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a b s t r a c t

A system for using offshore wind energy to generate electricity and simultaneously extract thermal
energy is proposed. This concept is based on an offshore wind turbine driven hydraulic pump supplying
deep seawater under high pressure to a land based plant consisting of a hydroelectric power generation
unit and heat exchanger. A steady-state system model is developed using empirical formulae. The
mathematical model comprises the fundamental system sub-models that are categorised as the rotor,
hydraulic pump, pipeline, hydroelectric turbine and heat exchanger. A means for modelling the seawater
temperature field across a two-dimensional bathymetry is also discussed. These mathematical models
are integrated into a computational tool and a brief parametric static analysis is undertaken. The results
illustrate the effect of pipeline diameter, rotational speed of the grid connected hydroelectric turbine, and
the turbine distance from shore on the overall performance of the system. Through adequate parameter
selection, the total rate of energy output for such a system, consisting of both electricity and thermal
energy, is shown to increase by as much as 84%, when compared to a conventional wind turbine having
an identical rotor diameter but which supplies only electrical energy.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Current offshore wind turbine designs are inherently based on
conventional onshore turbine technology that has been adapted to
the offshore environment [1]. Improvements have always been of
an incremental nature, building gradually on existing and proven
ideas. However, the marinisation of land-based technologies over
the past decade has encountered a number of technical challenges
as a consequence of the tough offshore environment. One issue is
related to the mechanical transmission system of the turbine,
where offshore gearbox failures are frequent. Existing offshore
turbines often require a gearbox replacement after an average of 4
years in the field [2]. With the component contributing to around
10% of the wind turbine cost [2], such failures are highly detri-
mental to the viability of offshore wind. Problems are also being
encountered on the electrical systems. The National Renewable
Energy Laboratory (NREL) in the United States reports [3] that 27%
of turbine repairs are due to electrical system failures, resulting
from the requirement of sophisticated electronics in the nacelle.
Although this also applies to onshore turbines, suchmaintenance in
the offshore environment is substantially more expensive. Finally,
. Buhagiar).
existing electrical power transmission systems in offshore wind
farms require large quantities of copper. Historically, copper prices
have been very unstable [4], with substantial fluctuations having
occurred in the past decade [5]. NREL lists the development of
offshore specific technologies as a priority to maximise the value of
offshore wind generation [6].

1.1. Hydraulic-based wind turbines

A concept that is being investigated in a bid to develop an
offshore specific turbine involves a shift to a hydraulic-based
transmission system [7], in which a large positive-displacement
pump and a hydraulic pipeline would replace the gearbox and
generator. A number of manufacturers have starting developing
prototypes in this direction [8e10]. Some are opting for hydrostatic
transmission systems [8,9], while a particular manufacturer is
proposing a hydrodynamic system [10]. However, these prototypes
still have a high dependency on nacelle-based components and
almost all of them focus on only eliminating the gearbox. They still
depend on a turbine-based generator, and make no attempt to
centralise the process involving electricity generation.

A revolutionary concept comes from Delft University of
Technology, where a hybrid closed- and open-loop transmission
system is being proposed; the open-loop transmission system
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Nomenclature

cp specific heat capacity of seawater
cp�DS specific heat capacity of district system fluid
CP�max rotor maximum power coefficient
CP�overall OWTEP system overall power coefficient
Di pipeline internal diameter
Do pipeline outer diameter
Drotor rotor diameter
e pipeline internal surface roughness
f pipeline friction factor
hi heat transfer coefficient at the pipeline inner surface
ho heat transfer coefficient at the pipeline outer surface
kpipe pipeline material thermal conductivity
K torque-angular velocity coefficient
Lpipe pipeline length
LðkÞ pipeline elemental length
MPelton torque generated by Pelton wheel shaft
Mpump pump torque input
Mrotor rotor torque output
pbp parasitic pressure load induced by boost pump at

turbine base
pfr pipeline frictional pressure load
pnom pump nominal pressure load
Pno�load pump power consumption at no pressure load
pPelt�elev pressure head equivalent to Pelton wheel elevation

above sea level
pPelt�noz Pelton wheel nozzle pressure
ppump pump pressure load
Q volumetric flow rate through the system
QDS volumetric flow rate through district system
R rotor radius
Rp Pelton wheel radius
Rtot total resistance to heat transfer along the pipe radial

direction
Sp salinity of seawater (g/kg)
Tin;DS district system fluid temperature at heat exchanger

inlet
Tout;DS district system fluid temperature at heat exchanger

outlet
TðkÞ
in elemental inlet temperature

TðkÞ
out elemental outlet temperature

TðkÞ
s;o Elemental outer surface temperature

TðkÞ
N elemental surrounding temperature

U wind speed at hub-height

Ucut�in rotor cut-in wind speed
Ucut�out rotor cut-out wind speed
Urated rotor rated wind speed
vn Pelton wheel nozzle velocity
Vp pump volumetric displacement
Vp;max pump maximum volumetric displacement
Vp;min pump minimum volumetric displacement
fopt Pelton wheel optimum bucket speed ratio
4ðkÞ pipeline elemental inclination angle
lopt rotor optimum tip-speed ratio
hgen generator efficiency
hmech pump instantaneous mechanical efficiency
hM;nom pump nominal mechanical efficiency
hV;nom pump nominal volumetric efficiency
hshaft Pelton wheel driveshaft efficiency
rair air density
rDS density of district system fluid
rsw seawater density
msw seawater dynamic viscosity
uno�load pump angular velocity at no pressure load
unom pump nominal angular velocity
uPelton Pelton wheel angular velocity
urated rotor rated angular velocity
urotor rotor angular velocity

Dimensionless parameters
Cd pump damping constant loss coefficient
Cf pump frictional constant loss coefficient
Cs pump slip constant loss coefficient
CC Pelton nozzle contraction coefficient
CV Pelton nozzle velocity coefficient
Pr Prandtl number at the internal flow-pipe interface
NuDi circumferentially averaged Nusselt number at the

internal flow-pipe interface, with internal diameter as
length scale

NuL circumferentially averaged Nusselt number at the
pipe-external flow interface, with elemental length as
length scale

ReDi
pipeline flow internal flow Reynolds Number, with
internal diameter as length scale

RaDo
external, buoyancy driven flow Rayleigh Number, with
external diameter as length scale

RaL external, buoyancy driven flow Rayleigh Number, with
elemental length as length scale
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would use seawater as the working fluid [11,12]. The idea is to
have individual wind turbines pumping pressurised seawater to
a centralised hydroelectric conversion plant, which could also be
located onshore. This concept is one of the first attempts at
centralised electrical energy generation. By eliminating the
direct connection between the generator and wind turbine rotor,
it has been possible to propose novel control schemes that
improve the power harvesting capabilities of the turbine at
higher wind speeds. Other modifications to the design will be
required to support more efficient operation at higher wind
speeds [12,13].

1.2. Deep water source cooling

The current research presented in this paper draws inspiration
from the novel hydraulic turbine concept described above. This
concept can be readily integrated with Deep Water Source Cooling
(DWSC) enabling thermal energy from the deep sea to be extracted
in conjunction with electrical generation. By implementing a heat
exchanger after the hydroelectric generation stage, the cold water
extracted from the deep sea can be used to cool a secondary fluid
utilised in a district cooling system.

District cooling combined with a source of deep seawater has
been shown to be an effective means for handling multi-
megawatt cooling loads. Such systems are particularly effective
in regions having high cooling demands and access to a large
body of water. Deep seawater provides a vast source of renew-
able thermal energy because its temperature tends to be inde-
pendent of season. This renewable energy resource results from
the thermal stratification phenomena occurring in deep seas
whereby solar radiation in only absorbed at the upper seawater
layers, with the deep seawater layers retaining a cool and stable
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Fig. 2. Simplified schematic of the OWTEP System.
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temperature across the year [14,15]. An intermediate layer, often
referred to as the thermocline layer, separates these two ther-
mally distinct regions. This layer is characterised by substantial
temperature fluctuations that occur over relatively small varia-
tions in depth.

The present study uses meteorological data obtained for the
Maltese Islands, located in the centre of the Mediterranean Sea.
This is an ideal location for such an analysis given the hot summers
and surrounding deep waters. Locations such as Malta would
benefit from the extraction of cold seawater for cooling, as the peak
energy demand originates from the substantial cooling require-
ment in the hot summer months [16]. Fig. 1 shows monthly vari-
ations of temperature with depth observed in a central
Mediterranean region.

Existing DWSC systems require electrical energy to power the
pumps that draw in the cold fluid. The current research is a first
attempt to evaluate the concept of wind-powered DWSC systems
using an entirely open-loop system. The system also includes the
centralised generation of electricity. Such a concept, illustrated in
Fig. 2, is given the term: Offshore Wind and Thermocline Energy
Extraction (OWTEP) system.

The objectives of this paper are to:

� Describe the conceptual OWTEP system
� Illustrate the development of a steady-state mathematical
model of such a system

� Present results from simulations carried out on a single-turbine
OWTEP system

2. Methodology

A mathematical model of a single turbine OWTEP system was
developed, consisting of a number of numerical sub-models,
modelling the performance of the rotor, pump, pipeline, hydro-
electric turbine, heat exchanger and the thermal gradients of the
surrounding seawater.

2.1. Wind turbine rotor

The rotor is the means by which energy from the wind is
extracted by the system. This analysis is based on the rotor design of
the NREL 5 MW Reference Wind Turbine [17]. This 126 m diameter
three-bladed rotor was selected to act as a reference point for
comparison between the performance of traditional wind turbine
designs and that of the proposed system. Previous work on
hydraulic-based wind turbines has also made use of this rotor
design [12,18e20]. Detailed information on the design and power
Fig. 1. Temperatureedepth profiles for a central Mediterranean location.
performance characteristics of this rotor is available in Ref. [17].
Relevant characteristics are listed in Table 1.

2.2. Nacelle-based positive-displacement pump

In the proposed design, the positive-displacement pump is
directly connected to the rotor by a driveshaft. In order to optimise
the rotor performance below the rated wind speed, as in traditional
turbine control schemes, a means for controlling the torque of the
rotor must be implemented. It has been shown [12,18], that by
using a pump with a variable displacement the torque loading on
the rotor can be continuously adjusted. One configuration is the
swash-plate pump, which uses the motion of an inclined swash-
plate to adjust the volume of fluid displaced per revolution. This
method is analogous to generator torque control, as used in tradi-
tional wind turbines. However, it only requires a servo-controlled
piston as opposed to the power electronic converters in current
generator torque control systems [21].

An alternative approach used in a similar context is the com-
bination of a radial-piston pump with the swash-plate pump, as
discussed by Diepeveen [11] and Laguna [12]. This system uses a
fixed-displacement radial piston pump for wind energy to hy-
draulic energy conversion, however, variable displacement is still
required for rotor torque control, and this is undertaken by a
swash-plate in a second fluid circuit within the hydraulic trans-
mission system. An alternative means is the use of a digital
displacement radial piston pump [9], which has variable
displacement capabilities, however, such a concept is relatively
new and adequately validated, “black-box” models of such pumps
are not readily available. A single variable-displacement swash-
plate pump was considered in this study as it is a well-understood
pump design, which satisfies the functional requirements of the
OWTEP system. Detailed hydraulic design considerations are
beyond the scope of this work, but the aim is that positive results
will motivate more elaborate development of this conceptual
design.
Table 1
Selected parameters of the NREL 5 MW reference wind turbine rotor.

Cut-in, cut-out wind speeds
[Ucut-in], [Ucut-out]

3 m s�1,
25 m s�1

Rotor diameter
[Drotor]

126 m

Rated wind speed [Urated] 11.4 m s�1 Rated rotor rotational
speed [urated]

12.1 rpm

Optimum tipespeed ratio
[lopt]

7.55 Optimum power
coefficient [Cp-max]

0.482
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The modelling of a swash-plate pump is based on the method of
lumped-parameters, as developed by Dasgupta and Mandal [22]. A
model of an ideal pump is first proposed, fromwhich the mechan-
ical and volumetric efficiencies of the pump are defined. These ef-
ficiencies are then described in terms of three coefficients that
individually describe the slip, damping and frictional losses within
the pump. By definition, these coefficients are constant throughout
the entire operating range of the pump [22]. They can therefore be
obtained from known operating conditions, which typically corre-
spond to the nominal and no-load conditions. For existing pump
designs these are readily available from the pump manufacturer.

The proposed hypothetical system would require a pump
capable of delivering hydraulic power in the region of 5 MW. The
set points for such a pump were defined based on the nominal
characteristics of the system observed in preliminary simulations
and the typical efficiencies of positive displacement pumps [12,23e
25]. The parameters for the OWTEP system pump are shown in
Table 2. Note that the maximum and minimum volumetric dis-
placements correspond to the nominal and no-load conditions
respectively.

A boost pump must also be included at the base of the turbine,
since the fluid cannot be pumped to hub height by suction. This
pump draws power from the high-pressure line and uses it to
induce a pressure increase on the low-pressure side, which is suf-
ficient to pump the fluid up to the nacelle. Its effect on the resulting
performance of the system is shown to be minimal. However, it is
still considered in the analysis, as it is a fundamental mechanical
component, without which the system cannot work.

2.3. Transmission pipeline

When designing transmission systems for hydraulic wind tur-
bines for electrical generation only, the pipeline is designed to effi-
ciently carry the fluid from the turbine to the hydroelectric
conversion platform, minimising the frictional losses as far as
possible. In this case, thepipelinemust also transport thermalenergy
extracted from the deep sea, hence heat transfer across the pipeline
walls should also be minimised. The modelling of the pipeline
therefore consists of a steady-statemodel of the non-linear frictional
loads along with a much more comprehensive thermal model.

2.3.1. Transmission pipeline: friction model
The frictional load induced on the pump by the pipeline is

computed using the DarcyeWeisbach formula [26]:

pfr ¼ 8fLpipersw
p2D5

i

Q2 (1)

In equation (1), f is the friction factor of the pipeline. For laminar
flows ðReDi

< 2300Þ, f is equal to 64/Re [26]. In the case of turbulent
Table 2
Parameters of a conceptual OWTEP system pump.

Nominal pressure load [pnom] 150 bar
Nominal angular velocity [unom] 12.1 rpm
Mechanical efficiency at nominal

conditions [hM, nom]
97%

Volumetric efficiency at nominal
conditions [hV, nom]

98%

Angular velocity at no load
[uno-load]

50 rpm

Power consumption at no load
[Pno-load]

30 kW

Maximum volumetric displacement
[Vp, max]

1.5 m3/rev

Minimum volumetric displacement
[Vp, min]

0.05 m3/rev
flows, the more complex Colebrook andWhite [27] formula is often
utilised. However, in this formula, the friction factor is expressed
implicitly. This implies that when implemented into a computa-
tional algorithm, the friction factor cannot be found directly and
some iterative procedure is typically used. In the current work, the
Haaland approximation [28] is incorporated to obtain an explicit
formula for the friction factor, shown in equation (2). This approx-
imation is utilised in a number of simulation software packages as it
can substantially increase the efficiency of the code [29].

f ¼
"
� 1:8log

 
6:9
ReDi

þ
�
e=Di
3:7

�1:11
!#�2�

ReDi
� 2300

�
(2)
2.3.2. Transmission pipeline: thermal model
With respect to the thermal aspect, the pipeline consists of an

internal forced convection problem, having a known inlet tem-
perature and flow rate. The internal flow occurs in a solid cylin-
drical structure submerged in a static fluid having a continuously
changing temperature. As a result of these temperature variations
on the outside of the pipe, a finite-element method was utilised to
model the pipe.

The pipeline geometry is discretised into one-dimensional
elements as shown in Fig. 3. Each element has an inlet and
outlet temperature, and a surrounding fluid temperature that is
treated to be constant for each finite element. Heat transfer
processes are categorised into internal forced convection, con-
duction and external free-convection. Conduction is modelled
by the application of Fourier’s law of conduction to a radial
system. The thermo-fluidic properties of seawater are calculated
for each element using correlations developed by Sharqawy
et al. [30].

Internal forced convection is modelled using the Gnielinski
empirical formula [31] (equation (3)), which gives the Nusselt
number at the internal flowepipeline interface. This correlation
carries an associated uncertainty of 10% on the Nusselt number, as
opposed to 25% as in more typically used correlations [32]. The
improved accuracy comes at the cost computing the friction factor,
although in this case it is readily available from the mechanical
solution of the pipeline model.

NuDi
¼ ðf =8Þ�ReDi

� 1000
�
Pr

1þ 12:7ðf =8Þ1=2�Pr2=3 � 1
� (3)

External free convection is modelled using a set of recently
published correlations (equation (4)) by Heo and Chung [33]. These
correlations allow for obtaining the Nusselt number at the pipe-
lineeexternal flow interface for different values of the pipeline
Fig. 3. A single pipeline element.
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Fig. 4. Discretisation based on vertical height versus discretisation based on curve length.
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inclination angle. Typical correlations had focused only on vertical
[34] and horizontal [35] configurations. The nature of the external
flow is described by the value of the Rayleigh number. This
dimensionless quantity encompasses the ratios of buoyancy to
viscous forces as well as molecular to thermal diffusivity [32]. It is
the product of the Grashof and Prandtl numbers. The discontinuity
in equation (4) corresponds to the laminar to turbulent transition of
Fig. 5. Monthly average temperatures for Malta in 2012. Courtesy of the meteoro-
logical office at the Malta International Airport.

Fig. 6. Temperature field over a parabolic
the external buoyancy driven flow. The angle 4(k) is the inclination
angle of the pipeline element, measured in degrees from the hor-
izontal position.

NuL ¼
8<
:

0:67Ra0:25L

�
1þ 1:44Ra�0:04

Do
cos4ðkÞ

�
RaL < 109

0:26Ra0:28L

�
1þ 1:89Ra�0:044

Do
cos4ðkÞ

�
RaL � 109

(4)

2.3.3. Boundary conditions for the pipeline thermal model
The boundary conditions of the pipeline thermal model are

obtained from the surrounding seawater temperatures. These
temperatures are obtained from the temperature field across the
bathymetry. In this work, a two-dimensional bathymetry between
the turbine position and the shoreline was considered.

The coordinates of the bathymetry are defined as distance from
shore (X) and depth (Z). The final bathymetry is then constructed
using a cubic-interpolation between the known coordinates to
generate the curvewith a resolution of 1 m in the X direction. In the
work a simple parabolic bathymetry was considered, however the
model is designed to receive adequately defined sets of coordinates
corresponding to any desired profile.

The pipeline geometry is constructed primarily based on the
bathymetric profile. The height at which the pipeline sits on the
seabed is defined and a simple translation of the bathymetry
bathymetry for the month of August.
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coordinates is carried out. The final geometry of the pipeline is
obtained using the distance of the wind turbine from shore as well
as the hub height and the spacing between the inlet and outlets of
the turbine.

The pipeline is divided into finite elements using a vertical
discretisation scheme. Such a scheme automatically refines the
elements in steeper regions by fixing the vertical height of the el-
ements, rather then their overall length. This is illustrated in Fig. 4.
This is ideal given that the sharper fluctuations in temperature tend
to occur across these elements. The pipeline under investigation
was discretised into 5317 elements, which varied in length from
0.04 m to 28.87 m, depending on the rate of external temperature
variation with depth in that region. The inclination angle of each
element is computed by applying simple trigonometry to the nodal
coordinates. This angle is required for computing the external
Nusselt number.

The two-dimensional temperature field is obtained as a com-
bination of the one-dimensional temperatureedepth profiles for
individual water columns. The numerical model of a one-
Fig. 7. Flowcharts for solution of the mechan
dimensional water column, developed by Sharples et al. [14], was
used to simulate the process of stratification. The details of this
model will not be discussed further but can be found in Ref. [14]. In
this context, its main function is to convert meteorological data into
temperatureedepth profiles corresponding to each depth in the
temperature field.

The Meteorological Office at Malta International Airport pro-
vided the meteorological data used in this study; this data corre-
sponds to the year 2012. Parameters required to implement this
method are daily averaged values of: ambient temperature, total
solar radiance, atmospheric pressure, relative humidity, wind speed
and wind direction. Monthly average ambient temperatures for
2012 are shown in Fig. 5.

The hydrothermal model of the seawater column uses this data
as boundary conditions to generate the daily temperatureedepth
profiles with a resolution of 1 m in the Z-direction. These profiles
are then arranged according to the defined bathymetry to form the
two-dimensional temperature field. In this study, twelve temper-
ature fields were generated, corresponding to the 15th day of each
ical system and pipeline thermal model.
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month. The temperature field for the month of August over a
parabolic bathymetry is shown in Fig. 6.

The discretised pipeline geometry is superimposed onto the
temperature depth profiles. The seawater temperature at each
nodal location is obtained from the coordinates of each node. A
two-dimensional, linear interpolation between neighbouring
points on the temperature field was used to obtain values at the
exact nodal positions. The elemental surrounding temperatures are
computed as the arithmetic mean of the corresponding nodal
temperatures.

2.4. Hydroelectric turbine

The pressurised seawater is converted into electricity by passing
it through a hydroelectric turbine, which in this case is located
onshore. Previous work by Diepeveen [36] has shown that given
the pressure and flow characteristics of such a hydraulic trans-
mission system, a vertical-axis Pelton wheel-type hydroelectric
turbine is ideal.

The method for modelling the Pelton wheel uses a set of
equations to describe the pressure requirement at the nozzle, along
with the resulting shaft torque and hydraulic efficiency. A Pelton
wheel directly coupled to a grid-connected generatormust rotate at
a constant velocity in order to supply electricity at the grid fre-
quency. The hydraulic efficiency of a Pelton wheel is a function of
numerous design parameters, such as the velocity coefficient of the
nozzle and the ratio of the Pelton wheel bucket velocity to the jet
velocity [37]. The latter parameter is referred to as the bucket speed
ratio, for a fixed rotational speed, it tends to vary depending on the
power available in the fluid. It can be shown that the Pelton wheel
reaches its theoretical optimum hydraulic efficiency for a bucket
speed ratio of 0.5, in practice this tends to be reached at a value of
around 0.48 [37]. In the OWTEP system it is proposed that a servo
controlled spear valve is utilised to continuously adjust the nozzle
area and therefore the fluid velocity. This allows for continuously
optimising the hydraulic efficiency of the Pelton turbine by main-
taining a fixed nozzle velocity throughout the operation of the
system while allowing the flow rate to vary subject to the inter-
mittency induced by the wind turbine driven pump [38]. This
concept is mathematically illustrated in Section 3.1.

In order to simplify the steady-state model, the electrical
generator and driveshaft are modelled as having fixed efficiencies
throughout their operation.

2.5. Heat exchanger

As indicated in Fig. 2, the thermal energy extracted from the
deep sea is transferred to a fresh water circuit that is used in the
district cooling system. The energy transfer process occurs in a heat
exchanger that is located after the Pelton turbine. A small pump
would most likely be required to circulate the fluid through the
heat exchanger however its electrical demand would be negligible
compared to the power generated by the system, is therefore
neglected in the calculations. A simple counter-flow heat exchanger
is used in this analysis [39]. This is modelled using the standard
Number of Transfer Units (NTU) method, as described by Incropera
et al. [32].

3. Steady-state system model

Acomputational toolwas developed tomodel the performance of
theOWTEP system. This combines the algorithms that correspond to
themathematicalmodels of the various sub-systems. The theoretical
formulation of each model is briefly described in this section.
3.1. Mechanical system model

The rotor was modelled using discontinuous functions of
angular velocity (equation (5)) and torque (equation (6)) with
respect towind speed. The discontinuities correspond to changes in
the control strategy, which in practice correspond to different
operating conditions of the rotor based on the wind speed.

In this approach the intermediate control regions pertaining to
the original NREL reference turbine were neglected. These regions
of control are implemented between the discontinuities shown in
(equation (5)) and have some effect on the torque-angular velocity
relationship for very narrow regions of wind speeds. They were not
included to simplify the model, but result in the rated maximum
tip-speed of 80 m s�1 being exceeded by an additional 5 m s�1.
However, the understanding is that there is a minimal effect on the
rotor power curve [17]. The intention is that with an improved
understanding of the current system, intermediate regions will be
included in the future to specifically describe a hydraulic-based
transmission, unlike those described in Ref. [17], which relate to
the behaviour of a rotor-driven induction generator.

urotorðUÞ ¼

8>>>>>>>><
>>>>>>>>:

0; ½U < Ucut�in�
�lopt

R

�
U; ½Ucut�in � U < Urated�

�lopt
R

�
Urated; ½Urated � U < Ucut�out�

0; ½U � Ucut�out�

(5)

MrotorðUÞ ¼ Ku2
rotor (6)
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Fig. 9. Simulated temperature profile versus temperature profile from the NODC live Access server.
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For steady-state conditions, it may be assumed that the torque
developed by the rotor and that driving the pump is equal. By using
a variable displacement pump, the torque loading on the pump
may be optimised accordingly depending on the rotor operating
state. The role of the constant K in equation (6) is to represent the
relationship between the torque generated by the rotor and torque
requirement of the pump. This concept is discussed by Laguna [12].
Equation (7) can be derived to give the numerical value of K for
known rotor parameters.

K ¼ 1

64l3opt
rairpD

5
rotorCP�max (7)

The application of the method of constant loss coefficients re-
sults in equations (8) and (9), which describe the steady-state
performance of the pump. The constant loss coefficients (Cd, Cf
and Cs) can be obtained from the pump parameters (Table 2) using
the method described by Dasgupta and Mandal [22].

Mpump ¼ Vpppump

"
1þ Cd

 
mswupump

ppump

!
þ Cf

#
(8)

Q ¼ Vpupump

�
1� Cs

�
ppump

mswupump

�	
(9)

The volumetric displacement of the pump that induces a torque
loading which optimises the aerodynamics of the rotor is given by
equation (10).

Vp ¼ K

 
hmech
ppump

!
u2
rotor (10)

Equation (10) implies that the volumetric displacement of the
pump must be continuously adjusted based on the operating me-
chanical efficiency (hmech is not a constant), the pump pressure load
(Dppump) and the rotor angular velocity (urotor). The selected pump
should have amaximumvolumetric displacement that corresponds
to the rated wind speed since the pump torque loading is only used
to optimise the rotor below the rated condition. This is further
discussed in previous work [13]. Beyond this limit, rotor
optimisation no longer takes place and angular velocity and/or
torque can be adjusted using standard pitch control.

The driveshaft connecting the pump to the rotor was considered
to be perfectly rigid and to induce negligible frictional losses. This
implies that the rotor torque generated is entirely transferred to the
pump, which results in equations (11) and (12).

urotor ¼ upump (11)

Mrotor ¼ Mpump (12)

The pressure load induced by the Pelton wheel nozzle is given
by equation (13), which describes the non-linear, flowepressure
relationship across the nozzle orifice.

ppelt�noz ¼ 1
2
rsw

�
vn
CV

�2
(13)

The nozzle velocity required for optimum hydraulic efficiency
and a constant angular velocity is calculated using equation (14).
The nozzle area required to obtain this nozzle velocity is a function
of the system flow rate, and can be obtained from equation (15). In
practice, this area would be adjusted using the spear valve.

vn ¼ RPuPelton
fopt

(14)

AN ¼ Q
CCvN

(15)

The overall pressure load on the pump is given by equation
(16). The term ppelt�elev corresponds to the head equivalent to the
Pelton wheel elevation above sea level. The term Dpfr is the
frictional load described in Section 2.3 and pbp is the parasitic
pressure load induced by the boost pump at the base of the
turbine. The efficiency of this boost system is taken to be fixed at
80%.

ppump ¼ ppelt�noz þ ppelt�elev þ pfr þ pbp (16)
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Fig. 10. The effect of internal diameter on the power an

Table 3
Default parameters of the steady-state OWTEP system model.

Pipeline Turbine distance from shore 20 km
Internal diameter (Di) 0.5 m
Thickness 25 mm
Internal surface roughness (e) 0.4 mm
Thermal conductivity (kpipe) 0.5 W m�1 K�1

Pelton
wheel

Pitch circle diameter 8 m
Fixed Angular Velocity
(uPelton)

200 rpm

Elevation (above sea level) 20 m
Shaft transmission efficiency
(hshaft)

99% [36]

Generator efficiency (hgen) 95% [36]

Heat
exchanger

Effective area 1000 m2

U-value (no fouling) 1000 W m�2 K�1

District system flow rate
(QDS)

0.3 m3 s�1

District system fluid density
(rDS)

1000 kg m�3

District system specific heat
capacity (cp-DS)

4200 J kg�1 K�1

District system inlet temperature
(Tin, DS)

25 �C

Fouling factor 8.8 � 10�5 m2 K W�1 [42]
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3.2. Thermal modelling

The total resistance to heat transfer along the radial direction of
the pipeline element is given by an arithmetic addition of the in-
dividual resistances (equation (17)). This derivation can be found in
Ref. [32]. The outlet temperature of an element is obtained from
equation (18). This equation follows from the derivation of the bulk
fluid temperature of an internal flow, where a second fluid of
known temperature surrounds the pipe.

Rtot ¼ 1
pDoho

þ
ln
�
Do=Di

�
2pkpipe

þ 1
pDihi

(17)

TðkÞout ¼ TðkÞN �
�
TðkÞN � TðkÞin

�
,exp

 
�LðkÞ

rswQCpRtot

!
(18)

The model is solved starting from the element at the inlet. The
outlet temperature of an element becomes the inlet temperature of
the next element and the solution proceeds in this manner until the
final element is reached. This outlet temperature corresponds to
the outlet temperature of the pipeline. The temperature rise of the
fluid as it passes through the pump was calculated to be negligibly
small (�0.2 �C), and is therefore not included in the model.
d energy extraction characteristics of the turbine.



Fig. 11. The effect of internal diameter on selected operating parameters of the system.
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3.3. Power output and the performance coefficient of the OWTEP
system

Given the non-conventional generation capabilities of such a
system are necessary to adequately define the total rate of energy
generated. The resulting definition of the turbine performance
coefficient must also be defined.

For such a wind turbine system, which is generating electricity
while simultaneously extracting thermal energy, the input energy,
which allows the system to function, is still that which is found in
the wind stream passing through the rotor area. The energy output
is the electricity generated in the Pelton wheel, which is computed
by calculating the Pelton output shaft power andmultiplying by the
fixed generator efficiency. The thermal energy extracted is
computed from the temperature change in the secondary fluid
flowing through the district cooling system. The overall perfor-
mance coefficient can therefore be obtained by dividing the total
rate of energy delivered (consisting of electricity and thermal en-
ergy) by the power required to operate the system: the wind
stream kinetic energy per second (equation (19)).
CP�overall ¼
MPeltonuPelton

�
hshafthgen

�
þ

1
2rair

�

Admittedly, some additional power will be required in order to
pump the fluid through the secondary loop comprising the district
system. However, this depends on specific design aspects of the
hydraulic circuit, which is beyond the scope of this work. Moreover,
this additional power required for fluid circulation is expected to be
orders of magnitude less than the input power coming from the
wind stream kinetic energy.

3.4. Computational implementation

Both the mechanical and thermal aspects of the systems require
iteration processes to compute the pressure loading and pipeline
surface temperature respectively. These two algorithms are illus-
trated in Fig. 7. A flowchart containing all the computational algo-
rithms in the sequence in which they are executed is shown in
Fig. 8.

The computational model was programmed using the MATLAB�

software package. MATLAB� (MATrix LABoratory) is a fourth-
generation numerical computing environment [29]. In order to
facilitate the analysis of the system and improve its usability a user-
rDSQDScp�DS
�
Tin; DS � Tout; DS

�
pD2

rotor
4

�
U3

(19)
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interface was developed using the object-oriented environment:
GUIDE [29], within the MATLAB� package. This allows for directly
importing system parameters and other data files, as well as the
visualisation and exporting of the results.

3.5. Verification and validation of the computational models

The OWTEP systemmodel was verified by analysing the effect of
convergence criteria and discretisation schemes. The aim of veri-
fication being to establish that the algorithms are not generating
numerical errors and the solution is independent of the numerical
aspects of the code. As part of the verification, it was also ensured
that all empirical formulae for modelling thermo-fluid phenomena
are applied within their limits of applicability.

3.5.1. Verification of the mechanical system model
The rotor model was shown to be in agreement with results

from the NREL report [17] for the 5 MW reference turbine. The
pumpmodel was used to simulate the performance of off-the-shelf
Bosch-Rexroth positive displacement pumps. The simulated
behaviour was in excellent agreement with performance curves
provided by the manufacturer [25], indicating that the model is
working properly. Full-scale validation of the pump model using
data for a 5 MW system is not currently possible since such data is
not readily available. However, the method of Dasgupta and Mon-
dal [22] has been shown to be adequate [12,36] for use with static
models pertaining to hydraulic wind turbines.

3.5.2. Validation of the one-dimensional water column model
The applicability of the one-dimensional seawater columnmodel

was validated using data from the National Oceanography Data
Centre (NODC) live access server [40]. Data for the waters sur-
rounding the Maltese Islands was available in the form of averaged
values of temperature with depth. The temperatureedepth profile
for a sea depth of 200 m was simulated using the water column
Fig. 12. The effect of Pelton wheel angular velocity on the nozzle pressure a
model. The scope of the validationwas particularly to establish if the
water column model could successfully predict the year-round
deep-water temperature, which is known to be around 15 �C.
Following a calibration of the initial water temperature fromwithin
the model, the results agreed well with those from the NODC.

Fig. 9 shows the computed temperatureedepth profile for the
16th day of August along with the NODC data for the same location
and month. It must be noted that the computational model simu-
lates the behaviour of single water column of a depth of 200 m
using meteorological data for the year 2012. On the other hand, the
NODC data consists of a set of objectively analysed climatological
fields of temperature for a variety of depths [41], going up to 600m,
in the year 2000. Despite these two differences, the two results are
in good agreement, particularly in terms of the deep-water tem-
perature, which is the more comparable aspect of the data sets.

4. Results and discussion

A parametric analysis of the OWTEP system was carried out
using the steady-state model. The aim of this analysis was to
observe the effect of selected individual system parameters on the
overall system performance.

The rotor and pump parameters shown in Tables 1 and 2 were
used along with default system parameters shown in Table 3. The
parabolic bathymetry shown in Fig. 4 was used along with tem-
peratures for typical August weather in the Maltese archipelago.
Themonth of August was selected as it corresponds to the country’s
annual peak energy demand [16] with an average ambient tem-
perature of 27.8 �C.

4.1. Pipeline internal diameter

The pipeline internal diameter is a fundamental aspect of the
system as it affects the pressure characteristics on the mechanical
side, as well as the heat transfer characteristics of the pipeline.
nd the outlet temperature of the secondary fluid in the district system.
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The output characteristics of the OWTEP system are shown in
Fig. 10. The first aspect that can be noted is the substantial increase
in power because of thermocline energy extraction. Moreover, the
energy output is very sensitive to the internal diameter when this is
relatively small. However, the effect of increasing this parameter
beyond 0.5 m is negligible.

The variation of the performance coefficient with wind speed
is very different to that observed for the same rotor control
scheme on typical turbine designs (Fig. 11). Beyond a particular
wind speed, the pipeline output temperature remains un-
changed, and the heat exchanger reaches the maximum possible
heat transfer rate (Fig. 11). This implies that as wind energy in-
creases, thermal extraction tends to remain fixed. The electrical
power output is also limited by the control scheme. The per-
formance coefficient curve therefore tends to increase to a peak
value after which it decreases as result of an increasing wind
energy input and fixed electrical and thermal energy output. The
optimum performance coefficient is observed for pipeline di-
ameters in the region of 0.25e0.5 m. Increasing the diameter in
this region has the effect of shifting the peak in curve to a higher
wind speed. However, the effect of internal diameter on pipeline
pressure (Fig. 1) implies that a 0.5 m diameter is much more
efficient in terms of frictionally induced pressure loads. Smaller
pipeline diameters are not feasible in this respect. On the other
Fig. 13. The effect of Pelton wheel angular velocity on the po
hand increases beyond 0.5 m have little to negligible effect. It can
also be observed that the OWTEP performance coefficient for
adequate pipeline diameters is superior to that of the NREL
5 MW reference turbine [17], which only generates electrical
energy.

4.2. Pelton wheel angular velocity

A fixed rotational velocity of the Pelton wheel is crucial for a
grid-connected power generation system. The numerical value of
the angular velocity determines the frequency of the resultant
alternating current generated from a directly connected syn-
chronous machine. In the current analysis, the aim is to assess the
effect of different Pelton wheel angular velocities on the system
itself.

The main performance variation is in terms of nozzle pressure,
which increases for higher angular velocities (Fig. 12). This implies
that in order to transfer a fixed amount of hydraulic power, a lower
flow rate is required. This has the advantage of reducing pipeline
losses, but also reduces the rate of heat transfer in the heat
exchanger (Fig. 12). Increasing the Pelton wheel angular velocity
tends to increase power harvesting at lower winds speeds,
although at above rated wind speeds the overall output power
reaches the highest fixed level for 200 rpm (Fig. 13).
wer and energy extraction characteristics of the turbine.
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Fig. 14. Seawater inlet temperature variation with pipeline inlet distance from shore.
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4.3. Turbine distance from shore

For a fixed parabolic bathymetry, the turbine distance from
shore was adjusted in order to observe the simultaneous effect of
Fig. 15. The effect of turbine distance from shore on the outlet

Fig. 16. Comparison between electricity generated by the
extracting seawater from shallower regions along with a shorter
pipeline. It must be noted that no consideration is made for the
variation in wind quality with distance from shore.

As a result of the parabolic nature of the bathymetry and the
position of the thermocline, the pipeline inlet temperature does not
tend to vary substantially with distances beyond 5 km (Fig. 14).
Although an appreciable difference of around 1 �C is observedwhen
going from 2.5 to 5 km. The longer pipeline results in increased
thermal losses, which indicate an ideal compromise between low
inlet temperature and reduced losses can be struck at around 10 km
(Fig.15). The effect of pipeline lengthon the frictional pressure losses
tends to be negligible for the selected default pipeline diameter of
0.5 m. This effect becomes more pronounced for smaller diameters.

4.4. Electrical generation

The electrical generation capability of an OWTEP turbine is
observed to be inferior compared to that of a traditional wind
turbine design. Fig. 16 shows the output electrical power from the
OWTEP system along with data for the NREL 5 MW reference wind
turbine [17]. These two results are directly comparable as a result of
temperature of the secondary fluid in the district system.

OWTEP system and NREL 5 MW reference turbine.
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the identical rotor and control scheme. However, it must be noted
that the control scheme is designed for a traditional wind turbine
having a generator-connected rotor in the nacelle. This scheme is
designed to limit generator angular velocity and torque loading. In
the case of the OWTEP system such a scheme is no longer relevant
and alternatives can be considered. Moreover, the thermal extrac-
tion aspects of the system more than compensates for the
decreased electrical output. It must also be noted that NREL data
[17] corresponds to nacelle-generated electricity, which will
experience losses as it is transmitted onshore. On the other hand,
the OWTEP electricity is generated onshore.

5. Conclusions

The concept of an offshore wind turbine capable of generating
electricity and simultaneously extracting thermal energy has been
investigated. Results from the application of the steady-state model
have shown that by selection of adequate parameters, the total
power extracted at above rated conditions in the hot summer
months can increase by as much as 84%. It has also been observed
that the performance coefficient of such a system tends to experi-
ence a peak below the rotor rated wind speed. The value of this
peak and the wind speed at which occurs has been shown to
depend on the specific parametric values.

It must be noted that the dynamic behaviour of the system is not
considered in this analysis. Transient aspects will affect the design
and performance of the combined concept, particularly in terms of
the instantaneous power production and the power quality. The
aim of future work is to carryout a much wider, more compre-
hensive, parametric analyses. Further research involving transient
models is required to examine the feasibility of using such long
pipelines with a hydroelectric station onshore. Flow dynamics over
long distances will cause lags in the pressure variation at the hy-
droelectric station with respect to wind speed variations. On the
other hand, the hydraulic capacitance of a long pipeline may to a
certain extent result in power smoothing. Moreover, this study has
made no attempt to quantify the capital and operational costs
(CAPEX and OPEX) of such a system. Such an analysis could provide
a value for the cost of energy (V/kWh) and therefore a more fair
comparison with existing wind turbine technologies. At this point,
such a parameter is difficult to obtain given that the technology is
still in early stages of development.

An additional consideration must be made for the possibility of
using floating turbines in deep-sea regions. In this case the
seawater pipeline systemwill be much more challenging to design,
since it must accommodate the motion of the wind turbine with
respect to the seabed. Addressing this matter was beyond the scope
of this study.

In locations with high cooling demands such as Malta, most of
the electrical energy is used for air-conditioning in the summer
months [43]. A case study carried out by Sant and Farrugia [20] has
already shown that the energy harvesting capability of such a
system installed in Malta is substantially greater than those of
traditional wind turbines. Through the application of a simplified
steady-state model of an OWTEP system and using real wind data
obtained for the central Mediterranean, the annual energy gener-
ation was shown to increase by 65.8% when compared to a tradi-
tional wind turbine having an identical rotor diameter and
generating only electrical energy [20].

Despite the widely applied concept of DWSC and traditional
wind energy generation, this system signifies the first attempt at a
hybrid system. Its viability extends to locations with high cooling
demands and adequate wind speeds that are adjacent to a suitably
large body of water. Results indicate the potential for such a system
as an offshore-specific wind turbine design. By widening the notion
of wind-generated energy one can look beyond electrical genera-
tion and focus on generating energy in the form in which it is
required, with the ultimate aim being to radically increase the
viability offshore wind energy.
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