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Abstract It is shown that the self-consistency condition which is the basic equation for
calculating the mean-field order parameter of any mean-field model Hamiltonian can be
replaced by the standard Metropolis Monte Carlo scheme. The advantage of this method is
its ease of implementation for both the homogeneous mean-field order parameter and the
heterogeneous one. To be specific, the mean-field version of the Ising model spin system
is discussed in detail and the resulting magnetization is the same as in the case of solving
the respective mean-field self-consistency equation. In addition, it is shown that if a high
temperature phase of such system is quenched below critical temperature then the mean field
experienced by spins develops into a network of domains in analogous way as it happens
with the spins in the case of the exact many-body Hamiltonian system and the coarsening
processes start to take place. To show that the introduced Metropolis Monte Carlo method
works also in case of the continuous variables the order parameter for the Maier-Saupe model
for nematic liquid crystals has been calculated.

Keywords Mean field approximation · Magnetic domains · Coarsening ·
Monte Carlo method

1 Introduction

The history of the mean-field theory goes back to Van der Waals’s works and to 1907 when
Weiss [1] used the idea of the molecular field to explain the magnetic ordering in ferromagnets
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(see the recent review on mean-field theory by Kadanoff [2]). A generalization of the Weiss
mean-field theory by Landau [3] with an expansion of the free energy in an order parameter
gave a new modern understanding of the phase transitions through the symmetry breaking
idea [2,4]. This paper addresses the mean field theory with spatially varying order parameters
such as Ginzburg–Landau theory [5], mean-field model for spinodal decomposition [6] or
spatially modulated systems [7]. Note that the mean field approximation is popular both in
classical and quantum statistical model description and still the new methods are developing
to improve the approximation, e.g. [8,9]. The mean-field approach is usually used when it is
computationally very hard to solve a particular statistical physics problem with the help of
other methods.

To be specific, let us consider a 2-body interacting system of magnetic moments si j located
in the sites of a L × L square lattice for which the Hamiltonian is the nearest-neighbour Ising
Model Hamiltonian [4]

Hexact = −J
∑

〈i j,kl〉
si j skl − h

L∑

i, j=1

si j (1)

where Ising spins si j = ±1, the angular brackets denote summation over the nearest-
neighbour lattice pairs, h is the external magnetic field, J is the exchange integral. Following
the Weiss mean field approximation with variation in space, the exact Hamiltonian in Eq. (1)
can be converted into a mean field one-body Hamiltonian in the form

HMFA = J
∑

〈i j,kl〉
mi j mkl − J

∑

〈i j,kl〉
mklsi j − h

L∑

i, j=1

si j , (2)

where each spin si j experiences an effective magnetic field

H eff
i j = h + J (mi−1, j + mi+1, j + mi, j−1 + mi, j+1) (3)

with mi j = 〈si j 〉 being the mean field parameters. The values of mi j which minimize the
system free energy F(kB T, {mi j }L ,L

1,1 , h), where kB represents the Boltzmann constant and T

is temperature, are obtained from the self-consistency condition δF(kB T, {mi j }L ,L
1,1 , h) = 0

for finding free energy extremes with respect to mi j which lead to a set of N = L2 nonlinear
equations

mi j = mi j (J/kB T, m11, m12, . . . mL L , h) ; i, j = 1, . . . , L (4)

Finding the equations Eq. (4) and their solutions mi j at lattice sites (i, j) is the well known
traditional method for determining the local mean-field parameters. In the particular case of
the uniform solution, where mi j = m, the equilibrium magnetization m reads as:

m = tanh

(
z Jm + h

kB T

)
, (5)

where z denotes the number of nearest neighbours.
The novelty of our method of calculating the local mean-field parameters is that we

performed a Metropolis Monte Carlo computer experiment for Ls replicas of N Ising spins
si j (i, j = 1, . . . , L) described by the one-body Hamiltonian in Eq. (2) instead of deriving
and solving the set of nonlinear equations in Eq. (4). The method is justified by the fact that
the Metropolis algorithm satisfies the principle of detailed balance [10] and therefore the
resulting mean field kinetics leads to the state of thermodynamic equlibrium. The proposed
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numeric scheme is similar to the Monte Carlo mean field theory introduced by Netz and
Berker [11] and applied to frustrated spin systems. These two methods are equivalent for
homogeneous systems. Note that finding solutions for a large system of nonlinear equations
in Eq. (4) with given complex boundary conditions can be very difficult using standard
numerical methods. In addition, some statistical models which are described with the help
of the continuous variables will be represented by a set of nonlinear integral equations for
which in general can be a lot harder to find a solution than in the case of Eqs. (4) or (5) for
Ising spins. An example is the well-known mean-field Maier-Saupe model [12] for nematic
liquid crystals with the following Hamiltonian:

HMFA = −ε〈P2〉P2(cos(θ)), (6)

where θ is the angle of a liquid crystal molecule with respect to the nematic director n,
P2(cos(θ)) = 1

2 (3 cos2(θ)−1) is the second-order Legendre polynomial and ε is the interac-
tion strength between liquid crystal molecules. In the case of a uniform mean-field parameter
(the analogue of Eq. 5) the value of the mean field parameter 〈P2〉 is calculated from the
self-consistency equation which takes the following form [13]:

〈P2〉 =
1∫

−1

d(cos(θ)) f (θ)P2(cos(θ)), (7)

where f (θ) = 1
Z e−HMFA/kB T represents the distribution function for θ and Z is the respective

partition function [13]. The integration on the right-hand side of Eq. (7) can be found with the
help of the Dawson integral [14]. The calculation of 〈P2〉 with space variation (the analogue
of Eq. 4) is much more difficult. The method introduced by us replaces the self-consistency
equation Eq. (7) by a simple Monte Carlo scheme.

2 Mean Field Metropolis Monte Carlo Algorithm

To be specific, we consider a mean field version of the two-dimensional Ising Model Hamil-
tonian (Eq. 2) which is defined on a square L × L lattice, e.g. with the periodic boundary
conditions imposed. In the model under consideration, each lattice site is occupied by a finite
number Ls of replicas of Ising spin {sk}Ls

1 . The initial mean field magnetization mi j at site
(i, j) (i, j = 1, . . . , L) is defined as an average over all spin replicas at this site, i.e.

mi j = 1

Ls

Ls∑

k=1

(sk)i j . (8)

The algorithm leading to obtain the equilibrium values of mi j is based on the Metropolis
Monte Carlo algorithm and it is the following:

1. Initial set up: for each lattice site (i, j) choose an initial set of Ising spin replicas ({sk}Ls
1 )i j

populating the sites and calculate the corresponding site magnetization mi j .
2. Perform a given number of Monte Carlo steps:

(i) Choose at random one spin s from among Ls L2 spins populating all lattice sites
(e.g. one of Ls spins at a site (i, j) has been chosen), calculate energy E(s) (Eq. 2)

(ii) Try to change the value of s to s′ = −s. If �E = E(s′)− E(s) < 0, then accept the
change, otherwise accept the change with probability min(1, exp(−�E/kB T )).

(iii) Calculate the new value of mi j (Eq. 8) if the change from s to s′ is successful.
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3 Discussion of the Results

In the presented mean field Metropolis Monte Carlo algorithm the initial values of mi j at each

site (i, j) are calculated from the initial spin configuration ({sk}Ls
1 )i j with the help of Eq. (8).

In each case after application of the algorithm, they tend to their thermodynamic equilibrium
values with the help of the spin replicas populating each lattice site which increase or decrease
mi j in each Monte Carlo step or they leave it unchanged. The approaching of the equilibrium
value by mi j is evident in Fig. 1, which shows the dependence of the absolute value of the
mean field magnetization m = 1

N

∑L
i, j=1 mi j on temperature T for different spin system

sizes L = 5 and L = 40. In Fig. 1, all spins initially were set to ({sk}Ls
1 )i j = 1. The number

of MC steps is equal to 1,000. Note that even small system size L = 5 well approximates the
exact mean field magnetization (Eq. 5). To show that the substitution of the self-consistency
condition for the mean-field order parameter is not restricted only to the Ising model spin
system there have been presented in Fig. 2 the analogous results for the mean-field order
parameter 〈P2〉 in the Maier-Saupe model with the Hamiltonian in Eq. (6).

Another advantage of the above algorithm is that ease of its implementation remains the
same regardless of the shape of the boundary conditions. The cpu time which is necessary
for execution of the algorithm on a square lattice grows quadratically with the lattice size L ,
i.e. τ ∼ L2.

It is well known that the quench of the high-temperature phase of the system to its low
temperature phase (T < Tc) always leads to competing domains and their average size
grows with time as tα , where α depends on the type of dynamics (without conserved order
parameter) that dominates the system evolution [15,16]. In case of Ising spin systems (Eq. 1)
in spatial dimensions d > 1 the exponent α = 1/2. One of the first qualitative explanations
of coarsening processes has been proposed by Lifshitz and Slyozov [17].

In our mean field Monte Carlo modelling, the kinetics of approaching the thermodynamic
equilibrium by the local mean field magnetization results with the domain-like structures

 0
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Fig. 1 Dependence of the absolute value of magnetization |m| on temperature for 2D nearest neighbour Ising
model in mean field approximation (Eq. 2) when h = 0. The results of computer simulation of the spin system
on square lattice size L × L (L = 5 and L = 40) with periodic boundary conditions and t=1,000 MC steps
have been presented as well as the mean field approximation expression for magnetization in Eq. (5)
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Fig. 2 Dependence of 〈P2〉 on temperature for the Maier-Saupe model [12] for nematic liquid crystals. Mean
field approximation result from the self-consistency equation (Eq. 7) is compared with the results of the
mean-field Monte Carlo simulation. Some parameters: square lattice L × L (L = 5) with periodic boundary
conditions, t=1,000 MC steps, ε = 0.17

(areas with the same sign of mi j ) which resemble the ones known for spins. The mean field
magnetizations mi j (i, j=1, L) which initially have randomly chosen values undergo the
coarsening processes below Tc exhibiting competing domain-like structures as in Fig. 3. In
Fig. 4, the dependence of the gyration radius Rg =

√
1

2N 2
d

∑
q,q ′(−→r q − −→r q ′)2 (root mean

square distance between Nd lattice sites belonging to the same domain) on time has been
plotted and it suggests t1/2 power law of the domains growth, the same as observed in other
systems with the nonconserved scalar order parameter.

Note that the initial time dependence of Rg is dominated by the small values of the initially
chosen mi j and this is the reason that at higher temperatures the range of the scaling region
(t1/2) is shifted to later times. On the other hand, the saturation of all the curves in a later
time is a finite size effect on the domains growth.

Before we conclude, it is important to note that the idea of the mean field parameter with
variation on space can be useful for modelling systems with different kinds of degrees of
freedom where some of them is considered in a mean-field approximation, e.g. the molecular
dynamics method describing the oscillations of magnetic atoms of a magnet can be combined
with the mean field Metropolis Monte Carlo method for system magnetization calculation.
In this case, for each time moment �t a given number of Monte Carlo steps is performed
to calculate local values of mi j . For example, Fig. 5 shows the results that may be obtained
on using such hybrid methods where the mean-field magnetization oscillations of a two-
dimensional magnet have been plotted as a function of time after an external force had been
applied to its edges resulting in stretching or compression of the magnet in the longitudinal
direction (x-direction). In this case, magnet is represented by a bead-spring model with the
Ising spins local mean-field magnetizations m(

−→r i ) located in the beads at position −→r i . The
beads constitute the sites of a square lattice and the bonds represent the springs. The exchange
integral Ji j is ferromagnetic and it decays as r−3

i j with the distance ri j between −→r i and −→r j .
The corresponding magnetic force is considered to be attractive and its strength |FM | =
J |m(

−→r i )m(
−→r j )|/r3

i j . The attractive magnetic interaction between the nearest-neighbour
beads is completed by the harmonic bond interations and the Lennard-Jones bond interaction.
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Fig. 3 Two-dimensional maps of
the mean field magnetization mi j
for the spin system with
Hamiltonian in Eq. (2), where the
sites (i , j) represent y-coordinate
and x-coordinate, respectively,
are shown after t = 10 MC steps,
t = 50 MC steps and t = 250
MC steps. The palette with color
gradients on the right side shows
the range of values which takes
mi j . The periodic boundary
conditions have been chosen.
Temperature T = 0.65 Tc

The non-bonded interactions have not been considered. The Nosé-Hoover thermostat [18,19]
with the leap-frog molecular dynamics scheme has been used to describe motion of magnetic
atoms. It is obviously beyond the scope of this work to give full details as we simply want
to illustrate the possibility to use mean-field magnetization for modelling magnetic-elastic
coupling as it takes place in Fig. 5.

Similarly, it is obvious that what is discussed here is just one example where the presented
extended version of mean field approximation to include space dependent characteristics
may be used, and that this improved model can be very useful in various other applications.
The results presented in Fig. 2 suggest that the mean-field Metropolis Monte Carlo method
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Fig. 4 Dependence of the gyration radius Rg on time for 200 × 200 square lattice Ising model in space
dependent mean field approximation. The straight lines are guides for eyes only and they suggest t1/2 power
law
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Fig. 5 Oscillations of the mean-field magnetization resulting from the subsequent longitudinal (x-direction)
stretching and compressing of the system consisting of 10 × 10 beads Some other parameters: T = 0.65 Tc ,
equilibrium lattice constant a = 0.17 nm, Number of MC steps per �t is equal to 50

introduced by us can be easily extended to non-magnetic systems. One of the advantages
of the current approach with respect to straight Monte Carlo simulations of the underlying
Hamiltonian can be its application to describe deformation behaviour of some materials, e.g.
polymeric materials or foams, in order to obtain significantly shorter duration of the computer
simulation.
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Conclusion

It has been shown the possibility of introducing mean-field Metropolis Monte Carlo scheme
for a mean-field model instead of solving the respective self-consistency equation. The
strength of the presented method is the ease of its implementation in computer simulations
even in the case of the mean field parameter with variation on space. It has been shown that
the growth of the mean field domains follows the same power law as it is observed for the
domains in the exact models. It is important feature for these applications where some of the
system components need not be represented exactly.
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