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Let S be a pre-Hilbert space. We study quasi-splitting subspaces of S and compare the class
of such subspaces, denoted by Eq(S), with that of splitting subspaces E(S). In [D. Buhagiar,
E. Chetcuti, Quasi splitting subspaces in a pre-Hilbert space, Math. Nachr. 280 (5–6) (2007)
479–484] it is proved that if S has a non-zero finite codimension in its completion,
then Eq(S) �= E(S). In the present paper it is shown that if S has a total orthonormal
system, then Eq(S) = E(S) implies completeness of S . In view of this result, it is natural to
study the problem of the existence of a total orthonormal system in a pre-Hilbert space.
In particular, it is proved that if every algebraic complement of S in its completion is
separable, then S has a total orthonormal system.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In what follows S is a real or complex pre-Hilbert space (= inner product space) and H is its completion, i.e. a Hilbert
space containing S as a dense subspace. For any subset A ⊆ S we write A to denote the closure of A in H and A⊥S

the orthogonal complement of A in S , i.e. A⊥S = {x ∈ S | 〈x,a〉 = 0, ∀a ∈ A}. Let us recall that the orthogonal (Hilbert)
dimension dim S is the cardinality of any maximal orthonormal system of S . For a vector space K we denote by d(K ) the
linear (Hamel) dimension of K .

In the Hilbert space model for quantum mechanics, the events of a quantum system can be identified with projections
on a Hilbert space or, equivalently, a collection of closed subspaces of a Hilbert space [2,5,9,11,13]. Two classes of closed
subspaces of S that can naturally replace the lattice of projections in a Hilbert space are those of orthogonally closed, and
splitting subspaces. We recall that a subspace M of S is orthogonally closed if M⊥S ⊥S = M , and is splitting if S = M ⊕ M⊥S . It
is not difficult to check that every splitting subspace is orthogonally closed. By the classical Amemiya–Araki–Piron Theorem,
equality between these two classes holds if and only if S is complete [1,10] (see also [5,9]). When endowed with the partial
ordering of set-theoretical inclusion ⊆ and orthocomplementation ⊥S , the set of orthogonally closed subspaces F (S) and
the set of splitting subspaces E(S) carry an algebraic structure with orthocomplementation. It is not difficult to check that
E(S) ⊆ F (S). In general, the algebraic structures of these two orthoposets are different; F (S) is a complete lattice whereas
E(S) is an orthomodular poset and the following three statements are equivalent:

(i) F (S) is orthomodular;
(ii) E(S) is a complete lattice;

(iii) S is complete.
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Chapter 4 of the book of A. Dvurečenskij [5] and Chapter 4 of the book of J. Hamhalter [9] serve as a very good introduction
on the subject.

The class Eq(S) of quasi-splitting subspaces of S was introduced in [4] as an intermediate between E(S) and F (S).
A subspace M of S is quasi-splitting if it is closed in S and M ⊕ M⊥S is a dense subspace of S . Equivalently, a closed
subspace M of S is quasi-splitting if M⊥S = M⊥H [4, Proposition 2.2].

If S is complete, then E(S) = Eq(S) = F (S). The inclusions

E(S) ⊆ Eq(S) ⊆ F (S)

hold though, in general, they are proper. Motivated by the Amemiya–Araki–Piron Theorem, the authors of [4] conjectured
that: Eq(S) = E(S) if and only if S is a Hilbert space and also have settled this in the affirmative for the case when d(H/S) is
finite. As will be seen further on, this question is closely related to the problem of characterizing those pre-Hilbert spaces
that admit an orthonormal basis, i.e. an orthonormal system (ONS) that is total. It is known that in a Hilbert space every
maximal orthonormal system (MONS) is an orthonormal basis (ONB). This fact distinguishes Hilbert spaces completely [6–8].
Moreover, it is possible to exhibit pre-Hilbert spaces admitting no ONB. Indeed, it can happen that dim S �= dim H [3,6].

The main result of Section 2 says that if S has an ONB, then Eq(S) = E(S) if and only if S is complete. (In particular, this
means that E(S) �= Eq(S) when S is an incomplete separable pre-Hilbert space.) In Section 3 of the paper we investigate
when a pre-Hilbert space has an ONB. It is shown that when every linear complement of S in H is separable, then S has
an ONB. This means, for example, that S admits an ONB when d(H/S) � ℵ0. (In particular, all hyperplanes have an ONB.)
The relation between dim S , dim H and d(S) is also studied in Section 3.

2. Pre-Hilbert spaces in which every quasi-splitting subspace is splitting

In this section it is proved that if S is a pre-Hilbert space with an ONB, then Eq(S) = E(S) if and only if S is complete.
This result is first proved for the case when S is separable. (In such a case S always has an ONB; see for example [3, V.24]
or [12].) The proof is divided in shorter lemmas. The main lemma, which is also referred to in Section 3, is Lemma 1. We
denote the set {1,2,3, . . .} by N, and N0 := N ∪ {0}.

In the proof of the following lemma we use the result that M ∩ S is dense in M whenever M is a closed subspace of H
with finite dim M⊥H ([5, Theorem 4.1.2], [9, Lemma 4.2.3]).

Lemma 1. Let (zn)n∈N0 be a sequence of vectors in H such that ‖z0‖ = 1 and z0 ⊥ z1 . There is a double sequence (ymn)m,n∈N0,n�m in
S and a sequence (yn)n∈N0 in H such that y0 = z0 and y1 = z1 , with the following properties:

(i) ‖ymn − yn‖ � 1/2m for m,n ∈ N0 with n � m;

(ii) 〈ymn, ypq〉 = 〈yn, yq〉 = 0 for m,n, p,q ∈ N0 with q < n, q � p,n � m;

(iii) yn − zn ∈ span Yn where

Yn = {yk | 0 � k < n} ∪ {yij | 0 � j � i < n}.

Proof. By induction on n ∈ N0 we define vectors yn, yn0, . . . , ynn such that condition (i)–(iii) are satisfied by the vectors
of Yn+1. Set y0 = z0 and y00 = 0. In the nth induction step we proceed as follows. Define yn as the orthoprojection of zn in
Y ⊥H

n . Condition (iii) is satisfied since yn ∈ zn + span Yn .
Let us further observe that for n = 1 we have Y1 = {0, z0} and therefore y1 = z1.
We now construct inductively the vectors ynl (l = 0, . . . ,n) such that ynl ⊥ Al , where Al is the set

{y j | 0 � j � n, j �= l} ∪ {yij | 0 � j � i < n, j �= l} ∪ {ynj | 0 � j < l}.
Suppose that ynl′ (l′ < l) are constructed. Since yl ⊥ Al , by the above stated result we can find ynl ∈ S such that ynl ⊥ Al

and ‖ynl − yl‖ � 1/2n . It is clear then that conditions (i) and (ii) are satisfied by the vectors of Yn . �
Lemma 2. With the assumption and notations of Lemma 1, let M := {ym0 | m ∈ N0}⊥S ⊥S .

(i) If z0, z1 ∈ H \ S and span{z0, z1} ∩ S �= {0}, then M /∈ E(S).

(ii) If u ∈ H, u ⊥ M and u ⊥ M⊥S , then u ⊥ zn for all n ∈ N0 .

Proof. (i) Suppose that z0, z1 /∈ S , span{z0, z1} ∩ S �= {0} and M ∈ E(S) for contradiction. Then there is a non-zero vector
h ∈ S such that

h = αz0 + βz1 = h1 + h2,

where h1 ∈ M and h2 ∈ M⊥S . Then h1 = αz0 and h2 = βz1 because z0 ∈ M and z1 ∈ M⊥S . This contradicts the assumption
that z0 and z1 are not elements of S .

(ii) Given any m ∈ N0, observe that ym0 ∈ M and ymn ∈ M⊥S (n �= 0), i.e. u ⊥ ymn and u ⊥ yn for all 0 � n � m. In view
of property (iii) of Lemma 1, u ⊥ zn for all n ∈ N0. �
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Theorem 3. A separable pre-Hilbert space S is complete if and only if Eq(S) = E(S).

Proof. We only need to prove sufficiency since the necessity is obvious. Let (zn)n∈N be total sequence in H . If we assume
that S is not complete, we can choose z1 not to be an element of S .

Let h ∈ S such that 〈h, z1〉 �= 0. Then z′
0 := z1

‖z1‖2 − h
〈h,z1〉 is not in S since z1 ∈ H \ S and h ∈ S . Let z0 := z′

0
‖z′

0‖ . Observe that

z0 ⊥ z1. Let ymn and yn be chosen according to Lemma 1. We show that M := {ym0 | m ∈ N0}⊥S ⊥S ∈ Eq(S) \ E(S). By part (i)
of Lemma 2, M is not splitting. If M is not quasi-splitting, then there exists a non-zero vector u ∈ H such that u ⊥ M and
u ⊥ M⊥S . By part (ii) of the same lemma, it follows that u ⊥ zn for all n ∈ N0. This is a contradiction since (zn)n∈N is total
in H . �
Proposition 4. Let M, N be two subspaces of S such that M ⊆ N.

(i) M ∈ E(S) implies M ∈ E(N).
(ii) Let N ∈ E(S). Then M ∈ E(N) if and only if M ∈ E(S).

(iii) Let N ∈ Eq(S). Then M ∈ Eq(N) implies M ∈ Eq(S).
(iv) Let N ∈ E(S). Then M ∈ Eq(N) if and only if M ∈ Eq(S).

Proof. We leave the proofs of (i) and (ii) to the reader.
(iii) Let u ∈ H , such that u ⊥ M and u ⊥ M⊥S . Since M⊥S ∩ N , N⊥S ⊆ M⊥S , we have that u ⊥ M⊥S ∩ N and u ⊥ N⊥S .

However, since N ∈ Eq(S), u ⊥ N⊥S implies that u ∈ N . On the other-hand, M ∈ Eq(N) and therefore u ⊥ M and u ⊥ M⊥S ∩ N
implies that u = 0, i.e. M ∈ Eq(S).

(iv) We need to show only one direction since E(S) ⊆ Eq(S) and therefore we can use (iii) to deduce that M ∈ Eq(N)

implies M ∈ Eq(S). Let u ∈ N such that u ⊥ M . We show that u ∈ M⊥S ∩ N . Fix ε > 0. Since M ∈ Eq(S), there exists v ∈ M⊥S

such that ‖u − v‖ � ε . Since N ∈ E(S), v = v1 + v2, where v1 ∈ N and v2 ∈ N⊥S . Observe that v1 = v − v2 ∈ N ∩ M⊥S and
u − v1 ⊥ v2. Therefore

‖u − v1‖ �
∥∥(u − v1) − v2

∥∥ = ‖u − v‖ � ε

and this completes the proof. �
Corollary 5. If S has an incomplete separable quasi-splitting subspace, then Eq(S) �= E(S).

Proof. Let M ∈ Eq(S) be incomplete and separable. If Eq(S) = E(S), then by (iii) of Proposition 4 we get that Eq(M) ⊆
Eq(S) = E(S). It follows from Proposition 4(i) that Eq(M) = E(M) and therefore, in view of Theorem 3, that M is complete,
a contradiction. �
Theorem 6. If S has an ONB, then E(S) = Eq(S) if and only if S is complete.

Proof. Let A be an ONB of S . In what follows we use the fact that for any B ⊆ A the space span B ∩ S is quasi-splitting.
Suppose that S is not complete and let x ∈ H \ S . There exists a countable subset A0 of A such that x ∈ span A0. Since
span A0 ∩ S is an incomplete separable quasi-splitting subspace of S , we have Eq(S) �= E(S) by Corollary 5. The converse is
trivial. �

In Section 2, it is proved that if every algebraic complement of S in H is separable—particularly if d(H/S) � ℵ0—then
S has an ONB. With this in mind, one deduces the following result which extends [4, Theorem 2.11] (where the result is
proved for finite d(H/S)).

Corollary 7. If every algebraic complement of S in H is separable, then E(S) �= Eq(S). In particular, if 0 < d(H/S) � ℵ0 , then E(S) �=
Eq(S).

3. Orthonormal bases in pre-Hilbert spaces

The starting point of this section is the known fact that there are pre-Hilbert spaces having their orthogonal dimension
not equal to that of the completion, i.e. dim S �= dim H . Such pre-Hilbert spaces admit no ONB, i.e. no MONS of S is a MONS
of H . Conditions forcing a pre-Hilbert space S to have an ONB are studied in this section.

Theorem 8. Let M be a subspace of H containing S and A a MONS in S such that dim A⊥M � ℵ0 . Then S contains an ONS that is
maximal in M.
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Proof. Let (zn)n∈N0 be a MONS in A⊥M . Observe that A ∪ {zn | n ∈ N0} is a MONS in M . We can use Lemma 1 to obtain a
double sequence (ymn)m,n∈N0,n�m in S and a sequence (yn)n∈N0 in H with properties (i)–(iii) of same lemma. The set

A0 := {a ∈ A | ∃m,n ∈ N0, n � m, with ymn �⊥ a}
is countable. Let B be an ONB of

span
({ymn | m,n ∈ N0, n � m} ∪ A0

)
.

Then C := (A \ A0) ∪ B is an ONS of S such that A ⊆ span C and zn ∈ span C for all n ∈ N0, i.e. C is maximal in M . �
Corollary 9. If every algebraic complement of S in H is separable, then S has an ONB. In particular, if d(H/S) � ℵ0 , then S has an
ONB.

Proof. Let A be a MONS in S . Since A⊥H is contained in an algebraic complement of S , A⊥H is separable and therefore
dim A⊥M � ℵ0. We can now apply Theorem 8 and deduce that S contains an ONS that is maximal in H ; i.e. an ONB of H . �

Example 12 below shows that in Corollary 9 the assumption that every algebraic complement of S in H is separable
cannot be weakened to the assumption that S has one algebraic complement in H which is separable.

In what follows, for a closed subspace M of a Hilbert space H , we denote by P M the orthogonal projection of H onto M .

Lemma 10. Let U be a subspace of a Hilbert space V and A, B subsets of U such that U = span(A ∪ B). Let further V 1 = span A and
V 2 = V ⊥V

1 . Then the following two conditions are equivalent:

(1) A is an ONS, P V 2 B is total in V 2 , P V 1 is one-to-one when restricted to B and A ∪ P V 1 B is a set of linearly independent vectors;
(2) A is a MONS of U , U = V and A ∪ B is a set of linearly independent vectors.

Proof. (1) ⇒ (2). To show that U is dense in V one only has to note that since V 1 ⊆ U and B ⊆ U , it follows that P V 2 B ⊆ U ,
which in turn implies that V 2 ⊆ U since P V 2 B is total in V 2.

We now show that A is a MONS in U . Assume that u ∈ U with u ⊥ A. Say

u =
n∑

i=1

λiai +
m∑

j=1

μ jb j,

where ai ∈ A, b j ∈ B and λi,μ j are scalars. Then P V 1 u = 0 since u ⊥ A, so that

m∑
j=1

μ j P V 1 (b j) ∈ span{ai | 1 � i � n}.

Since P V 1 is one-to-one when restricted to B and A ∪ P V 1 B consists of linearly independent vectors, it follows that μ j = 0
for all 1 � j � m, i.e. u = ∑n

i=1 λiai . Consequently, u = 0 because by assumption u ⊥ A.
(2) ⇒ (1). To see that P V 2 B is total in V 2, one should observe that

V 1 ⊕ V 2 = V = U ⊆ V 1 ⊕ span(P V 2 B) = V 1 ⊕ span(P V 2 B),

hence V 2 = span(P V 2 B). We now show that P V 1 is one-to-one when restricted to B , and that the set A ∪ P V 1 B consists of
linearly independent vectors. Consider a linear combination

∑n
i=1 λiai + ∑m

j=1 μ j P V 1 (b j) = 0. Then

n∑
i=1

λiai +
m∑

j=1

μ jb j =
n∑

i=1

λiai +
m∑

j=1

μ j P V 1 (b j) +
m∑

j=1

μ j P V 2 (b j) = P V 2

(
m∑

j=1

μ jb j

)
∈ U ∩ V 2 = {0},

where the last equality follows from the fact that A is a MONS of U . Consequently, αi = μ j = 0 for every 1 � i � n,
1 � j � m since A ∪ B consists of linearly independent vectors. �
Remark 11. Observe that if any (and hence both) of the conditions of Lemma 10 are satisfied, then the following statements
hold:

(i) V 2 ∩ U = {0};
(ii) If V 1 = span(A ∪ P V 1 B), then V = U + V 2, and therefore V 2 is an algebraic complement of U ;

(iii) If V 2 = span(P V 2 B), then V = U + V 1.

Example 12. Given two cardinals κ, τ satisfying ℵ0 � κ < τ � κℵ0 , let V 1, V 2 be two Hilbert spaces with dim V 1 = κ ,
dim V 2 = τ and let V = V 1 ⊕ V 2. Then V contains a dense subspace U satisfying:
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(i) dim U = κ and dim U = τ ;
(ii) V 2 is a non-separable algebraic complement of U ;

(iii) V 1 contains an algebraic complement of U . In particular, if κ = ℵ0, then U has a separable algebraic complement.

Proof. First observe that

κℵ0 � τℵ0 �
(
κℵ0

)ℵ0 = κℵ0 ,

hence κℵ0 = τℵ0 . Therefore d(V 1) = κℵ0 = τℵ0 = d(V 2).
Let A be an ONB of V 1 and C be a Hamel basis of V 1 containing A. Let further D be a Hamel basis of V 2. Since

|D| = |C \ A|, there is a bijection g from D onto C \ A. Define

B := {
g(d) + d

∣∣ d ∈ D
}
.

From Lemma 10 ((1) ⇒ (2)) and Remark 11 it is clear that the subspace U := span(A ∪ B) has the desired properties. �
Let us note that in the above example we have a pre-Hilbert space whose dimension is strictly less than the dimension

of its completion and therefore cannot contain an ONB. We now modify the above example to construct a pre-Hilbert space
that has no ONB, but its dimension agrees with the dimension of its completion.

Example 13. Let V and U be as in Example 12 and V 0 := V ⊕ H0 be the direct sum of V and a Hilbert space H0 with
dim H0 = τ . Then U0 := U ⊕ H0 is a dense subspace of V 0 not containing an ONB, and dim U0 = dim V 0.

Proof. Evidently dim U0 = dim V 0 = τ . We show that U0 does not have an ONB. First observe that if E is a total subset
of U0, then P V E ⊆ U and P V E is total in V . This means that |P V E| � dim V = τ .

On the other hand, if E is an ONS contained in U0, then dim U � |P V E|. To see this, observe that if A is a MONS of U ,
then for any a ∈ A, the set Ea := {e ∈ E | e �⊥ a} is countable. Moreover, since A is a MONS in U ,

P V

( ⋃
a∈A

Ea

)
= P V E,

and therefore,

|P V E| =
∣∣∣∣P V

( ⋃
a∈A

Ea

)∣∣∣∣ �
∣∣∣∣ ⋃

a∈A

Ea

∣∣∣∣ � |A| · ℵ0 = dim U = κ. �

How much bigger than dim S can dim H be? Upper bounds for dim H in terms of dim S and d(S) are given in the next
theorem.

Theorem 14. Let S be a pre-Hilbert space and H be its completion. Then

dim H � d(S) � (dim S)ℵ0 .

Proof. We may assume that H has infinite dimension. Let A be a MONS in S and B a subset of S such that A ∪ B is a
Hamel basis of S . Define H1 := span A and let C be an ONB of H2 := H⊥H

1 . We first show that

|C | �
{

d(S),

(dim S)ℵ0 .

For any b ∈ B , the set

Cb := {c ∈ C | c �⊥ P H2 b}
is countable. By Lemma 10 we know also that P H2 B is total in H2. Hence, for every c ∈ C there exists b ∈ B such that
c �⊥ P H2 b, i.e. C = ⋃

b∈B Cb . Hence

|C | � |B| · ℵ0 � d(S) · ℵ0 = d(S).

For the second inequality, observe that by Lemma 10, P H1 is one-to-one when restricted to B and P H1 B consists of
linearly independent vectors. Hence

|C | � |B| · ℵ0 = |P H1 B| · ℵ0 � d(H1) = (dim H1)
ℵ0 = (dim S)ℵ0 .

Consequently,

dim H � dim S + |C | �
{

dim S + d(S) = d(S),

dim S + (dim S)ℵ0 = (dim S)ℵ0 ,
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and therefore,

d(S) � d(H) = (dim H)ℵ0 �
(
(dim S)ℵ0

)ℵ0 = (dim S)ℵ0 . �
Remark 15. In view of Theorem 14 it is natural to ask whether there exists a Hilbert space V having a dense subspace U
with dim V = τ , dim U = ℵ and d(U ) = λ, where ℵ, τ , λ are cardinal numbers satisfying ℵ0 � ℵ � τ � λ � ℵℵ0 . An easy
modification of Example 12 shows that the answer is in the affirmative. Indeed, choose V 1, V 2, V , A, C as in the proof of
Example 12 and let D be a total, linearly independent subset of V 2 with cardinality λ. Since |D| = λ � ℵℵ0 = |C \ A|, there
is an injection g from D into C \ A. Define B := {g(d) + d | d ∈ D} and U := span(A ∪ B). Then U and V have the desired
properties.
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