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Pre-Hilbert space (= inner product space) system, then E4(S) = E(S) implies completeness of S. In view of this result, it is natural to
Quasi-splitting subspace study the problem of the existence of a total orthonormal system in a pre-Hilbert space.
Orthonormal base In particular, it is proved that if every algebraic complement of S in its completion is

separable, then S has a total orthonormal system.
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1. Introduction

In what follows S is a real or complex pre-Hilbert space (= inner product space) and H is its completion, i.e. a Hilbert
space containing S as a dense subspace. For any subset A € S we write A to denote the closure of A in H and ALs
the orthogonal complement of A in S, i.e. ALS ={xe S| (x,a) =0, Va e A}. Let us recall that the orthogonal (Hilbert)
dimension dim S is the cardinality of any maximal orthonormal system of S. For a vector space K we denote by d(K) the
linear (Hamel) dimension of K.

In the Hilbert space model for quantum mechanics, the events of a quantum system can be identified with projections
on a Hilbert space or, equivalently, a collection of closed subspaces of a Hilbert space [2,5,9,11,13]. Two classes of closed
subspaces of S that can naturally replace the lattice of projections in a Hilbert space are those of orthogonally closed, and
splitting subspaces. We recall that a subspace M of S is orthogonally closed if Mts+s = M, and is splitting if S = M@®M-"s. It
is not difficult to check that every splitting subspace is orthogonally closed. By the classical Amemiya-Araki-Piron Theorem,
equality between these two classes holds if and only if S is complete [1,10] (see also [5,9]). When endowed with the partial
ordering of set-theoretical inclusion C and orthocomplementation Lg, the set of orthogonally closed subspaces F(S) and
the set of splitting subspaces E(S) carry an algebraic structure with orthocomplementation. It is not difficult to check that
E(S) C F(S). In general, the algebraic structures of these two orthoposets are different; F(S) is a complete lattice whereas
E(S) is an orthomodular poset and the following three statements are equivalent:

(i) F(S) is orthomodular;
(ii) E(S) is a complete lattice;
(iii) S is complete.
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Chapter 4 of the book of A. Dvurecenskij [5] and Chapter 4 of the book of ]. Hamhalter [9] serve as a very good introduction
on the subject.

The class Eq(S) of quasi-splitting subspaces of S was introduced in [4] as an intermediate between E(S) and F(S).
A subspace M of S is quasi-splitting if it is closed in S and M @ M~s is a dense subspace of S. Equivalently, a closed
subspace M of S is quasi-splitting if MLts = M-L# [4, Proposition 2.2].

If S is complete, then E(S) = Eq(S) = F(S). The inclusions

E(S) S Eq(S) S F(S)

hold though, in general, they are proper. Motivated by the Amemiya-Araki-Piron Theorem, the authors of [4] conjectured
that: Eq(S) = E(S) ifand only if S is a Hilbert space and also have settled this in the affirmative for the case when d(H/S) is
finite. As will be seen further on, this question is closely related to the problem of characterizing those pre-Hilbert spaces
that admit an orthonormal basis, i.e. an orthonormal system (ONS) that is total. It is known that in a Hilbert space every
maximal orthonormal system (MONS) is an orthonormal basis (ONB). This fact distinguishes Hilbert spaces completely [6-8].
Moreover, it is possible to exhibit pre-Hilbert spaces admitting no ONB. Indeed, it can happen that dim S # dim H [3,6].

The main result of Section 2 says that if S has an ONB, then E4(S) = E(S) if and only if S is complete. (In particular, this
means that E(S) # Eq(S) when S is an incomplete separable pre-Hilbert space.) In Section 3 of the paper we investigate
when a pre-Hilbert space has an ONB. It is shown that when every linear complement of S in H is separable, then S has
an ONB. This means, for example, that S admits an ONB when d(H/S) < Rg. (In particular, all hyperplanes have an ONB.)
The relation between dim S, dim H and d(S) is also studied in Section 3.

2. Pre-Hilbert spaces in which every quasi-splitting subspace is splitting

In this section it is proved that if S is a pre-Hilbert space with an ONB, then E4(S) = E(S) if and only if S is complete.
This result is first proved for the case when S is separable. (In such a case S always has an ONB; see for example [3, V.24]
or [12].) The proof is divided in shorter lemmas. The main lemma, which is also referred to in Section 3, is Lemma 1. We
denote the set {1,2,3,...} by N, and Ny :=NU {0}.

In the proof of the following lemma we use the result that M N S is dense in M whenever M is a closed subspace of H
with finite dim M-+ ([5, Theorem 4.1.2], [9, Lemma 4.2.3]).

Lemma 1. Let (z,)nen, be a sequence of vectors in H such that ||zo|| = 1 and zg L z1. There is a double sequence (¥mn)m,neNg, n<m in
S and a sequence (¥n)nen, in H such that yo = zg and y1 = z1, with the following properties:

() 1ymn — ynll <1/2™ form,n € No withn <m;
(i) (Ymn, Ypq) = (¥n, ¥q) =0form,n,p,qe Ngwithq <n,q<p,n<m;
(iii) yn — zn € span’Y, where
Yo={yk|0<k<n}U{y;|0<j<i<n}

Proof. By induction on n € Ny we define vectors y,, ¥no, ..., Ynn Such that condition (i)-(iii) are satisfied by the vectors
of Yn11. Set yo =20 and ypo = 0. In the nth induction step we proceed as follows. Define y, as the orthoprojection of z, in
YnL”. Condition (iii) is satisfied since y, € z; 4+ spanY.

Let us further observe that for n =1 we have Y1 = {0, zo} and therefore y; = z;.

We now construct inductively the vectors y, (I=0,...,n) such that y, L A;, where A is the set

{yjlo<j<sn, jERU{y;10<j<i<n, jERU{y 10<j<lI}

Suppose that y,y (' <) are constructed. Since y; L Aj, by the above stated result we can find y, € S such that y, L A;
and || ym — yill < 1/2". 1t is clear then that conditions (i) and (ii) are satisfied by the vectors of Y,. O

Lemma 2. With the assumption and notations of Lemma 1, let M := {ymo | m € Ng}ts-+s.

(i) Ifzo,z1 € H\ S and span{zgp, z1} N S # {0}, then M ¢ E(S).
(ii) Ifue H,u L M and u L. M1s, then u L z, for alln € Ny.

Proof. (i) Suppose that zp,z1 ¢ S, span{zg,z1} N S # {0} and M € E(S) for contradiction. Then there is a non-zero vector
h € S such that

h=azo+ pz1 =h1 + ha,

where h; € M and hy € M+s. Then h; = azg and hy = Bz; because zg € M and z; € M-Ls. This contradicts the assumption
that zg and z; are not elements of S.

(i) Given any m € Ng, observe that y;0 € M and ymn € M-S (n£0), i.e. u L ymp and u L y, for all 0 <n < m. In view
of property (iii) of Lemma 1, u 1 z; forallneNy. O
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Theorem 3. A separable pre-Hilbert space S is complete if and only if Eq(S) = E(S).

Proof. We only need to prove sufficiency since the necessity is obvious. Let (z;)nen be total sequence in H. If we assume
that S is not complete, we can choose z; not to be an element of S.

Let h € S such that (h, z1) #0. Then 26 =2 M isnotin S since z; € H\S and heS. Let z9 := Hi_(’)H Observe that
0

T zz )
20 L z1. Let yma and y, be chosen according to Lemma 1. We show that M := {ymo | m € No}ts+s € Eq(S)\ E(S). By part (i)
of Lemma 2, M is not splitting. If M is not quasi-splitting, then there exists a non-zero vector u € H such that u L M and
u L M*+s. By part (ii) of the same lemma, it follows that u L z, for all n € Ng. This is a contradiction since (z;)nen is total
inH. O

Proposition 4. Let M, N be two subspaces of S such that M C N.

(i) M € E(S) implies M € E(N).

(ii) Let N € E(S). Then M € E(N) ifand only if M € E(S).
(iii) Let N € Eq(S). Then M € E4(N) implies M € E4(S).
(iv) Let N € E(S). Then M € Eq(N) ifand only if M € E4(S).

Proof. We leave the proofs of (i) and (ii) to the reader.

(iii) Let u € H, such that u L M and u L M-S, Since M+s NN, Nts € M1s, we have that u L M-S NN and u L N-ts.
However, since N € Eq(S), u L N-+s implies that u € N. On the other-hand, M € Eq(N) and therefore u L M and u LMtsnN
implies that u =0, i.e. M € E¢(S).

(iv) We need to show only one direction since E(S) € E4(S) and therefore we can use (iii) to deduce that M € Eq(N)
implies M € Eq(S). Let u € N such that u L. M. We show that u € M+s N'N. Fix € > 0. Since M ¢ Eq4(S), there exists v € Ms
such that |u — v|| < €. Since N € E(S), v =vq + v, where vi € N and v, € N+5, Observe that vi{ =v — vy € NN M=s and
u — vq1 L vy. Therefore

lu—vill <[w=vi)—va|=llu—vl<e

and this completes the proof. O
Corollary 5. If S has an incomplete separable quasi-splitting subspace, then E4(S) # E(S).

Proof. Let M € E4(S) be incomplete and separable. If Eq(S) = E(S), then by (iii) of Proposition 4 we get that Eq(M) €
Eq(S) = E(S). It follows from Proposition 4(i) that Eq(M) = E(M) and therefore, in view of Theorem 3, that M is complete,
a contradiction. O

Theorem 6. If S has an ONB, then E(S) = E4(S) if and only if S is complete.

Proof. Let A be an ONB of S. In what follows we use the fact that for any B € A the space spanB N S is quasi-splitting.
Suppose that S is not complete and let x € H \ S. There exists a countable subset Ay of A such that x € span Ap. Since
spanAg NS is an incomplete separable quasi-splitting subspace of S, we have E4(S) # E(S) by Corollary 5. The converse is
trivial. O

In Section 2, it is proved that if every algebraic complement of S in H is separable—particularly if d(H/S) < No—then
S has an ONB. With this in mind, one deduces the following result which extends [4, Theorem 2.11] (where the result is
proved for finite d(H/S)).

Corollary 7. If every algebraic complement of S in H is separable, then E(S) # Eq(S). In particular, if 0 < d(H/S) < Ro, then E(S) #
Eq(S).

3. Orthonormal bases in pre-Hilbert spaces
The starting point of this section is the known fact that there are pre-Hilbert spaces having their orthogonal dimension

not equal to that of the completion, i.e. dim S # dim H. Such pre-Hilbert spaces admit no ONB, i.e. no MONS of S is a MONS
of H. Conditions forcing a pre-Hilbert space S to have an ONB are studied in this section.

Theorem 8. Let M be a subspace of H containing S and A a MONS in S such that dim A*™ < Rg. Then S contains an ONS that is
maximal in M.
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Proof. Let (zp)nen, be a MONS in A1M_ Observe that AU {z, |n € Ng} is a MONS in M. We can use Lemma 1 to obtain a
double sequence (Ymn)m.neNy,n<m in S and a sequence (Yn)nen, in H with properties (i)-(iii) of same lemma. The set

Ap:={ae A|Im,ne Ny, n<m, with yyu, La}
is countable. Let B be an ONB of
span({ymn | m,n € No, n<m}U Ag).
Then C := (A \ Ag) UB is an ONS of S such that A C spanC and z, € spanC for all n € Ny, i.e. C is maximal in M. O

Corollary 9. If every algebraic complement of S in H is separable, then S has an ONB. In particular, if d(H/S) < Ro, then S has an
ONB.

Proof. Let A be a MONS in S. Since AL* is contained in an algebraic complement of S, A+ is separable and therefore
dim At™ < Rg. We can now apply Theorem 8 and deduce that S contains an ONS that is maximal in H; i.e. an ONB of H. O

Example 12 below shows that in Corollary 9 the assumption that every algebraic complement of S in H is separable
cannot be weakened to the assumption that S has one algebraic complement in H which is separable.
In what follows, for a closed subspace M of a Hilbert space H, we denote by Py the orthogonal projection of H onto M.

Lemma 10. Let U be a subspace of a Hilbert space V and A, B subsets of U such that U = span(A U B). Let further V1 = span A and
Vo= V]LV. Then the following two conditions are equivalent:

(1) AisanONS, Py, B is total in V;, Py, is one-to-one when restricted to B and A U Py, B is a set of linearly independent vectors;
(2) AisaMONS of U, U =V and A U B is a set of linearly independent vectors.

Proof. (1) = (2). To show that U is dense in V one only has to note that since V; U and B C U, it follows that Py,B C U,
which in turn implies that V, C U since Py, B is total in V5.
We now show that A is a MONS in U. Assume that u € U with u L A. Say

n m
u ZZMG,‘ —I—Z/ijj,
i=1 j=1
where a; € A, bj € B and A;, j4; are scalars. Then Py, u =0 since u L A, so that

m
ZMPW (bj) e span{a; |1 <i<n}.
j=1
Since Py, is one-to-one when restricted to B and AU Py, B consists of linearly independent vectors, it follows that ;=0
for all 1< j<m,ie u=Y 1, Consequently, u =0 because by assumption u L A.
(2) = (1). To see that Py, B is total in V3, one should observe that

Vi@V, =V =U < V;&span(Py,B) = Vi @ span(Py,B),

hence V; = span(Py, B). We now show that Py, is one-to-one when restricted to B, and that the set AU Py, B consists of
linearly independent vectors. Consider a linear combination 2?21 Aia; + Z’};l wjPy,(bj) =0. Then

n m n m m m
Zkiai + Zujbj = Z)»iai +ZM]PV1 (b + Zﬂjl’vz(b]’) =Py, <2Mjbj) eUnV;={0},
i=1 j=1 i=1 j=1 j=1 j=1

where the last equality follows from the fact that A is a MONS of U. Consequently, o; = ptj =0 for every 1 <i <n,
1< j<m since AU B consists of linearly independent vectors. 0O

Remark 11. Observe that if any (and hence both) of the conditions of Lemma 10 are satisfied, then the following statements
hold:

(i) VanuU ={0};
(i) If V4 =span(A U Py, B), then V =U + V>, and therefore V3 is an algebraic complement of U;
(iii) If Vo =span(Py,B), then V =U + V;.

Example 12. Given two cardinals «, T satisfying o < k¥ < 7 < k™0, let V4, V, be two Hilbert spaces with dimV; = «,
dimV,; =1 and let V =V & V,. Then V contains a dense subspace U satisfying:
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(i) dimU =« and dimU = t;
(ii) V5 is a non-separable algebraic complement of U;
(iii) V1 contains an algebraic complement of U. In particular, if x = Rg, then U has a separable algebraic complement.

Proof. First observe that
KRQ < .L.NQ < (KNO)NU :KNO,
hence k™0 = ™0 Therefore d(V1) =« ™0 = %0 =d(V>).

Let A be an ONB of V; and C be a Hamel basis of V; containing A. Let further D be a Hamel basis of V,. Since
|D| =|C \ Al, there is a bijection g from D onto C \ A. Define

B:={g(d)+d|deD}.
From Lemma 10 ((1) = (2)) and Remark 11 it is clear that the subspace U :=span(A U B) has the desired properties. O

Let us note that in the above example we have a pre-Hilbert space whose dimension is strictly less than the dimension
of its completion and therefore cannot contain an ONB. We now modify the above example to construct a pre-Hilbert space
that has no ONB, but its dimension agrees with the dimension of its completion.

Example 13. Let V and U be as in Example 12 and Vg :=V @& Hg be the direct sum of V and a Hilbert space Hy with
dimHg=7. Then Ug:=U @ Hy is a dense subspace of V not containing an ONB, and dim Ug = dim V.

Proof. Evidently dimUy = dim Vo = 7. We show that Ugp does not have an ONB. First observe that if E is a total subset
of Ug, then PyE C U and PyE is total in V. This means that |[PyE| >dimV =1t.

On the other hand, if E is an ONS contained in Ug, then dimU > |Py E|. To see this, observe that if A is a MONS of U,
then for any a € A, the set E;, :={e € E | e Y a} is countable. Moreover, since A is a MONS in U,

Pv< UEa) =PyE,

acA

and therefore,

IPvE|=

UE

acA

<JA|-Rg=dimU=«. O

(Ue))-

acA

How much bigger than dim S can dim H be? Upper bounds for dim H in terms of dim S and d(S) are given in the next
theorem.
Theorem 14. Let S be a pre-Hilbert space and H be its completion. Then
dim H < d(S) < (dim $)™.

Proof. We may assume that H has infinite dimension. Let A be a MONS in S and B a subset of S such that AUB is a
Hamel basis of S. Define Hq :=span A and let C be an ONB of H, := Hf”. We first show that

d(s),
Icl< { (dim $)%.

For any b € B, the set
Cp:={ceC|c L Pn,b}

is countable. By Lemma 10 we know also that Py, B is total in H. Hence, for every c € C there exists b € B such that
c L Py,b, ie. C=Jpep Cp. Hence

[CI < |Bl- 8o < d(S) - Ro=d(S).

For the second inequality, observe that by Lemma 10, Py, is one-to-one when restricted to B and Py, B consists of
linearly independent vectors. Hence

IC| < |B|-Ro =Py, B|-Ro < d(H1) = (dim H1)™ = (dim S)™°.
Consequently,

dim S 4 d(S) =d(S),

. < di <
dimH <dim$ + |C| < {dims + (dim S)® = (dim S)™°,
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and therefore,

d(S) <d(H) = dim H)™ < ((dim $)™)™ = dims)™. 0O

Remark 15. In view of Theorem 14 it is natural to ask whether there exists a Hilbert space V having a dense subspace U
with dimV =7, dimU =R and d(U) = A, where R, 7, % are cardinal numbers satisfying o <X < 7 < A < XY, An easy
modification of Example 12 shows that the answer is in the affirmative. Indeed, choose V1, V,, V, A, C as in the proof of
Example 12 and let D be a total, linearly independent subset of V, with cardinality A. Since |D| = A < X% = |C\ A|, there
is an injection g from D into C \ A. Define B:={g(d)+d|d € D} and U :=span(A U B). Then U and V have the desired

properties.
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