆ X −M − B}
has a lower-bound of 0, hence a greatest lowerbound α, with f(α) 6∈ M . Hence
f(α) ∈ B, implying that x is joined to f(α) to y inside X −M . Hence X −M is
path-connected.

The proof for edge-connectedness is similar and simpler. ¤

1.11. Further Work. The study of those properties of connective spaces that are
preserved by catenomorphisms is still uncharted. The following is a short sample
list of possible areas of research:

Regular connective spaces are those for which all the rooted connective struc-
tures are catenomorphic.

Transitive connective spaces are those such that for any two points x, y ∈ X
there is an automorphism of X that sends x to y.

A connective space X is called n-connected when there are n points in X
which disconnect X when removed. X is called homogeneously n-connected when
removing any n points disconnects it. For example, the real line is homogeneously
1-connected. A totally connected space is the only space which remains connected
when any subset is removed.

The dimension of a connected space may be defined inductively as follows: X
has dimension 0 when it is a singleton; it has dimension n + 1 when for X − A to
be disconnected with A a connected subset, A must be at least n-dimensional.

One can imagine extending the definitions of homology classes (using
c-continuous paths), simply-connected spaces, Euler number etc.

1.11.1. Open Problems.

(i) Suppose the connective structure of X − {x} is given for all x up to
catenomorphism, is that of X uniquely reconstructible? (This is called
the reconstruction conjecture in graph theory, and is currently unproved.)
Disconnected spaces are obviously uniquely reconstructible.

(ii) Which connective spaces are embeddable in a given space X? This is open
even for graphs.

(iii) Which connective spaces are topologisable (with a compatible topology)?
It can be shown that locally connected T3 spaces are topologisable using
the s-topology.

2. Topological Spaces

It is a standard theorem in topological spaces that the addition of a limit point
to a connected set, leaves it connected; in our terminology this becomes,

Proposition 2.1. A limit point of a connected set is a touching point; t-closed
connected sets are closed.
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The converse is false in general e.g. one vertex in the graph K2 has a touching
vertex, but no limit point.

As a corollary, the s-topology is weaker than the topology of the space (s-closed
sets are closed).

Proposition 2.2. Every topological space has a T0 topology with the same con-
nected sets.

Proof. Suppose we’re given a topological space with topology T . Consider the
equivalence relation x ∼ y defined by ∀U ∈ T , x ∈ U ⇐⇒ y ∈ U . It induces
a partition on X; well-order the equivalence classes. Let S be generated from T
together with the open sets U = V −{x0, . . . , xn} for x0, . . . in an equivalence class.
If x 6∼ y then x can be separated from y or vice-versa; if x ∼ y, they belong to an
equivalence class, and one of the additional open sets can separate them. Hence S
is T0.

Disconnected sets remain disconnected under S because this topology is finer.
Now let A be disconnected in S, using open sets U1 and U2. There cannot be an
equivalence class part of which intersects U1 ∩ A and also U2 ∩ A, else we would
get x ∼ y with x ∈ U1 and y ∈ U2, and hence x ∈ U2. Equivalence classes must
therefore lie completely in U1 or completely in U2 or in neither. Hence U1 and U2

are open sets in T , and A is disconnected in T . ¤
Proposition 2.3. For T1 topological spaces,

(i) touching points are limit points,
(ii) the t-closure of a set is a subset of its topological closure,
(iii) closed sets are t-closed, and open sets are t-open,
(iv) when A is connected, t(A) = Ā = Ã and it is t-closed ⇐⇒ it is closed.

Proof. In T1 topological spaces, a point and a distinct closed set are disconnected.
This implies that a point x in the exterior of a set A cannot touch it. Hence
touching points are limit points (but not conversely in general), and closed sets are
t-closed; also open sets are t-open. Therefore the intersection of all the t-closed sets
containing A, i.e Ā, is contained in the intersection of all the closed sets containing
A, i.e. its topological closure. (iv) follows from the previous proposition. ¤

It follows that the c-topology is stronger than the given topology (closed sets are
t-closed, hence c-closed).

Note: The converses are in general false e.g. the set {1/n : n ∈ N} in R is
t-closed but not closed.

Proposition 2.4. Let X and Y be catenomorphic topological spaces. Then X is
T1 ⇐⇒ Y is T1.

Proof. Let φ : X → Y be a catenomorphism. Suppose X is T1, and consider
any two distinct points in Y . Then they map to distinct points in X, and are
disconnected in X, hence in Y . ¤

However, if X is T3 then Y need not be T3. For example, consider R with the
topology generated by the standard open intervals together with (−1, 1)−{1/n}; it
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is not T3. As it is finer than the standard topology, non-intervals are disconnected.
Intervals however are connected since let U , V be a disconnection; take x ∈ U ,
z ∈ V , let y = sup U ∩ [x, z]; then y 6∈ U since open sets do not include their
endpoints in this topology, and, similarly, y 6∈ V . Thus it is catenomorphic to the
standard real line.

2.1. Topologizable Graphs. It has been shown [2] that two-colourable (i.e. bi-
partite) locally-finite graphs (including trees) are essentially uniquely topologisable
by taking white vertices to be open and black vertices to be closed.

More generally, it is known [1, 8] that T0 spaces with the property that
⋂

i Ui is
open for any open sets Ui, are in 1-1 correspondence with the partial orders on the
vertices. Since this property holds for topologies on finite sets, we have

Proposition 2.5. A finite graph admits a compatible topology if, and only if, it
admits a partial order on its vertices, compatible with its edges, in the sense that
two vertices are comparable if, and only if, they are identical or adjacent.

Proof. By proposition 2.2, we can assume that the compatible topology is T0. Con-
sider the relation x ≤ y, which is defined to hold when every open set that includes
y includes x as well. It is easy to show reflexivity and transitivity, while anti-
symmetry follows from the T0 axiom. Non-comparable vertices are, by definition,
disconnected and vice-versa, distinct non-adjacent vertices are disconnected, hence
non-comparable.

Conversely, given a compatible partial order, let T be the topology generated
from the closed sets Fa := {x : x ≤ a}. Then non-comparable vertices a, b are
disconnected by the closed sets Fa and Fb. Now let a < b be distinct comparable
vertices, and let F be any closed set containing b; then there are a finite number
of vertices cij with F =

⋃
i

⋂
j Fcij

. But b ∈ F implies ∃i∀j b ≤ cij, and hence

a ∈ F ; thus every closed set that contains b contains a and {a, b} is connected.
Thus comparable vertices are adjacent, and the given topology is compatible with
the graph structure. ¤

Bipartite graphs have an obvious compatible partial order.

2.2. Additional Structures.

Definition 2.1. A connective group is a group G with a connective structure
such that the maps (g, h) 7→ gh and g 7→ g−1 are c-continuous.

It follows that right/left multiplication and inversion are catenomorphisms. This
implies,

Proposition 2.6. If A, B are connected sets then gA, Ag, A−1 and AB are con-
nected.

The connective structure rooted at e determines the connective structure by
translation. In particular a group homomorphism is c-continuous when it is c-
continuous at e.

https://www.researchgate.net/publication/247923878_The_Lattice_of_Topologies_Structure_and_Complementation?el=1_x_8&enrichId=rgreq-3971c8ef6dce13afcac36bb939747675-XXX&enrichSource=Y292ZXJQYWdlOzIyODk4NjYxNTtBUzoxMjQxOTU1NzcwMTIyMjRAMTQwNjYyMTk0MTQ3OQ==
https://www.researchgate.net/publication/266985993_Topologies_on_bipartite_graphs?el=1_x_8&enrichId=rgreq-3971c8ef6dce13afcac36bb939747675-XXX&enrichSource=Y292ZXJQYWdlOzIyODk4NjYxNTtBUzoxMjQxOTU1NzcwMTIyMjRAMTQwNjYyMTk0MTQ3OQ==
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Proposition 2.7. The component of e is catenomorphic to any other component,
and is a normal subgroup, Ge. G/Ge is then a totally disconnected group.

Proof. The map g : [e] → [g] defined by h 7→ gh is the required catenomorphism;
g−1Cg is connected for any g ∈ G and any connected set C, and fixes e, so that
g−1Geg ⊆ Ge. ¤

Conversely, for any normal subgroup N of G, there is a connective space with
Ge = N .

For a finite “group-graph” acting c-continuously on itself, if {e, a} is an edge,
then so are {e, g−1ag} and {e, g−1a−1g} for any g ∈ G. This means that the
identity is adjacent to whole conjugacy classes and their inverses; and knowledge
of which conjugacy classes is sufficient to generate the graph, since if the edge
{e, a} is mapped under translations to the edge {hg, hag} with one vertex being e,
then there are two possibilities: either hg = e and the edge is in fact {e, g−1ag} or
hag = e and the edge is {g−1a−1g, e}.
Definition 2.2. A connective vector space is a vector space over the real num-
bers (more generally over a connected field) with a connective structure such that
addition and scalar multiplication are c-continuous.

Proposition 2.8. If A and B are connected then so is A + B; if I ⊆ R is an
interval and A ⊆ X connected, then IA is connected.

In particular, x + A, λA, line segments [x, y], linear subspaces, convex sets, star
shapes and X itself are connected.
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