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Abstract 

The independent components analysis (ICA) of the auditory 
P300 evoked responses in the EEG of normal subjects is 
described. The purpose was to identify any features which 
might provide the basis for biomarkers for diseases, such as 
Alzheimer’s disease. Single trial P300s were analysed by 
ICA, the activations were back-projected to scalp electrodes, 
many artefactual components were removed automatically, 
and  the back-projected independent components (BICs) were 
first clustered according to their amplitudes and latencies. 
Then these primary clusters were secondarily clustered 
according to the columns of their mixing matrices, which 
clusters together those BICs with the same scalp topographies 
and, therefore, source locations. The BICs comprising the 
P300s had simple shapes, approximating half-sinusoids. Trial-
to-trial variations in the BICs were found, which explain why 
different averages have been reported. Both positive- and also 
negative-going BICs were identified, some associated with 
known peaks in the P300 waveform. Artefact-free, single trial 
P300 waveforms could be constructed from the BICs, but 
these are probably of less interest than the BICs themselves. 
The findings demonstrate that neither averaged P300s, nor 
single trial P300s, are reliable as biomarkers, but rather it will 
be necessary to investigate the BICs present in a number of 
single trial realizations. 

1 Introduction 

Evoked Potentials (EPs) elicited in a variety of sensory and 
cognitive paradigms have been commonly used to study brain 
functions in psychological and clinical research [14] and in 
the diagnosis of neurological and psychiatric disorders, such 
as AD and schizophrenia. However, in the analysis of EPs the 
fundamental problem is to extract information about the 
potential from measurements that also contain the larger 

magnitude, ongoing, background electroencephalogram 
(EEG). 
 
To increase the signal-to-noise ratio (SNR) conventional 
analysis of EPs is based on synchronised averaging of 
realizations, time-locked to the applied stimulus or measured 
response, assuming trial-to-trial invariability. Nonetheless, 
responses, reflecting complex brain processes, are likely to 
present considerable variability due to various factors such as 
experimental manipulations, level of attention, and quality of 
performance [2]. This conventional approach has a major 
drawback as the EPs are time-varying signals reflecting the 
sum of underlying neural events during stimulus processing. 
Various procedures such as PCA and repeated-measures 
analysis of variance (ANOVA) [9] have been employed to 
separate functionally meaningful events that partly or 
completely overlap in time. However, the reliable 
identification of these components in the EP waveform still 
remains a problem. Independent Components Analysis (ICA) 
[1] now offers the possibility of extracting the temporally 
independent components (ICs) of EPs on a single trial basis. 
The basic P300 waveform is elicited by the oddball paradigm 
[10], in response to rare “target” stimuli, which are randomly 
embedded in a sequence of standard stimuli. A number of 
negative (N) and positive (P) peaks can be observed in the 
averaged P300 EP waveform, designated N1, N2, P1, P2, and 
P3, where the numbers indicate the temporal order in which 
the peaks occur. The occurrence of these different peaks 
suggests the P300 waveform comprises a number of 
components. The name P300, used here to describe the 
response waveform, refers to an important positive voltage 
maximum, known as the P300b or P3b peak, which occurs 
from about 300 ms post response to the oddball stimulus. The 
only consistently occurring peak found in averaged P300s is 
the P3b and most clinical work has been based upon it. 
 
Various attempts have been made to analyse EPs based on 
ICA. The EPs were averaged prior to the application of ICA 
in [4, 6, 15]. However, having used the averaged EPs, any 



trial-to-trial variability was ignored and important information 
might have been lost. 
 
EPs were concatenated in [3, 11, 12] before applying ICA. 
This is not a truly single trial analysis method. It assumes an 
unchanged mixing process across all trials. However, if the 
mixing matrix varies between trials, for physical or 
computational reasons, concatenation leads to incorrect 
conclusions, and we have found this to be the case, although 
we do not report any details here.  
 
A successful application of ICA on EPs was presented in [13] 
where single trials of visual EPs were analysed and clustered. 
Only the averaged ICs were shown, and only a small number 
(256) of samples were used for the analysis, which could have 
resulted in algorithmic artifacts. In general, our approach 
appears to be similar to the analysis of VEPs in [13], but the 
details of our clustering method are different. Furthermore, 
we have justified our method by comparing our findings with 
the earlier literature and by testing it by simulations reported 
elsewhere. 
 
It was decided to investigate the properties of the ICs 
comprising the P300 of normal, healthy subjects, in order to 
characterize them and to understand variations in the 
measured average of the P300 and probable trial-to-trial 
variations, with a view to the future development of 
biomarkers for brain diseases and conditions, such as 
Alzheimer’s disease. To avoid the loss of information 
associated with averaging and to take into account trial-to-
trial variations, the ICA technique was adapted to single trial 
analysis. Because the ICs are of undetermined magnitude and 
polarity, their effects at the measurement electrodes (their 
back-projections) were studied. It was also hypothesized that 
some of these back-projected ICs (BICs) might be associated 
with the designated peaks in the P300 waveform. 

2 Data and methods 

2.1 Measurements and data 

P300 recordings were performed on 9 healthy participants (3 
females and 6 males), who had no history of neurological or 
psychiatric disorder. They were between 37 and 74 years old.  
P300s were recorded from 27 channels. Linked ears (A1-A2) 
were used as the recording reference and electrode AFZ was 
the Ground. Following the standards in [8] signals were 
digitally sampled at 1024Hz, with a high pass filter of cut-off 
frequency 0.016Hz, a low pass filter of cut-off frequency 
60Hz, and a notch filter at 50 Hz (to remove electrical mains 
contamination). A stimulator provided 40 2 kHz target tones 
(20%) and 160 1 kHz non-target tones (80%). The ISI was 
1.29s.  Subjects were seated with closed eyes, were relaxed, 
and were instructed to listen carefully and press a button 
immediately they heard the target tone. A 10s epoch of EEG 
was recorded for each subject, both before and after the total 
of 200 tones from the stimulator. 360 target trials were 
recorded from the subjects (40 per subject). For each of the 

target P300s, 599 samples before the stimulus and 700 
samples after the stimulus (1300 samples) were taken to form 
a target single trial P300 lasting 1269.5 ms. 

2.2 The variability of the averaged P300 

Assuming a total number of trials n  collected from all 
subjects, in order to demonstrate the variability of averaged 
P300s, k  random subsets, consisting of m  trials selected out 
of n , were formed and their averages at electrode Cz were 
calculated. Then, the P300 peaks were observed on these 
averaged subsets. 

2.3 Analysis procedure 

The procedure consisted of the application of ICA, artefact 
removal, feature selection and clustering (Fig. 1), and the 
study of the peaks of the averaged EP.  

ICA Procedure 

 Infomax [1] was applied to the multi-channel EEG of each of 
the 360 single trials. As a pre-processing step, the raw EEG 
was whitened by Principal Component Analysis (PCA), 
included within the Infomax algorithm as a standard 
procedure.  
 
The resulting activations were back-projected on to electrode 
Cz, which was identified as the electrode on which the P300 
is largest. The BICs which had maxima variance within the 
interval [ ]21 tt  = [586 1036] were selected, where the onset of 
the stimulus occurs at t1 =586 ms. and [ ]21 tt  was chosen to 
be 450 ms. This is justified  by the fact that only the 
components which appear within [ ]21 tt  are likely to be 
related to the EP. 

Fig. 1 The steps for extracting the BICs. 



Artefact Removal, Feature Selection and Clustering 

Two methods were used for rejecting the noise components. 
First, if the number of zero crossings of a component after 
removing its mean exceeded a threshold then it was rejected. 
Noise-like EEG signals are associated with a relatively high 
number of zero crossings, while the sparse IC waveforms 
showed relatively fewer crossings. Similarly, some artefacts 
are associated with relatively large magnitude peaks 
compared with the magnitude of the ICs and a similar 
thresholding procedure was established empirically. Thus, the 
absolute values of the maxima and minima were calculated 
for all the independent components, and peaks having 
amplitudes greater than a threshold were rejected. In both  
methods the threshold was the sum of the mean and twice the 
standard deviation of the parameter concerned for all 
components. These two methods exclude the main artefactual 
components. Clustering the components in a later stage 
ultimately separates any remaining artefactual components. 
From the remaining components, the following features were 
extracted: the absolute values of the peaks of the back 
projected components within [ ]21 tt , and the latencies of the 
peaks. These were clustered to satisfy the criterion that each 
cluster should have similar peaks and latencies.  
 
The unsupervised k-means clustering algorithm [7] was used 
to group together BICs with similar features. In the adopted 
procedure, the algorithm was run with different values of k 
and the Davies-Bouldin (DB) index [5] was calculated for 
each run. The k value which corresponded to the smallest 
value of the DB index was chosen, and the corresponding 
clusters were considered to be the correct solution. The 
resulting clusters contained both negatively and positively 
peaking components, as expected, since the absolute values of 
the components’ peaks were used as features in clustering. 
The clusters obtained above were further clustered based on 
the normalized columns of the mixing matrix corresponding 
to each component in order to group the components which 
have similar topographies. This stage of clustering was also 

desirable to group any remaining artefacts found among the 
independent components. 
 

The study of the Peaks of the Averaged EP 

In order to identify the time intervals within which BICs 
associated with the peaks in the P300 fall, the following 
procedure was adopted. The grand average of all P300 
recordings for all subjects was calculated, and the latencies of 
the N1, P2, N2, and P3 peaks within [ ]21 tt  were identified. 
The time interval between adjacent peaks were calculated and 
the smallest chosen. This interval defined the width of a bin 
centred on each peak, within which associated  BICs were 
considered to fall. All BICs resulting from the application of 
ICA were used after removing any artefacts. For all trials, the 
magnitudes of the positive BICs in each bin were recorded, as 
were the magnitudes of the negative BICs. For each bin, the 
sum of the positive magnitudes, the sum of the negative 
magnitudes, and the difference of these sums, MΔ  were 
calculated. Also, the single trial P300s corresponding to the 
positive BICs were averaged, and likewise for the negative 
BICs. The above procedure was also performed on data from 
individual subjects. In the following our general findings are 
illustrated by the results obtained at different electrodes and 
latencies. 

3 Results 

3.1 The variability of the averaged P300 

A single trial P300 at electrode Cz and the average of 360 
trials recorded from the 9 healthy subjects are shown in Fig.  
(2a) and Fig. (2b), respectively.   
 
The aforementioned P1, P2, N1, N2 and P3 peaks can be 
noticed distinctly in Fig. (2b). However, in Fig. (2a) these 
peaks are less obvious and can be confused with background 
EEG.  This is why averaging is used conventionally for 
increasing the SNR.  
 

 
Fig. 2 (a) A single trial P300, (b) the average of 360 trials 
of the P300 at Cz. Note that the first and last vertical lines 
mark the interval [ ]21 tt  in all figures. 

 
Fig. 3 The averages of sets of 40 P300 trials selected 
randomly at Cz. 



As mentioned in the data and method section, in order to 
illustrate the variability of the averaged P300, 10 random 
subsets, consisting of 40 trials selected out of 360 trials from 
9 healthy participants, were formed and their averages at 
electrode Cz were calculated.  Then, the P300 peaks were 
observed for these averaged subsets. The peaks, P1, N1, P2, 
and N2 were of different magnitudes in the different averages, 
and were sometimes absent, see Fig. (3). Furthermore, even 
the more prominent P3b peak looked reduced in amplitude as 
in plots 3 and 8 in Fig. (3). A similar procedure was repeated 
for each individual subject, with the same findings. 

3.2 ICA procedure 

Implementation of the ICA procedure resulted in 3475 
independent components. 

Artefact Removal, Feature Selection and Clustering 

Using the artefact removal methods described above, 1485 
artefacts were identified and removed. From the remaining 
1990 components, the following features were extracted: the 
absolute values of the peaks of the back projected 
components within [586 1036] ms, the latencies of the peaks 

and the corresponding normalized columns of the mixing 
matrix. 
 
The unsupervised k-means clustering algorithm described in 
the method section was applied and resulted in 3 main 
clusters containing 11 groups of components Fig. (4). Each of 
these 11 groups of components has similar latencies, absolute 
values of the peaks and topographies. The ratio of the positive 
components to the total number of components in each group 
varied from (0.0545) 5% (group 1-4) to (0.9407) 94% (group 
3-4). 
 
In Fig. 5 the mean amplitudes and standard deviation of 
various component groups are plotted against time together 
with the averaged P300 on Cz. Notice how these groups have 
latencies which overlap in Fig. 6, where the mean latencies  

Fig. 4 The IC groups obtained after clustering. 

 
Fig. 5 Mean amplitudes and standard deviation of various 
component groups plotted against the averaged P300 at Cz. 

Fig. 6 Mean latencies and standard deviation of 
various component groups. (Darker lines present the 
positively peaking components). 

 
 

 
Fig. 7 An ERP image of the P3b component type with its 
topography. 



 
and standard deviation of different component groups are 
plotted.  
 
We were able to extract various component types which 
constitute the P300. For instance the P3b which is located in 
group 3-4 (222 ICs) is presented with its topography in Fig. 7. 
The mean latency of the P3b was found to be 365 [ms] (min= 
300, max = 448 and SD = 37).  
 
In addition to the 5 widely known components constituting 
the P300, a further 6 component types were extracted (not 
studied here). The averages of the 5 components constituting 
the P300 are plotted against the averaged P300 on Cz in 
Fig.8.  

Trial-to-Trial Variation and the Peaks of the Averaged 
P300 

It was observed that the resulting components did not appear 
in every single P300 trial. For instance, the P3b components 

belonging to one subject (selected randomly) did not seem to 
appear in every trial (total of 40 trials). In Fig. 9 (a) the 
amplitudes of the P3b component for various trials were 
plotted against the trial number in which it appeared. The 
grand average of the P300 on Cz, the averaged P3b on Cz of 
the selected subject and the averaged P300 on Cz for the 
selected subject, respectively, are also shown. Not only did 
the P3b component not appear in every trial, but the 
magnitude of the P3b on Cz varied also, as can be seen.  
 
Furthermore, not only were the P300 components missing in 
some trials, but also some components with reversed polarity 
appeared in different trials at nearly the same latency. For 
example, it is noticeable that P1 is reduced or nearly absent in 
the averaged P300, see Fig. 10. However, the average of the 
extracted positive P1 peak is apparent, and another less 
visible negative peak (-P1) occurs at nearly the same latency. 
This illustrates how the averaged P300 is dependent upon the 
positive and negative ICs; in this case nearly cancelling each 
other out in the averaged P300. 
 
To make the above observation even clearer, a few of the 
P300 single trials on Cz corresponding to positive P3bs and 

 
Fig. 8 The averaged P300 on Cz (dark line) and the 
averages of the BICs constituting the P300. 

 
Fig. 9 (a) A histogram of the P3b component for a 
randomly selected subject, (b) the grand average of the 
P300 on Cz, (c) the averaged P3b components belonging 
to the selected subject and (c) the averaged P300 on Cz for 
the selected subject. 

 
Fig. 10 The averaged P300 on Cz (dark line), the averaged 
P1 and the corresponding averaged negative components (-
P1) (dotted line). 

 
Fig. 11 Single trial P300s corresponding to positive P3b. 
(Top plot is for the averaged P300 on Cz). 



negative P3bs are illustrated in Fig. 11 and Fig. 12, 
respectively. The P3b appears consistently in the trials in Fig. 
11 (top plot is for the averaged P300 on Cz), while the P3b is 
either missing or with negative polarity in Fig. 12.  
 
Next, a few of single trial P300s corresponding to positive 
and negative P1 from only one subject selected randomly are 
illustrated in Fig. 13 and Fig. 14, respectively. The top plots 
in both figures present the averaged P300 on Cz for that 
particular subject. 

4 Discussion and conclusions 

ICA was applied to single trial P300s, and a number of BICs 
were identified, which corresponded with known peaks in the 
P300 waveform, as well as some other components. The BICs 
were sparse, i.e. they were of short duration. Their shapes are 
described qualitatively as noisy half-sinusoids. The single 
trial P300 waveform is comprised of their sum.  
 
It has been observed that there can be positive or negative 
BICs which occur at the same latency but over different trials. 
This was not only noted over trials recorded from various 
subjects, but also from recordings from the same subject. This 
trial-to-trial variation explains the variability in the averages 
of the P300 recordings as illustrated. This shows that the 
averaged P300 cannot be a sensitive biomarker, since it will 
depend upon the varying individual trial waveforms.   
 
Since the BICs vary from trial-to-trial and some BICs will be 
missing in some trials, it may not be possible to derive 
biomarkers from single trial P300s in a straight forward 
manner. It will be necessary to characterise healthy subjects 
in terms of which BICs occur and how frequently, and to seek 
differences in the BICs of the P300 in other subject groups for 
which biomarkers are required, such as Alzheimer’s patients.  
It is possible that certain BICS may be found to be more 
reliable biomarkers than the amplitude or latency of the 
commonly used P300b peak in the averaged P300. It is also 
important to explore the relationships among the BICs (inter-
dependability) obtained from the same trial, which might be 
itself a biomarker which could distinguish other subject 
groups. 
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