

Contents lists available at ScienceDirect

J. Math. Anal. Appl.

www.elsevier.com/locate/jmaa

Orthonormal bases and quasi-splitting subspaces in pre-Hilbert spaces

D. Buhagiar^{a,*}, E. Chetcuti^b, H. Weber^c

^a Department of Mathematics, Faculty of Science, University of Malta, Msida MSD.06, Malta

^b Department of Mathematics, Junior College, University of Malta, Msida MSD.06, Malta

^c Dipartimento di matematica e informatica, Universitá degli Studi di Udine, 1-33100 Udine, Italy

ARTICLE INFO

Article history: Received 16 January 2008 Available online 18 April 2008 Submitted by L. Chen

Keywords: Pre-Hilbert space (= inner product space) Quasi-splitting subspace Orthonormal base

ABSTRACT

Let *S* be a pre-Hilbert space. We study quasi-splitting subspaces of *S* and compare the class of such subspaces, denoted by $E_q(S)$, with that of splitting subspaces E(S). In [D. Buhagiar, E. Chetcuti, Quasi splitting subspaces in a pre-Hilbert space, Math. Nachr. 280 (5–6) (2007) 479–484] it is proved that if *S* has a non-zero finite codimension in its completion, then $E_q(S) \neq E(S)$. In the present paper it is shown that if *S* has a total orthonormal system, then $E_q(S) = E(S)$ implies completeness of *S*. In view of this result, it is natural to study the problem of the existence of a total orthonormal system in a pre-Hilbert space. In particular, it is proved that if every algebraic complement of *S* in its completion is separable, then *S* has a total orthonormal system.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In what follows *S* is a real or complex pre-Hilbert space (= inner product space) and *H* is its completion, i.e. a Hilbert space containing *S* as a dense subspace. For any subset $A \subseteq S$ we write \overline{A} to denote the closure of *A* in *H* and $A^{\perp s}$ the orthogonal complement of *A* in *S*, i.e. $A^{\perp s} = \{x \in S \mid \langle x, a \rangle = 0, \forall a \in A\}$. Let us recall that the orthogonal (Hilbert) dimension dim *S* is the cardinality of any maximal orthonormal system of *S*. For a vector space *K* we denote by d(K) the linear (Hamel) dimension of *K*.

In the Hilbert space model for quantum mechanics, the events of a quantum system can be identified with projections on a Hilbert space or, equivalently, a collection of closed subspaces of a Hilbert space [2,5,9,11,13]. Two classes of closed subspaces of *S* that can naturally replace the lattice of projections in a Hilbert space are those of *orthogonally closed*, and *splitting* subspaces. We recall that a subspace *M* of *S* is orthogonally closed if $M^{\perp_S \perp_S} = M$, and is splitting if $S = M \oplus M^{\perp_S}$. It is not difficult to check that every splitting subspace is orthogonally closed. By the classical Amemiya–Araki–Piron Theorem, equality between these two classes holds if and only if *S* is complete [1,10] (see also [5,9]). When endowed with the partial ordering of set-theoretical inclusion \subseteq and orthocomplementation \perp_S , the set of orthogonally closed subspaces *F*(*S*) and the set of splitting subspaces *E*(*S*) carry an algebraic structure with orthocomplementation. It is not difficult to check that $E(S) \subseteq F(S)$. In general, the algebraic structures of these two orthoposets are different; *F*(*S*) is a complete lattice whereas *E*(*S*) is an orthomodular poset and the following three statements are equivalent:

(i) F(S) is orthomodular;

- (ii) *E*(*S*) is a complete lattice;
- (iii) *S* is complete.

0022-247X/\$ – see front matter $\,\, @$ 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2008.04.024

^{*} Corresponding author. E-mail addresses: david.buhagiar@um.edu.mt (D. Buhagiar), emanuel.chetcuti@um.edu.mt (E. Chetcuti), weber@dimi.uniud.it (H. Weber).

Chapter 4 of the book of A. Dvurečenskij [5] and Chapter 4 of the book of J. Hamhalter [9] serve as a very good introduction on the subject.

The class $E_q(S)$ of quasi-splitting subspaces of S was introduced in [4] as an intermediate between E(S) and F(S). A subspace M of S is quasi-splitting if it is closed in S and $M \oplus M^{\perp S}$ is a dense subspace of S. Equivalently, a closed subspace M of S is quasi-splitting if $\overline{M^{\perp S}} = M^{\perp H}$ [4, Proposition 2.2].

If *S* is complete, then $E(S) = E_q(S) = F(S)$. The inclusions

$$E(S) \subseteq E_q(S) \subseteq F(S)$$

hold though, in general, they are proper. Motivated by the Amemiya–Araki–Piron Theorem, the authors of [4] conjectured that: $E_q(S) = E(S)$ if and only if S is a Hilbert space and also have settled this in the affirmative for the case when d(H/S) is finite. As will be seen further on, this question is closely related to the problem of characterizing those pre-Hilbert spaces that admit an orthonormal basis, i.e. an orthonormal system (ONS) that is total. It is known that in a Hilbert space every maximal orthonormal system (MONS) is an orthonormal basis (ONB). This fact distinguishes Hilbert spaces completely [6–8]. Moreover, it is possible to exhibit pre-Hilbert spaces admitting no ONB. Indeed, it can happen that dim $S \neq \dim H$ [3,6].

The main result of Section 2 says that if *S* has an ONB, then $E_q(S) = E(S)$ if and only if *S* is complete. (In particular, this means that $E(S) \neq E_q(S)$ when *S* is an incomplete separable pre-Hilbert space.) In Section 3 of the paper we investigate when a pre-Hilbert space has an ONB. It is shown that when every linear complement of *S* in *H* is separable, then *S* has an ONB. This means, for example, that *S* admits an ONB when $d(H/S) \leq \aleph_0$. (In particular, all hyperplanes have an ONB.) The relation between dim *S*, dim *H* and d(S) is also studied in Section 3.

2. Pre-Hilbert spaces in which every quasi-splitting subspace is splitting

In this section it is proved that if *S* is a pre-Hilbert space with an ONB, then $E_q(S) = E(S)$ if and only if *S* is complete. This result is first proved for the case when *S* is separable. (In such a case *S* always has an ONB; see for example [3, V.24] or [12].) The proof is divided in shorter lemmas. The main lemma, which is also referred to in Section 3, is Lemma 1. We denote the set $\{1, 2, 3, \ldots\}$ by \mathbb{N} , and $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$.

In the proof of the following lemma we use the result that $M \cap S$ is dense in M whenever M is a closed subspace of H with finite dim M^{\perp_H} ([5, Theorem 4.1.2], [9, Lemma 4.2.3]).

Lemma 1. Let $(z_n)_{n \in \mathbb{N}_0}$ be a sequence of vectors in H such that $||z_0|| = 1$ and $z_0 \perp z_1$. There is a double sequence $(y_{mn})_{m,n \in \mathbb{N}_0, n \leqslant m}$ in S and a sequence $(y_n)_{n \in \mathbb{N}_0}$ in H such that $y_0 = z_0$ and $y_1 = z_1$, with the following properties:

(i) $||y_{mn} - y_n|| \leq 1/2^m$ for $m, n \in \mathbb{N}_0$ with $n \leq m$;

(ii) $\langle y_{mn}, y_{pq} \rangle = \langle y_n, y_q \rangle = 0$ for $m, n, p, q \in \mathbb{N}_0$ with $q < n, q \leq p, n \leq m$;

(iii) $y_n - z_n \in \text{span } Y_n$ where

$$Y_n = \{y_k \mid 0 \leq k < n\} \cup \{y_{ij} \mid 0 \leq j \leq i < n\}$$

Proof. By induction on $n \in \mathbb{N}_0$ we define vectors $y_n, y_{n0}, \ldots, y_{nn}$ such that condition (i)–(iii) are satisfied by the vectors of Y_{n+1} . Set $y_0 = z_0$ and $y_{00} = 0$. In the *n*th induction step we proceed as follows. Define y_n as the orthoprojection of z_n in $Y_n^{\perp H}$. Condition (iii) is satisfied since $y_n \in z_n + \operatorname{span} Y_n$.

Let us further observe that for n = 1 we have $Y_1 = \{0, z_0\}$ and therefore $y_1 = z_1$.

We now construct inductively the vectors y_{nl} (l = 0, ..., n) such that $y_{nl} \perp A_l$, where A_l is the set

 $\{y_j \mid 0 \leqslant j \leqslant n, \ j \neq l\} \cup \{y_{ij} \mid 0 \leqslant j \leqslant i < n, \ j \neq l\} \cup \{y_{nj} \mid 0 \leqslant j < l\}.$

Suppose that $y_{nl'}$ (l' < l) are constructed. Since $y_l \perp A_l$, by the above stated result we can find $y_{nl} \in S$ such that $y_{nl} \perp A_l$ and $||y_{nl} - y_l|| \le 1/2^n$. It is clear then that conditions (i) and (ii) are satisfied by the vectors of Y_n . \Box

Lemma 2. With the assumption and notations of Lemma 1, let $M := \{y_{m0} \mid m \in \mathbb{N}_0\}^{\perp_{S \perp_S}}$.

(i) If $z_0, z_1 \in H \setminus S$ and span $\{z_0, z_1\} \cap S \neq \{0\}$, then $M \notin E(S)$.

(ii) If $u \in H$, $u \perp M$ and $u \perp M^{\perp_S}$, then $u \perp z_n$ for all $n \in \mathbb{N}_0$.

Proof. (i) Suppose that $z_0, z_1 \notin S$, span $\{z_0, z_1\} \cap S \neq \{0\}$ and $M \in E(S)$ for contradiction. Then there is a non-zero vector $h \in S$ such that

 $h = \alpha z_0 + \beta z_1 = h_1 + h_2,$

where $h_1 \in M$ and $h_2 \in M^{\perp_S}$. Then $h_1 = \alpha z_0$ and $h_2 = \beta z_1$ because $z_0 \in \overline{M}$ and $z_1 \in \overline{M^{\perp_S}}$. This contradicts the assumption that z_0 and z_1 are not elements of *S*.

(ii) Given any $m \in \mathbb{N}_0$, observe that $y_{m0} \in M$ and $y_{mn} \in M^{\perp_S}$ $(n \neq 0)$, i.e. $u \perp y_{mn}$ and $u \perp y_n$ for all $0 \leq n \leq m$. In view of property (iii) of Lemma 1, $u \perp z_n$ for all $n \in \mathbb{N}_0$. \Box

Theorem 3. A separable pre-Hilbert space S is complete if and only if $E_q(S) = E(S)$.

Proof. We only need to prove sufficiency since the necessity is obvious. Let $(z_n)_{n \in \mathbb{N}}$ be total sequence in *H*. If we assume that *S* is not complete, we can choose z_1 not to be an element of *S*.

Let $h \in S$ such that $\langle h, z_1 \rangle \neq 0$. Then $z'_0 := \frac{z_1}{\|z_1\|^2} - \frac{h}{\langle h, z_1 \rangle}$ is not in S since $z_1 \in H \setminus S$ and $h \in S$. Let $z_0 := \frac{z'_0}{\|z'_0\|}$. Observe that $z_0 \perp z_1$. Let y_{mn} and y_n be chosen according to Lemma 1. We show that $M := \{y_{m0} \mid m \in \mathbb{N}_0\}^{\perp_S \perp_S} \in E_q(S) \setminus E(S)$. By part (i) of Lemma 2, M is not splitting. If M is not quasi-splitting, then there exists a non-zero vector $u \in H$ such that $u \perp M$ and $u \perp M^{\perp_S}$. By part (ii) of the same lemma, it follows that $u \perp z_n$ for all $n \in \mathbb{N}_0$. This is a contradiction since $(z_n)_{n \in \mathbb{N}}$ is total in H. \Box

Proposition 4. Let M, N be two subspaces of S such that $M \subseteq N$.

(i) $M \in E(S)$ implies $M \in E(N)$.

(ii) Let $N \in E(S)$. Then $M \in E(N)$ if and only if $M \in E(S)$.

(iii) Let $N \in E_q(S)$. Then $M \in E_q(N)$ implies $M \in E_q(S)$.

(iv) Let $N \in E(S)$. Then $M \in E_q(N)$ if and only if $M \in E_q(S)$.

Proof. We leave the proofs of (i) and (ii) to the reader.

(iii) Let $u \in H$, such that $u \perp M$ and $u \perp M^{\perp s}$. Since $M^{\perp s} \cap N$, $N^{\perp s} \subseteq M^{\perp s}$, we have that $u \perp M^{\perp s} \cap N$ and $u \perp N^{\perp s}$. However, since $N \in E_q(S)$, $u \perp N^{\perp s}$ implies that $u \in \overline{N}$. On the other-hand, $M \in E_q(N)$ and therefore $u \perp M$ and $u \perp M^{\perp s} \cap N$ implies that u = 0, i.e. $M \in E_q(S)$.

(iv) We need to show only one direction since $E(S) \subseteq E_q(S)$ and therefore we can use (iii) to deduce that $M \in E_q(N)$ implies $M \in E_q(S)$. Let $u \in \overline{N}$ such that $u \perp M$. We show that $u \in \overline{M^{\perp_S} \cap N}$. Fix $\epsilon > 0$. Since $M \in E_q(S)$, there exists $v \in M^{\perp_S}$ such that $||u - v|| \leq \epsilon$. Since $N \in E(S)$, $v = v_1 + v_2$, where $v_1 \in N$ and $v_2 \in N^{\perp_S}$. Observe that $v_1 = v - v_2 \in N \cap M^{\perp_S}$ and $u - v_1 \perp v_2$. Therefore

$$||u - v_1|| \leq ||(u - v_1) - v_2|| = ||u - v|| \leq \epsilon$$

and this completes the proof. \Box

Corollary 5. If S has an incomplete separable quasi-splitting subspace, then $E_q(S) \neq E(S)$.

Proof. Let $M \in E_q(S)$ be incomplete and separable. If $E_q(S) = E(S)$, then by (iii) of Proposition 4 we get that $E_q(M) \subseteq E_q(S) = E(S)$. It follows from Proposition 4(i) that $E_q(M) = E(M)$ and therefore, in view of Theorem 3, that M is complete, a contradiction. \Box

Theorem 6. If *S* has an ONB, then $E(S) = E_a(S)$ if and only if *S* is complete.

Proof. Let *A* be an ONB of *S*. In what follows we use the fact that for any $B \subseteq A$ the space $\overline{\text{span } B} \cap S$ is quasi-splitting. Suppose that *S* is not complete and let $x \in H \setminus S$. There exists a countable subset A_0 of *A* such that $x \in \overline{\text{span } A_0}$. Since $\overline{\text{span } A_0} \cap S$ is an incomplete separable quasi-splitting subspace of *S*, we have $E_q(S) \neq E(S)$ by Corollary 5. The converse is trivial. \Box

In Section 2, it is proved that if every algebraic complement of *S* in *H* is separable—particularly if $d(H/S) \leq \aleph_0$ —then *S* has an ONB. With this in mind, one deduces the following result which extends [4, Theorem 2.11] (where the result is proved for finite d(H/S)).

Corollary 7. If every algebraic complement of S in H is separable, then $E(S) \neq E_q(S)$. In particular, if $0 < d(H/S) \leq \aleph_0$, then $E(S) \neq E_q(S)$.

3. Orthonormal bases in pre-Hilbert spaces

The starting point of this section is the known fact that there are pre-Hilbert spaces having their orthogonal dimension not equal to that of the completion, i.e. dim $S \neq \dim H$. Such pre-Hilbert spaces admit no ONB, i.e. no MONS of S is a MONS of H. Conditions forcing a pre-Hilbert space S to have an ONB are studied in this section.

Theorem 8. Let *M* be a subspace of *H* containing *S* and *A* a MONS in *S* such that dim $A^{\perp_M} \leq \aleph_0$. Then *S* contains an ONS that is maximal in *M*.

Proof. Let $(z_n)_{n \in \mathbb{N}_0}$ be a MONS in A^{\perp_M} . Observe that $A \cup \{z_n \mid n \in \mathbb{N}_0\}$ is a MONS in M. We can use Lemma 1 to obtain a double sequence $(y_{mn})_{m,n \in \mathbb{N}_0, n \leq m}$ in S and a sequence $(y_n)_{n \in \mathbb{N}_0}$ in H with properties (i)–(iii) of same lemma. The set

 $A_0 := \{a \in A \mid \exists m, n \in \mathbb{N}_0, n \leq m, \text{ with } y_{mn} \not\perp a\}$

is countable. Let B be an ONB of

 $\operatorname{span}(\{y_{mn} \mid m, n \in \mathbb{N}_0, n \leq m\} \cup A_0).$

Then $C := (A \setminus A_0) \cup B$ is an ONS of S such that $A \subseteq \overline{\text{span } C}$ and $z_n \in \overline{\text{span } C}$ for all $n \in \mathbb{N}_0$, i.e. C is maximal in M. \Box

Corollary 9. If every algebraic complement of S in H is separable, then S has an ONB. In particular, if $d(H/S) \leq \aleph_0$, then S has an ONB.

Proof. Let *A* be a MONS in *S*. Since A^{\perp_H} is contained in an algebraic complement of *S*, A^{\perp_H} is separable and therefore dim $A^{\perp_M} \leq \aleph_0$. We can now apply Theorem 8 and deduce that *S* contains an ONS that is maximal in *H*; i.e. an ONB of *H*. \Box

Example 12 below shows that in Corollary 9 the assumption that *every* algebraic complement of S in H is separable cannot be weakened to the assumption that S has *one* algebraic complement in H which is separable.

In what follows, for a closed subspace M of a Hilbert space H, we denote by P_M the orthogonal projection of H onto M.

Lemma 10. Let U be a subspace of a Hilbert space V and A, B subsets of U such that $U = \text{span}(A \cup B)$. Let further $V_1 = \overline{\text{span } A}$ and $V_2 = V_1^{\perp V}$. Then the following two conditions are equivalent:

(1) A is an ONS, $P_{V_2}B$ is total in V_2 , P_{V_1} is one-to-one when restricted to B and $A \cup P_{V_1}B$ is a set of linearly independent vectors; (2) A is a MONS of $U, \overline{U} = V$ and $A \cup B$ is a set of linearly independent vectors.

Proof. (1) \Rightarrow (2). To show that *U* is dense in *V* one only has to note that since $V_1 \subseteq \overline{U}$ and $B \subseteq U$, it follows that $P_{V_2}B \subseteq \overline{U}$, which in turn implies that $V_2 \subseteq \overline{U}$ since $P_{V_2}B$ is total in V_2 .

We now show that A is a MONS in U. Assume that $u \in U$ with $u \perp A$. Say

$$u = \sum_{i=1}^n \lambda_i a_i + \sum_{j=1}^m \mu_j b_j,$$

where $a_i \in A$, $b_i \in B$ and λ_i , μ_i are scalars. Then $P_{V_1}u = 0$ since $u \perp A$, so that

$$\sum_{j=1}^m \mu_j P_{V_1}(b_j) \in \operatorname{span}\{a_i \mid 1 \leqslant i \leqslant n\}.$$

Since P_{V_1} is one-to-one when restricted to B and $A \cup P_{V_1}B$ consists of linearly independent vectors, it follows that $\mu_j = 0$ for all $1 \leq j \leq m$, i.e. $u = \sum_{i=1}^{n} \lambda_i a_i$. Consequently, u = 0 because by assumption $u \perp A$. (2) \Rightarrow (1). To see that $P_{V_2}B$ is total in V_2 , one should observe that

 $V_1 \oplus V_2 = V = \overline{U} \subseteq \overline{V_1 \oplus \operatorname{span}(P_{V_2}B)} = V_1 \oplus \overline{\operatorname{span}(P_{V_2}B)},$

hence $V_2 = \overline{\text{span}(P_{V_2}B)}$. We now show that P_{V_1} is one-to-one when restricted to *B*, and that the set $A \cup P_{V_1}B$ consists of linearly independent vectors. Consider a linear combination $\sum_{i=1}^{n} \lambda_i a_i + \sum_{j=1}^{m} \mu_j P_{V_1}(b_j) = 0$. Then

$$\sum_{i=1}^{n} \lambda_{i} a_{i} + \sum_{j=1}^{m} \mu_{j} b_{j} = \sum_{i=1}^{n} \lambda_{i} a_{i} + \sum_{j=1}^{m} \mu_{j} P_{V_{1}}(b_{j}) + \sum_{j=1}^{m} \mu_{j} P_{V_{2}}(b_{j}) = P_{V_{2}}\left(\sum_{j=1}^{m} \mu_{j} b_{j}\right) \in U \cap V_{2} = \{0\},$$

where the last equality follows from the fact that *A* is a MONS of *U*. Consequently, $\alpha_i = \mu_j = 0$ for every $1 \le i \le n$, $1 \le j \le m$ since $A \cup B$ consists of linearly independent vectors. \Box

Remark 11. Observe that if any (and hence both) of the conditions of Lemma 10 are satisfied, then the following statements hold:

(i) $V_2 \cap U = \{0\};$

(ii) If $V_1 = \text{span}(A \cup P_{V_1}B)$, then $V = U + V_2$, and therefore V_2 is an algebraic complement of U;

(iii) If $V_2 = \operatorname{span}(P_{V_2}B)$, then $V = U + V_1$.

Example 12. Given two cardinals κ , τ satisfying $\aleph_0 \leq \kappa < \tau \leq \kappa^{\aleph_0}$, let V_1 , V_2 be two Hilbert spaces with dim $V_1 = \kappa$, dim $V_2 = \tau$ and let $V = V_1 \oplus V_2$. Then V contains a dense subspace U satisfying:

(i) dim $U = \kappa$ and dim $\overline{U} = \tau$;

(ii) V_2 is a non-separable algebraic complement of U;

(iii) V_1 contains an algebraic complement of U. In particular, if $\kappa = \aleph_0$, then U has a separable algebraic complement.

Proof. First observe that

$$\kappa^{\aleph_0} \leqslant \tau^{\aleph_0} \leqslant (\kappa^{\aleph_0})^{\aleph_0} = \kappa^{\aleph_0},$$

hence $\kappa^{\aleph_0} = \tau^{\aleph_0}$. Therefore $d(V_1) = \kappa^{\aleph_0} = \tau^{\aleph_0} = d(V_2)$.

Let *A* be an ONB of V_1 and *C* be a Hamel basis of V_1 containing *A*. Let further *D* be a Hamel basis of V_2 . Since $|D| = |C \setminus A|$, there is a bijection *g* from *D* onto $C \setminus A$. Define

$$B := \left\{ g(d) + d \mid d \in D \right\}$$

From Lemma 10 ((1) \Rightarrow (2)) and Remark 11 it is clear that the subspace $U := \text{span}(A \cup B)$ has the desired properties. \Box

Let us note that in the above example we have a pre-Hilbert space whose dimension is strictly less than the dimension of its completion and therefore cannot contain an ONB. We now modify the above example to construct a pre-Hilbert space that has no ONB, but its dimension agrees with the dimension of its completion.

Example 13. Let *V* and *U* be as in Example 12 and $V_0 := V \oplus H_0$ be the direct sum of *V* and a Hilbert space H_0 with dim $H_0 = \tau$. Then $U_0 := U \oplus H_0$ is a dense subspace of V_0 not containing an ONB, and dim $U_0 = \dim V_0$.

Proof. Evidently dim $U_0 = \dim V_0 = \tau$. We show that U_0 does not have an ONB. First observe that if *E* is a total subset of U_0 , then $P_V E \subseteq U$ and $P_V E$ is total in *V*. This means that $|P_V E| \ge \dim V = \tau$.

On the other hand, if *E* is an ONS contained in U_0 , then dim $U \ge |P_V E|$. To see this, observe that if *A* is a MONS of *U*, then for any $a \in A$, the set $E_a := \{e \in E \mid e \not\perp a\}$ is countable. Moreover, since *A* is a MONS in *U*,

$$P_V\left(\bigcup_{a\in A}E_a\right)=P_VE,$$

and therefore,

$$|P_V E| = \left| P_V \left(\bigcup_{a \in A} E_a \right) \right| \leq \left| \bigcup_{a \in A} E_a \right| \leq |A| \cdot \aleph_0 = \dim U = \kappa. \quad \Box$$

How much bigger than dim S can dim H be? Upper bounds for dim H in terms of dim S and d(S) are given in the next theorem.

Theorem 14. Let S be a pre-Hilbert space and H be its completion. Then

$$\dim H \leq \mathsf{d}(S) \leq (\dim S)^{\aleph_0}.$$

Proof. We may assume that *H* has infinite dimension. Let *A* be a MONS in *S* and *B* a subset of *S* such that $A \cup B$ is a Hamel basis of *S*. Define $H_1 := \overline{\text{span } A}$ and let *C* be an ONB of $H_2 := H_1^{\perp H}$. We first show that

$$|C| \leqslant \begin{cases} \mathsf{d}(S), \\ (\dim S)^{\aleph_0} \end{cases}$$

For any $b \in B$, the set

$$C_b := \{ c \in C \mid c \not\perp P_{H_2} b \}$$

is countable. By Lemma 10 we know also that $P_{H_2}B$ is total in H_2 . Hence, for every $c \in C$ there exists $b \in B$ such that $c \neq P_{H_2}b$, i.e. $C = \bigcup_{b \in B} C_b$. Hence

$$|C| \leq |B| \cdot \aleph_0 \leq \mathbf{d}(S) \cdot \aleph_0 = \mathbf{d}(S).$$

For the second inequality, observe that by Lemma 10, P_{H_1} is one-to-one when restricted to *B* and $P_{H_1}B$ consists of linearly independent vectors. Hence

$$|C| \leq |B| \cdot \aleph_0 = |P_{H_1}B| \cdot \aleph_0 \leq d(H_1) = (\dim H_1)^{\aleph_0} = (\dim S)^{\aleph_0}.$$

Consequently,

$$\dim H \leqslant \dim S + |C| \leqslant \begin{cases} \dim S + d(S) = d(S), \\ \dim S + (\dim S)^{\aleph_0} = (\dim S)^{\aleph_0}, \end{cases}$$

and therefore,

$$\mathsf{d}(S) \leq \mathsf{d}(H) = (\dim H)^{\aleph_0} \leq \left((\dim S)^{\aleph_0} \right)^{\aleph_0} = (\dim S)^{\aleph_0}. \quad \Box$$

Remark 15. In view of Theorem 14 it is natural to ask whether there exists a Hilbert space *V* having a dense subspace *U* with dim $V = \tau$, dim $U = \aleph$ and $d(U) = \lambda$, where \aleph, τ, λ are cardinal numbers satisfying $\aleph_0 \leq \aleph \leq \tau \leq \lambda \leq \aleph^{\aleph_0}$. An easy modification of Example 12 shows that the answer is in the affirmative. Indeed, choose V_1, V_2, V, A, C as in the proof of Example 12 and let *D* be a total, linearly independent subset of V_2 with cardinality λ . Since $|D| = \lambda \leq \aleph^{\aleph_0} = |C \setminus A|$, there is an injection *g* from *D* into $C \setminus A$. Define $B := \{g(d) + d \mid d \in D\}$ and $U := \text{span}(A \cup B)$. Then *U* and *V* have the desired properties.

References

- [1] I. Amemiya, H. Araki, A remark on Piron's paper, Publ. Res. Inst. Math. Sci., Kyoto Univ. Ser. A 2 (1966/1967) 423-427.
- [2] G. Birkhoff, J. von Neumann, The logic of quantum mechanics, Ann. of Math. 37 (1936) 823-843.
- [3] N. Bourbaki, Topological Vector Spaces, Springer-Verlag, Berlin, 2003.
- [4] D. Buhagiar, E. Chetcuti, Quasi splitting subspaces in a pre-Hilbert space, Math. Nachr. 280 (5-6) (2007) 479-484.
- [5] A. Dvurečenskij, Gleason's Theorem and Its Applications, Kluwer Academic Publ./Ister Science Press, Dordrecht/Bratislava, 1992.
- [6] S. Gudder, Inner product spaces, Amer. Math. Monthly 81 (1974) 29-36.
- [7] S. Gudder, Correction to "Inner product spaces", Amer. Math. Monthly 82 (1975) 251-252.
- [8] S. Gudder, Second correction to "Inner product spaces", Amer. Math. Monthly 82 (1975) 818.
- [9] J. Hamhalter, Quantum Measure Theory, Kluwer Academic Publ., Dordrecht, 2003.
- [10] C. Piron, Axiomatique quantique, Helv. Phys. Acta 37 (1964) 439-468.
- [11] P. Pták, S. Pulmannová, Orthomodular Structures as Quantum Logics, Kluwer Academic Publ., Dordrecht, 1991.
- [12] P. Pták, H. Weber, Lattice properties of subspace families in an inner product space, Proc. Amer. Math. Soc. 129 (2001) 2111-2117.
- [13] V.S. Varadarajan, Geometry of Quantum Theory, Springer-Verlag, New York, 1985.