Orthonormal bases and quasi-splitting subspaces in pre-Hilbert spaces

D. Buhagiar ${ }^{\mathrm{a}, *}$, E. Chetcuti ${ }^{\text {b }}$, H. Weber ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Science, University of Malta, Msida MSD.06, Malta
${ }^{\text {b }}$ Department of Mathematics, Junior College, University of Malta, Msida MSD.06, Malta
c Dipartimento di matematica e informatica, Universitá degli Studi di Udine, 1-33100 Udine, Italy

ARTICLE I N F O

Article history:

Received 16 January 2008
Available online 18 April 2008
Submitted by L. Chen

Keywords:

Pre-Hilbert space (= inner product space)
Quasi-splitting subspace
Orthonormal base

Abstract

Let S be a pre-Hilbert space. We study quasi-splitting subspaces of S and compare the class of such subspaces, denoted by $E_{q}(S)$, with that of splitting subspaces $E(S)$. In [D. Buhagiar, E. Chetcuti, Quasi splitting subspaces in a pre-Hilbert space, Math. Nachr. 280 (5-6) (2007) 479-484] it is proved that if S has a non-zero finite codimension in its completion, then $E_{q}(S) \neq E(S)$. In the present paper it is shown that if S has a total orthonormal system, then $E_{q}(S)=E(S)$ implies completeness of S. In view of this result, it is natural to study the problem of the existence of a total orthonormal system in a pre-Hilbert space. In particular, it is proved that if every algebraic complement of S in its completion is separable, then S has a total orthonormal system.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In what follows S is a real or complex pre-Hilbert space ($=$ inner product space) and H is its completion, i.e. a Hilbert space containing S as a dense subspace. For any subset $A \subseteq S$ we write \bar{A} to denote the closure of A in H and $A^{\perp s}$ the orthogonal complement of A in S, i.e. $A^{\perp S}=\{x \in S \mid\langle x, a\rangle=0, \forall a \in A\}$. Let us recall that the orthogonal (Hilbert) dimension $\operatorname{dim} S$ is the cardinality of any maximal orthonormal system of S. For a vector space K we denote by $d(K)$ the linear (Hamel) dimension of K.

In the Hilbert space model for quantum mechanics, the events of a quantum system can be identified with projections on a Hilbert space or, equivalently, a collection of closed subspaces of a Hilbert space [2,5,9,11,13]. Two classes of closed subspaces of S that can naturally replace the lattice of projections in a Hilbert space are those of orthogonally closed, and splitting subspaces. We recall that a subspace M of S is orthogonally closed if $M^{\perp_{s} \perp_{s}}=M$, and is splitting if $S=M \oplus M^{\perp_{s}}$. It is not difficult to check that every splitting subspace is orthogonally closed. By the classical Amemiya-Araki-Piron Theorem, equality between these two classes holds if and only if S is complete [1,10] (see also [5,9]). When endowed with the partial ordering of set-theoretical inclusion \subseteq and orthocomplementation \perp_{S}, the set of orthogonally closed subspaces $F(S)$ and the set of splitting subspaces $E(S)$ carry an algebraic structure with orthocomplementation. It is not difficult to check that $E(S) \subseteq F(S)$. In general, the algebraic structures of these two orthoposets are different; $F(S)$ is a complete lattice whereas $E(S)$ is an orthomodular poset and the following three statements are equivalent:
(i) $F(S)$ is orthomodular;
(ii) $E(S)$ is a complete lattice;
(iii) S is complete.

[^0]Chapter 4 of the book of A. Dvurečenskij [5] and Chapter 4 of the book of J. Hamhalter [9] serve as a very good introduction on the subject.

The class $E_{q}(S)$ of quasi-splitting subspaces of S was introduced in [4] as an intermediate between $E(S)$ and $F(S)$. A subspace M of S is quasi-splitting if it is closed in S and $M \oplus M^{\perp S}$ is a dense subspace of S. Equivalently, a closed subspace M of S is quasi-splitting if $\overline{M^{\perp_{S}}}=M^{\perp_{H}}$ [4, Proposition 2.2].

If S is complete, then $E(S)=E_{q}(S)=F(S)$. The inclusions

$$
E(S) \subseteq E_{q}(S) \subseteq F(S)
$$

hold though, in general, they are proper. Motivated by the Amemiya-Araki-Piron Theorem, the authors of [4] conjectured that: $E_{q}(S)=E(S)$ if and only if S is a Hilbert space and also have settled this in the affirmative for the case when $\mathrm{d}(H / S)$ is finite. As will be seen further on, this question is closely related to the problem of characterizing those pre-Hilbert spaces that admit an orthonormal basis, i.e. an orthonormal system (ONS) that is total. It is known that in a Hilbert space every maximal orthonormal system (MONS) is an orthonormal basis (ONB). This fact distinguishes Hilbert spaces completely [6-8]. Moreover, it is possible to exhibit pre-Hilbert spaces admitting no ONB. Indeed, it can happen that $\operatorname{dim} S \neq \operatorname{dim} H[3,6]$.

The main result of Section 2 says that if S has an ONB, then $E_{q}(S)=E(S)$ if and only if S is complete. (In particular, this means that $E(S) \neq E_{q}(S)$ when S is an incomplete separable pre-Hilbert space.) In Section 3 of the paper we investigate when a pre-Hilbert space has an ONB. It is shown that when every linear complement of S in H is separable, then S has an ONB. This means, for example, that S admits an ONB when $\mathrm{d}(H / S) \leqslant \aleph_{0}$. (In particular, all hyperplanes have an ONB.) The relation between $\operatorname{dim} S, \operatorname{dim} H$ and $d(S)$ is also studied in Section 3.

2. Pre-Hilbert spaces in which every quasi-splitting subspace is splitting

In this section it is proved that if S is a pre-Hilbert space with an ONB, then $E_{q}(S)=E(S)$ if and only if S is complete. This result is first proved for the case when S is separable. (In such a case S always has an ONB; see for example [3, V.24] or [12].) The proof is divided in shorter lemmas. The main lemma, which is also referred to in Section 3, is Lemma 1 . We denote the set $\{1,2,3, \ldots\}$ by \mathbb{N}, and $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$.

In the proof of the following lemma we use the result that $M \cap S$ is dense in M whenever M is a closed subspace of H with finite $\operatorname{dim} M^{\perp_{H}}$ ([5, Theorem 4.1.2], [9, Lemma 4.2.3]).

Lemma 1. Let $\left(z_{n}\right)_{n \in \mathbb{N}_{0}}$ be a sequence of vectors in H such that $\left\|z_{0}\right\|=1$ and $z_{0} \perp z_{1}$. There is a double sequence $\left(y_{m n}\right)_{m, n \in \mathbb{N}_{0}, n \leqslant m}$ in S and a sequence $\left(y_{n}\right)_{n \in \mathbb{N}_{0}}$ in H such that $y_{0}=z_{0}$ and $y_{1}=z_{1}$, with the following properties:
(i) $\left\|y_{m n}-y_{n}\right\| \leqslant 1 / 2^{m}$ for $m, n \in \mathbb{N}_{0}$ with $n \leqslant m$;
(ii) $\left\langle y_{m n}, y_{p q}\right\rangle=\left\langle y_{n}, y_{q}\right\rangle=0$ for $m, n, p, q \in \mathbb{N}_{0}$ with $q<n, q \leqslant p, n \leqslant m$;
(iii) $y_{n}-z_{n} \in \operatorname{span} Y_{n}$ where

$$
Y_{n}=\left\{y_{k} \mid 0 \leqslant k<n\right\} \cup\left\{y_{i j} \mid 0 \leqslant j \leqslant i<n\right\} .
$$

Proof. By induction on $n \in \mathbb{N}_{0}$ we define vectors $y_{n}, y_{n 0}, \ldots, y_{n n}$ such that condition (i)-(iii) are satisfied by the vectors of Y_{n+1}. Set $y_{0}=z_{0}$ and $y_{00}=0$. In the nth induction step we proceed as follows. Define y_{n} as the orthoprojection of z_{n} in Y_{n}^{\perp}. Condition (iii) is satisfied since $y_{n} \in z_{n}+\operatorname{span} Y_{n}$.

Let us further observe that for $n=1$ we have $Y_{1}=\left\{0, z_{0}\right\}$ and therefore $y_{1}=z_{1}$.
We now construct inductively the vectors $y_{n l}(l=0, \ldots, n)$ such that $y_{n l} \perp A_{l}$, where A_{l} is the set

$$
\left\{y_{j} \mid 0 \leqslant j \leqslant n, \quad j \neq l\right\} \cup\left\{y_{i j} \mid 0 \leqslant j \leqslant i<n, \quad j \neq l\right\} \cup\left\{y_{n j} \mid 0 \leqslant j<l\right\}
$$

Suppose that $y_{n l^{\prime}}\left(l^{\prime}<l\right)$ are constructed. Since $y_{l} \perp A_{l}$, by the above stated result we can find $y_{n l} \in S$ such that $y_{n l} \perp A_{l}$ and $\left\|y_{n l}-y_{l}\right\| \leqslant 1 / 2^{n}$. It is clear then that conditions (i) and (ii) are satisfied by the vectors of Y_{n}.

Lemma 2. With the assumption and notations of Lemma 1, let $M:=\left\{y_{m 0} \mid m \in \mathbb{N}_{0}\right\}^{\perp_{s} \perp_{s}}$.
(i) If $z_{0}, z_{1} \in H \backslash S$ and $\operatorname{span}\left\{z_{0}, z_{1}\right\} \cap S \neq\{0\}$, then $M \notin E(S)$.
(ii) If $u \in H, u \perp M$ and $u \perp M^{\perp s}$, then $u \perp z_{n}$ for all $n \in \mathbb{N}_{0}$.

Proof. (i) Suppose that $z_{0}, z_{1} \notin S$, $\operatorname{span}\left\{z_{0}, z_{1}\right\} \cap S \neq\{0\}$ and $M \in E(S)$ for contradiction. Then there is a non-zero vector $h \in S$ such that

$$
h=\alpha z_{0}+\beta z_{1}=h_{1}+h_{2}
$$

where $h_{1} \in M$ and $h_{2} \in M^{\perp_{S}}$. Then $h_{1}=\alpha z_{0}$ and $h_{2}=\beta z_{1}$ because $z_{0} \in \bar{M}$ and $z_{1} \in \overline{M^{\perp_{S}}}$. This contradicts the assumption that z_{0} and z_{1} are not elements of S.
(ii) Given any $m \in \mathbb{N}_{0}$, observe that $y_{m 0} \in M$ and $y_{m n} \in M^{\perp_{s}}(n \neq 0)$, i.e. $u \perp y_{m n}$ and $u \perp y_{n}$ for all $0 \leqslant n \leqslant m$. In view of property (iii) of Lemma $1, u \perp z_{n}$ for all $n \in \mathbb{N}_{0}$.

Theorem 3. A separable pre-Hilbert space S is complete if and only if $E_{q}(S)=E(S)$.
Proof. We only need to prove sufficiency since the necessity is obvious. Let $\left(z_{n}\right)_{n \in \mathbb{N}}$ be total sequence in H. If we assume that S is not complete, we can choose z_{1} not to be an element of S.

Let $h \in S$ such that $\left\langle h, z_{1}\right\rangle \neq 0$. Then $z_{0}^{\prime}:=\frac{z_{1}}{\left\|z_{1}\right\|^{2}}-\frac{h}{\left\langle h, z_{1}\right\rangle}$ is not in S since $z_{1} \in H \backslash S$ and $h \in S$. Let $z_{0}:=\frac{z_{0}^{\prime}}{\left\|z_{0}^{\prime}\right\|}$. Observe that $z_{0} \perp z_{1}$. Let $y_{m n}$ and y_{n} be chosen according to Lemma 1 . We show that $M:=\left\{y_{m 0} \mid m \in \mathbb{N}_{0}\right\}^{\perp_{s} \perp_{s}} \in E_{q}(S) \backslash E(S)$. By part (i) of Lemma 2, M is not splitting. If M is not quasi-splitting, then there exists a non-zero vector $u \in H$ such that $u \perp M$ and $u \perp M^{\perp s}$. By part (ii) of the same lemma, it follows that $u \perp z_{n}$ for all $n \in \mathbb{N}_{0}$. This is a contradiction since $\left(z_{n}\right)_{n \in \mathbb{N}}$ is total in H.

Proposition 4. Let M, N be two subspaces of S such that $M \subseteq N$.
(i) $M \in E(S)$ implies $M \in E(N)$.
(ii) Let $N \in E(S)$. Then $M \in E(N)$ if and only if $M \in E(S)$.
(iii) Let $N \in E_{q}(S)$. Then $M \in E_{q}(N)$ implies $M \in E_{q}(S)$.
(iv) Let $N \in E(S)$. Then $M \in E_{q}(N)$ if and only if $M \in E_{q}(S)$.

Proof. We leave the proofs of (i) and (ii) to the reader.
(iii) Let $u \in H$, such that $u \perp M$ and $u \perp M^{\perp s}$. Since $M^{\perp_{S}} \cap N, N^{\perp_{s}} \subseteq M^{\perp s}$, we have that $u \perp M^{\perp s} \cap N$ and $u \perp N^{\perp s}$. However, since $N \in E_{q}(S), u \perp N^{\perp_{s}}$ implies that $u \in \bar{N}$. On the other-hand, $M \in E_{q}(N)$ and therefore $u \perp M$ and $u \perp M^{\perp_{s}} \cap N$ implies that $u=0$, i.e. $M \in E_{q}(S)$.
(iv) We need to show only one direction since $E(S) \subseteq E_{q}(S)$ and therefore we can use (iii) to deduce that $M \in E_{q}(N)$ implies $M \in E_{q}(S)$. Let $u \in \bar{N}$ such that $u \perp M$. We show that $u \in \overline{M^{\perp S} \cap N}$. Fix $\epsilon>0$. Since $M \in E_{q}(S)$, there exists $v \in M^{\perp_{s}}$ such that $\|u-v\| \leqslant \epsilon$. Since $N \in E(S), v=v_{1}+v_{2}$, where $v_{1} \in N$ and $v_{2} \in N^{\perp_{S}}$. Observe that $v_{1}=v-v_{2} \in N \cap M^{\perp s}$ and $u-v_{1} \perp v_{2}$. Therefore

$$
\left\|u-v_{1}\right\| \leqslant\left\|\left(u-v_{1}\right)-v_{2}\right\|=\|u-v\| \leqslant \epsilon
$$

and this completes the proof.

Corollary 5. If S has an incomplete separable quasi-splitting subspace, then $E_{q}(S) \neq E(S)$.
Proof. Let $M \in E_{q}(S)$ be incomplete and separable. If $E_{q}(S)=E(S)$, then by (iii) of Proposition 4 we get that $E_{q}(M) \subseteq$ $E_{q}(S)=E(S)$. It follows from Proposition $4(i)$ that $E_{q}(M)=E(M)$ and therefore, in view of Theorem 3, that M is complete, a contradiction.

Theorem 6. If S has an $O N B$, then $E(S)=E_{q}(S)$ if and only if S is complete.

Proof. Let A be an ONB of S. In what follows we use the fact that for any $B \subseteq A$ the space $\overline{\text { span } B} \cap S$ is quasi-splitting. Suppose that S is not complete and let $x \in H \backslash S$. There exists a countable subset A_{0} of A such that $x \in \overline{\operatorname{span} A_{0}}$. Since $\overline{\operatorname{span} A_{0}} \cap S$ is an incomplete separable quasi-splitting subspace of S, we have $E_{q}(S) \neq E(S)$ by Corollary 5 . The converse is trivial.

In Section 2, it is proved that if every algebraic complement of S in H is separable-particularly if $\mathrm{d}(H / S) \leqslant \aleph_{0}$-then S has an ONB. With this in mind, one deduces the following result which extends [4, Theorem 2.11] (where the result is proved for finite $\mathrm{d}(H / S)$).

Corollary 7. If every algebraic complement of S in H is separable, then $E(S) \neq E_{q}(S)$. In particular, if $0<\mathrm{d}(H / S) \leqslant \aleph_{0}$, then $E(S) \neq$ $E_{q}(S)$.

3. Orthonormal bases in pre-Hilbert spaces

The starting point of this section is the known fact that there are pre-Hilbert spaces having their orthogonal dimension not equal to that of the completion, i.e. $\operatorname{dim} S \neq \operatorname{dim} H$. Such pre-Hilbert spaces admit no ONB, i.e. no MONS of S is a MONS of H. Conditions forcing a pre-Hilbert space S to have an ONB are studied in this section.

Theorem 8. Let M be a subspace of H containing S and A a MONS in S such that $\operatorname{dim} A^{\perp_{M}} \leqslant \aleph_{0}$. Then S contains an ONS that is maximal in M.

Proof. Let $\left(z_{n}\right)_{n \in \mathbb{N}_{0}}$ be a MONS in $A^{\perp_{M}}$. Observe that $A \cup\left\{z_{n} \mid n \in \mathbb{N}_{0}\right\}$ is a MONS in M. We can use Lemma 1 to obtain a double sequence $\left(y_{m n}\right)_{m, n \in \mathbb{N}_{0}, n \leqslant m}$ in S and a sequence $\left(y_{n}\right)_{n \in \mathbb{N}_{0}}$ in H with properties (i)-(iii) of same lemma. The set

$$
A_{0}:=\left\{a \in A \mid \exists m, n \in \mathbb{N}_{0}, n \leqslant m, \text { with } y_{m n} \not \perp a\right\}
$$

is countable. Let B be an ONB of

$$
\operatorname{span}\left(\left\{y_{m n} \mid m, n \in \mathbb{N}_{0}, n \leqslant m\right\} \cup A_{0}\right) .
$$

Then $C:=\left(A \backslash A_{0}\right) \cup B$ is an ONS of S such that $A \subseteq \overline{\operatorname{spanC}}$ and $z_{n} \in \overline{\operatorname{spanC}}$ for all $n \in \mathbb{N}_{0}$, i.e. C is maximal in M.
Corollary 9. If every algebraic complement of S in H is separable, then S has an $O N B$. In particular, if $\mathrm{d}(H / S) \leqslant \aleph_{0}$, then S has an ONB.

Proof. Let A be a MONS in S. Since $A^{\perp_{H}}$ is contained in an algebraic complement of $S, A^{\perp_{H}}$ is separable and therefore $\operatorname{dim} A^{\perp_{M}} \leqslant \aleph_{0}$. We can now apply Theorem 8 and deduce that S contains an ONS that is maximal in H; i.e. an ONB of H.

Example 12 below shows that in Corollary 9 the assumption that every algebraic complement of S in H is separable cannot be weakened to the assumption that S has one algebraic complement in H which is separable.

In what follows, for a closed subspace M of a Hilbert space H, we denote by P_{M} the orthogonal projection of H onto M.
Lemma 10. Let U be a subspace of a Hilbert space V and A, B subsets of U such that $U=\operatorname{span}(A \cup B)$. Let further $V_{1}=\overline{\operatorname{span} A}$ and $V_{2}=V_{1}^{\perp V}$. Then the following two conditions are equivalent:
(1) A is an ONS, $P_{V_{2}} B$ is total in $V_{2}, P_{V_{1}}$ is one-to-one when restricted to B and $A \cup P_{V_{1}} B$ is a set of linearly independent vectors;
(2) A is a MONS of $U, \bar{U}=V$ and $A \cup B$ is a set of linearly independent vectors.

Proof. (1) \Rightarrow (2). To show that U is dense in V one only has to note that since $V_{1} \subseteq \bar{U}$ and $B \subseteq U$, it follows that $P_{V_{2}} B \subseteq \bar{U}$, which in turn implies that $V_{2} \subseteq \bar{U}$ since $P_{V_{2}} B$ is total in V_{2}.

We now show that A is a MONS in U. Assume that $u \in U$ with $u \perp A$. Say

$$
u=\sum_{i=1}^{n} \lambda_{i} a_{i}+\sum_{j=1}^{m} \mu_{j} b_{j}
$$

where $a_{i} \in A, b_{j} \in B$ and λ_{i}, μ_{j} are scalars. Then $P_{V_{1}} u=0$ since $u \perp A$, so that

$$
\sum_{j=1}^{m} \mu_{j} P_{V_{1}}\left(b_{j}\right) \in \operatorname{span}\left\{a_{i} \mid 1 \leqslant i \leqslant n\right\}
$$

Since $P_{V_{1}}$ is one-to-one when restricted to B and $A \cup P_{V_{1}} B$ consists of linearly independent vectors, it follows that $\mu_{j}=0$ for all $1 \leqslant j \leqslant m$, i.e. $u=\sum_{i=1}^{n} \lambda_{i} a_{i}$. Consequently, $u=0$ because by assumption $u \perp A$.
(2) $\Rightarrow(1)$. To see that $P_{V_{2}} B$ is total in V_{2}, one should observe that

$$
V_{1} \oplus V_{2}=V=\bar{U} \subseteq \overline{V_{1} \oplus \operatorname{span}\left(P_{V_{2}} B\right)}=V_{1} \oplus \overline{\operatorname{span}\left(P_{V_{2}} B\right)}
$$

hence $V_{2}=\overline{\operatorname{span}\left(P_{V_{2}} B\right)}$. We now show that $P_{V_{1}}$ is one-to-one when restricted to B, and that the set $A \cup P_{V_{1}} B$ consists of linearly independent vectors. Consider a linear combination $\sum_{i=1}^{n} \lambda_{i} a_{i}+\sum_{j=1}^{m} \mu_{j} P_{V_{1}}\left(b_{j}\right)=0$. Then

$$
\sum_{i=1}^{n} \lambda_{i} a_{i}+\sum_{j=1}^{m} \mu_{j} b_{j}=\sum_{i=1}^{n} \lambda_{i} a_{i}+\sum_{j=1}^{m} \mu_{j} P_{V_{1}}\left(b_{j}\right)+\sum_{j=1}^{m} \mu_{j} P_{V_{2}}\left(b_{j}\right)=P_{V_{2}}\left(\sum_{j=1}^{m} \mu_{j} b_{j}\right) \in U \cap V_{2}=\{0\}
$$

where the last equality follows from the fact that A is a MONS of U. Consequently, $\alpha_{i}=\mu_{j}=0$ for every $1 \leqslant i \leqslant n$, $1 \leqslant j \leqslant m$ since $A \cup B$ consists of linearly independent vectors.

Remark 11. Observe that if any (and hence both) of the conditions of Lemma 10 are satisfied, then the following statements hold:
(i) $V_{2} \cap U=\{0\}$;
(ii) If $V_{1}=\operatorname{span}\left(A \cup P_{V_{1}} B\right)$, then $V=U+V_{2}$, and therefore V_{2} is an algebraic complement of U;
(iii) If $V_{2}=\operatorname{span}\left(P_{V_{2}} B\right)$, then $V=U+V_{1}$.

Example 12. Given two cardinals κ, τ satisfying $\aleph_{0} \leqslant \kappa<\tau \leqslant \kappa^{\aleph_{0}}$, let V_{1}, V_{2} be two Hilbert spaces with $\operatorname{dim} V_{1}=\kappa$, $\operatorname{dim} V_{2}=\tau$ and let $V=V_{1} \oplus V_{2}$. Then V contains a dense subspace U satisfying:
(i) $\operatorname{dim} U=\kappa$ and $\operatorname{dim} \bar{U}=\tau$;
(ii) V_{2} is a non-separable algebraic complement of U;
(iii) V_{1} contains an algebraic complement of U. In particular, if $\kappa=\aleph_{0}$, then U has a separable algebraic complement.

Proof. First observe that

$$
\kappa^{\aleph_{0}} \leqslant \tau^{\aleph_{0}} \leqslant\left(\kappa^{\aleph_{0}}\right)^{\aleph_{0}}=\kappa^{\aleph_{0}}
$$

hence $\kappa^{\aleph_{0}}=\tau^{\aleph_{0}}$. Therefore $\mathrm{d}\left(V_{1}\right)=\kappa^{\aleph_{0}}=\tau^{\aleph_{0}}=\mathrm{d}\left(V_{2}\right)$.
Let A be an ONB of V_{1} and C be a Hamel basis of V_{1} containing A. Let further D be a Hamel basis of V_{2}. Since $|D|=|C \backslash A|$, there is a bijection g from D onto $C \backslash A$. Define

$$
B:=\{g(d)+d \mid d \in D\} .
$$

From Lemma $10((1) \Rightarrow(2))$ and Remark 11 it is clear that the subspace $U:=\operatorname{span}(A \cup B)$ has the desired properties.
Let us note that in the above example we have a pre-Hilbert space whose dimension is strictly less than the dimension of its completion and therefore cannot contain an ONB. We now modify the above example to construct a pre-Hilbert space that has no ONB, but its dimension agrees with the dimension of its completion.

Example 13. Let V and U be as in Example 12 and $V_{0}:=V \oplus H_{0}$ be the direct sum of V and a Hilbert space H_{0} with $\operatorname{dim} H_{0}=\tau$. Then $U_{0}:=U \oplus H_{0}$ is a dense subspace of V_{0} not containing an ONB , and $\operatorname{dim} U_{0}=\operatorname{dim} V_{0}$.

Proof. Evidently $\operatorname{dim} U_{0}=\operatorname{dim} V_{0}=\tau$. We show that U_{0} does not have an ONB. First observe that if E is a total subset of U_{0}, then $P_{V} E \subseteq U$ and $P_{V} E$ is total in V. This means that $\left|P_{V} E\right| \geqslant \operatorname{dim} V=\tau$.

On the other hand, if E is an ONS contained in U_{0}, then $\operatorname{dim} U \geqslant\left|P_{V} E\right|$. To see this, observe that if A is a MONS of U, then for any $a \in A$, the set $E_{a}:=\{e \in E \mid e \nsucceq a\}$ is countable. Moreover, since A is a MONS in U,

$$
P_{V}\left(\bigcup_{a \in A} E_{a}\right)=P_{V} E
$$

and therefore,

$$
\left|P_{V} E\right|=\left|P_{V}\left(\bigcup_{a \in A} E_{a}\right)\right| \leqslant\left|\bigcup_{a \in A} E_{a}\right| \leqslant|A| \cdot \aleph_{0}=\operatorname{dim} U=\kappa
$$

How much bigger than $\operatorname{dim} S$ can $\operatorname{dim} H$ be? Upper bounds for $\operatorname{dim} H$ in terms of $\operatorname{dim} S$ and $\mathrm{d}(S)$ are given in the next theorem.

Theorem 14. Let S be a pre-Hilbert space and H be its completion. Then

$$
\operatorname{dim} H \leqslant \mathrm{~d}(S) \leqslant(\operatorname{dim} S)^{\aleph_{0}}
$$

Proof. We may assume that H has infinite dimension. Let A be a MONS in S and B a subset of S such that $A \cup B$ is a Hamel basis of S. Define $H_{1}:=\overline{\operatorname{span} A}$ and let C be an ONB of $H_{2}:=H_{1}^{\perp_{H}}$. We first show that

$$
|C| \leqslant\left\{\begin{array}{l}
\mathrm{d}(S), \\
(\operatorname{dim} S)^{\aleph_{0}}
\end{array}\right.
$$

For any $b \in B$, the set

$$
C_{b}:=\left\{c \in C \mid c \not \perp P_{H_{2}} b\right\}
$$

is countable. By Lemma 10 we know also that $P_{H_{2}} B$ is total in H_{2}. Hence, for every $c \in C$ there exists $b \in B$ such that $c \not \perp P_{H_{2}} b$, i.e. $C=\bigcup_{b \in B} C_{b}$. Hence

$$
|C| \leqslant|B| \cdot \aleph_{0} \leqslant \mathrm{~d}(S) \cdot \aleph_{0}=\mathrm{d}(S)
$$

For the second inequality, observe that by Lemma $10, P_{H_{1}}$ is one-to-one when restricted to B and $P_{H_{1}} B$ consists of linearly independent vectors. Hence

$$
|C| \leqslant|B| \cdot \aleph_{0}=\left|P_{H_{1}} B\right| \cdot \aleph_{0} \leqslant \mathrm{~d}\left(H_{1}\right)=\left(\operatorname{dim} H_{1}\right)^{\aleph_{0}}=(\operatorname{dim} S)^{\aleph_{0}}
$$

Consequently,

$$
\operatorname{dim} H \leqslant \operatorname{dim} S+|C| \leqslant\left\{\begin{array}{l}
\operatorname{dim} S+\mathrm{d}(S)=\mathrm{d}(S) \\
\operatorname{dim} S+(\operatorname{dim} S)^{\aleph_{0}}=(\operatorname{dim} S)^{\aleph_{0}}
\end{array}\right.
$$

and therefore,

$$
\mathrm{d}(S) \leqslant \mathrm{d}(H)=(\operatorname{dim} H)^{\aleph_{0}} \leqslant\left((\operatorname{dim} S)^{\aleph_{0}}\right)^{\aleph_{0}}=(\operatorname{dim} S)^{\aleph_{0}} .
$$

Remark 15. In view of Theorem 14 it is natural to ask whether there exists a Hilbert space V having a dense subspace U with $\operatorname{dim} V=\tau$, $\operatorname{dim} U=\aleph$ and $\mathrm{d}(U)=\lambda$, where κ, τ, λ are cardinal numbers satisfying $\aleph_{0} \leqslant \aleph \leqslant \tau \leqslant \lambda \leqslant \aleph^{\aleph_{0}}$. An easy modification of Example 12 shows that the answer is in the affirmative. Indeed, choose V_{1}, V_{2}, V, A, C as in the proof of Example 12 and let D be a total, linearly independent subset of V_{2} with cardinality λ. Since $|D|=\lambda \leqslant \aleph^{\aleph_{0}}=|C \backslash A|$, there is an injection g from D into $C \backslash A$. Define $B:=\{g(d)+d \mid d \in D\}$ and $U:=\operatorname{span}(A \cup B)$. Then U and V have the desired properties.

References

[1] I. Amemiya, H. Araki, A remark on Piron's paper, Publ. Res. Inst. Math. Sci., Kyoto Univ. Ser. A 2 (1966/1967) 423-427.
[2] G. Birkhoff, J. von Neumann, The logic of quantum mechanics, Ann. of Math. 37 (1936) 823-843.
[3] N. Bourbaki, Topological Vector Spaces, Springer-Verlag, Berlin, 2003.
[4] D. Buhagiar, E. Chetcuti, Quasi splitting subspaces in a pre-Hilbert space, Math. Nachr. 280 (5-6) (2007) 479-484.
[5] A. Dvurečenskij, Gleason's Theorem and Its Applications, Kluwer Academic Publ./Ister Science Press, Dordrecht/Bratislava, 1992.
[6] S. Gudder, Inner product spaces, Amer. Math. Monthly 81 (1974) 29-36.
[7] S. Gudder, Correction to "Inner product spaces", Amer. Math. Monthly 82 (1975) 251-252.
[8] S. Gudder, Second correction to "Inner product spaces", Amer. Math. Monthly 82 (1975) 818.
[9] J. Hamhalter, Quantum Measure Theory, Kluwer Academic Publ., Dordrecht, 2003.
[10] C. Piron, Axiomatique quantique, Helv. Phys. Acta 37 (1964) 439-468.
[11] P. Pták, S. Pulmannová, Orthomodular Structures as Quantum Logics, Kluwer Academic Publ., Dordrecht, 1991.
[12] P. Pták, H. Weber, Lattice properties of subspace families in an inner product space, Proc. Amer. Math. Soc. 129 (2001) 2111-2117.
[13] V.S. Varadarajan, Geometry of Quantum Theory, Springer-Verlag, New York, 1985.

[^0]: * Corresponding author.

 E-mail addresses: david.buhagiar@um.edu.mt (D. Buhagiar), emanuel.chetcuti@um.edu.mt (E. Chetcuti), weber@dimi.uniud.it (H. Weber).

