
 
 

 

  

 
Abstract—Epilepsy is one of the most common brain 

disorders and may result in brain dysfunction and cognitive 
disturbances. Epileptic seizures usually begin in childhood 
without being accommodated by brain damage and many 
drugs produce no brain dysfunction. In this study cognitive 
function in mild epilepsy cases is evaluated where children with 
seizures are compared to controls i.e., children with epileptic 
seizures, without brain damage and under drug control. Two 
different cognitive tasks were designed and performed by both 
the epileptic and healthy children: i) a relatively difficult math 
task and ii) Fractal observation. Under this context, we propose 
two frameworks: the first is based on time-frequency analysis 
using the continuous wavelet transform (WT) and the 
Compressed Spectral Array (CSA), and the second is based on 
Auto-Regressive Moving Average (ARMA) modeling to 
evaluate the EEG signals at rest and during cognitive tasks in 
both groups. Initially, the analytical capabilities of the 
proposed feature extraction techniques were assessed in a 
simulated environment, and finally classification of the actual 
data was performed. The results suggest that time-frequency 
analysis methods were able to capture non-stationary activity, 
whereas ARMA modeling performs better on stationary 
signals. Classification of the actual data was successful and 
both approaches reached the same level of accuracy (73.4%). 
Higher frequency bands (beta and gamma) were apparent on 
frontal-parietal lobes on both math and fractal tests, while 
alpha band was diffused across a wider frontal network, only 
during the math task. 

I. INTRODUCTION 
PILEPSY is one of the most common brain disorders 

and may result in brain dysfunction and cognitive 
disturbances. Epileptic seizures usually begin in childhood 
and evaluation as well as treatment of these children is of 
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importance. Most of the cases in childhood are not 
accommodated by brain damage and many drugs produce no 
brain dysfunction. Thus we decided to examine children 
with seizures and compare them with controls to evaluate 
cognitive function in mild epilepsy cases i.e. children with 
epileptic seizures, without brain damage and under drug 
control. Extensive work has been performed on both feature 
extraction and classification methods of EEG signals. Either 
time-varying, mean frequency or other oscillatory-based 
feature vectors are extracted using autoregressive (AR) 
models [1], Fourier power spectrum or frequency 
decomposition methods [2] capable of detecting arousal 
state changes [3]. Traditional spectral analysis techniques 
with Fourier transform and more specifically the windowed 
power spectral density estimation function, known as the 
periodogram [4], forms the most commonly used analytical 
tool for spectral representation and evaluation of activity on 
different EEG frequency bands [5][6]. An improved 
methodology is based on the time-varying spectral analysis 
that takes into account the non-stationary dynamics of the 
neuronal processes [7] The Compressed Spectral Array 
(CSA) and the wavelet transforms (WT) are representative 
analysis frameworks of this class. The first approach uses a 
sliding time window, whereas the second one forms the 
projection of the signal onto several oscillatory kernel-based 
wavelets matching different frequency bands. WT is 
typically applied with the relative bandwidth (Δf/f) held 
constant, whereas the Fourier approach preserves the 
absolute band-width (Δf) constant. 

In this study we compare the capabilities of the proposed 
feature extraction measures by initially testing their 
properties on a simulated environment and then we 
investigate their performance in real band-limited signals. 

II. METHODS 

A. Simulated signals 
To study the different properties of each of the proposed 

methods, we consider a simulated dataset consisting of four, 
4 seconds EEG signals with a sampling frequency of 512Hz.  
The activity within each signal is described in Table I. N is 
equivalent to 1s signal duration. The simulated channels are 
depicted in Fig. 1. A control set was also considered to have 
quasi-white noise in each of the four channels. 
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TABLE I 
SIMULATED DATASET 

Channel 1 N    =   alpha1 activity 
2N  =   Gaussian noise (all bands) 
N    =   Gamma1 activity 

Channel 2 4N  =   Alpha1 activity 
Channel 3 2N  =   Alpha1 activity 

2N  =   Gaussian noise (all bands) 
Channel 4 4N  =   Gaussian noise (all bands) 

B. Real Data Acquisition 
The studied population consisted of twenty mild epileptic 

subjects and twenty controls. The EEG signals in both 
groups (controls and mild epileptics) were recorded from 30 
cap electrodes (FP1, FP2, F7, F3, FZ, F4, F8, FT7, FC3, 
FCZ, FC4, FT8, T3, C3, CZ, C4, T4, TP7, CP3, CPZ, CP4, 
TP8, P3, PZ, P4, PO7, PO8, O1, OZ and O2), according to 
the 10/20 international system, referred to linked A1+A2 

electrodes. The signals were amplified using a set of Contact 
Precision Instrument amplifiers, filtered on-line with a band 
pass between 0.1 and 200 Hz, and digitized at 400 Hz. Off-
line, the recorded data were carefully reviewed for technical 
and biogenic artifacts, so that only artifact free epochs of 
eight seconds duration are investigated. The procedures used 
in the study had been previously approved by the University 
of Crete Institutional Review Board and all subjects signed a 
consent form after the nature of the procedures involved had 
been explained to them. 

C. Test Description 
Continuous EEGs were recorded in an electrically 

shielded, sound and light attenuated room while participants 
sat in a reclined chair. EEG data were visually inspected for 
artifacts and epochs of 8 sec were chosen for analysis. We 
analyzed epochs at rest i.e., while each individual had the 
eyes fixed on a small point on the computer screen and 
during two cognitive tasks. The first includes two digits 
number subtractions or two digits minus one digit, which is 
thought to be a relatively difficult mathematical task and the 
second consist of Fractal observation. Stimuli were 
presented on an LCD screen located in front of the 
participants. Vertical and horizontal eye movements and 
blinks were monitored through a bipolar montage from the 

supraorbital ridge and the lateral canthus. 

D. Compressed Spectral Array (CSA) 
The time frequency visualization method CSA [8] was 

computed for all channels in both the simulated and real 
EEG datasets. Compressed spectral array is based on FFT 
computation of power spectra on successive shifted 
windows. The spectral result is then plotted on the same axis 
with a time shift from the bottom to the top. 

The FFT used 256 points per 0.5s window, a frequency 
resolution of 2Hz, and a smoothing factor of 3. A contour 
plot of CSA is shown in Fig 3, where the power was color 
coded to a normalized maxima level. The contour plot 
shows the changes / differences in frequency content and its 
variation in time. 

Based on the CSA statistical properties of the 20 normals 
and 20 epileptics averaged on all channels spectrogram [9] 
(Fig. 2) and similar to the measures defined in [10], for the 
purpose of classification the following two features were 
defined: 

 
 ind1=(Σ CSA power delta band + Σ CSA power in theta) / 

 (Σ CSA power in Alpha 1) (1) 

ind2=(Σ CSA power alpha2 band + Σ CSA power in beta1) /  

 (Σ CSA power in Alpha 1) (2) 

E. Statistical feature extraction using the Wavelet 
Transform (SWT) 

Over the past decade the WT has developed into an 
important tool for analysis of time series that contain non-
stationary power at many different frequencies (such as the 
EEG signal), as well as a powerful feature extraction method 
[11][12]. The continuous wavelet transform (CWT) was 
preferred in this work, so that the time and scale parameters 
can be considered as continuous variables. In the CWT the 
notion of scale s is introduced as an alternative to frequency, 
leading to the so-called time-scale representation domain. 

The CWT of a discrete sequence xn with time spacing δt 
and N data points (n=0…N-1) is defined as the convolution 
of xn with consecutive scaled and translated versions of the 
wavelet function ψ0(η): 

 
Fig. 2. Average of Spectra on control (upper) and epileptics (lower) subjects 

 
Fig. 1: Simulated dataset resembling EEG activity on different frequency 
bands. 
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where η and ω0=6 indicate non-dimensional “time” and 
frequency parameters, respectively. In our application, ψ0(η) 
describes the most commonly used wavelet type for spectral 
analyses, i.e., the normalized complex Morlet wavelet given 
in (4). The wavelet function ψ0 is a normalized version of ψ 
that has unit energy at each scale, so that each scale is 
directly comparable to each other [12]. The power spectrum 
of the WT is defined by the square of coefficients (1) of the 
wavelet series as 2( )nW s . By adopting the above settings a 
smooth wavelet power diagram is constructed as in Fig. 4. 
 

 

As previously noted, there exists a concrete relationship 
between each scale and an equivalent set of Fourier 
frequencies, often known as pseudofrequencies. In this study 
the power spectra is classified in six sequential frequency 
bands that are coarsely mapped to the scales tabulated in 
Table II. 

The first stage of the feature extraction method is based 
on capturing the time-averaged power spectrum 2

tW  for 
each electrode and scale, which is computed by averaging 
the power spectrum 2( )nW s  over time: 
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Further averaging in scale is performed, in order to map a 
single feature per frequency band of interest. Thus, the 
scale-averaged power spectrum 2

sW  is defined as the 

weighted sum of the wavelet power spectrum 2( )nW s  over 

scales 
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where Cδ is a constant, scale independent factor used for the 
exact reconstruction of a δ(.) function from its wavelet 
transform (for the Morlet wavelet it equals to 0.776) [13]. 

The aforementioned steps indicate only a significant 

channel subset, based on task differentiation confidence 
intervals using Global PS measures. Either synchronization 
or de-synchronization may be detected compared to the 
control task. To further refine the features and optimize the 
classification process, we propose to isolate only those time 
segments of the EEG signal where notable activity 
differences occur from the control to the target task. The aim 
is to further map the EEG signal into a feature vector that 
best characterizes the EEG pattern of activity for the 
arithmetic task, in terms of significant temporal and spectral 
content. As we are interested in ongoing EEG activity within 
various tasks, the time localization of EEG events is of 
interest. Notice that we focus on significant (bursty and/or 
sequential) activations and not on the evolution of brain 
operation during the task. Thus, we may describe the next 
step as an attempt to crop up the most significantly different 
regions from control to mathematics activity out of the bulk 
initial signal (may be either significant power increase or 
decrease while performing the requested task compared to 
the control condition). In fact, this study proposes a way to 
achieve “crucial” EEG time-segment selection, by testing for 
significance in the wavelet time domain the “active” task 
over the control task. The control-task spectrum is defined 
as the mean time-averaged wavelet power spectrum over all 
subjects performing the control task. 
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where p is the subject index and ( )p
nW s  may be calculated 

(3) for each subject. P is the total number of participants. It 
should be noted that all EEG signals are normalized to zero 
mean and identity variance. Further rescaling and 
comparisons are performed using each subject’s actual 
signal variance, in order to include subject-specific 
information. Significant power increase is calculated using 
the 95% confidence level at each scale by multiplying the 
control task spectrum in Eq. 7 by the 95th percentile value 
for the chi-squared distributed variable χ2 with two degrees 
of freedom (DOF) χ2. This is justified because the wavelet 
power spectrum uses the Morlet wavelet in a complex 
product with the signal, so that both the squares of the real 
and imaginary parts of the result are being χ2 distributed with 
one DOF each [13]. In a similar manner, significant power 
decrease is measured using as upper power limit the 5% 
confidence level at each scale by multiplying the control 
task spectrum in Eq. 7 by the 5th  percentile value for the 
chi-squared distributed variable χ2 with two degrees of 
freedom (DOF) χ2

2. Fig. 4 depicts the WT of a simulated 
signal The significant regions over the time-scale 
transformed domain that differentiate the two tasks are 
indicated by the closed contours.  

Having derived this significant information, we are now 
able to form the so-called Significant Power Spectral 
(Significant PS) features, which are obtained from the signal 

TABLE ΙI 
FREQUENCY BANDS – SCALE SET MAPPING  

Band Frequency (Hz) Scale 

Theta (θ) 4-8 21, 22, 23, 24 

Alpha1 (α1) 8-10 20 
Alpha2 (α2) 10-13 18, 19 

Beta (β) 13-30 14, 15, 16, 17 
Gamma1 (γ1) 30-45 11, 12, 13 
Gamma2 (γ2) 45-90 7, 8, 9, 10 
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energy over those time- and band-localized regions, where 
apparent significant differentiation is indicated (contours in 
Fig. 4). For the computation of these features, Eq. (5) is 
adapted as: 
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where m is the total number of time points delimited 
between the boundaries mi and mi+1 of all significant regions 
I denoted by each contour in Fig. 4 and i is the index of each 
significant region. 

Once the scaled-averaged PS for each of the six EEG 
bands is calculated for each EEG channel and task, we have 
a total of 180 (6x30) feature vectors per task (class), 
representing each participant (subject), which is actually the 
time-scale averaged PS. 

F. Auto-Regressive Moving Average (ARMA) 
This analysis is based on parametric modeling of the EEG 

signals. In particular, an Auto-Regressive Moving Average 
(ARMA) model [15] was used to model the EEG signals 
recorded at particular electrodes on the scalp. The ARMA 
(m,n) model for an EEG signal y at time t can be defined as: 

 ( ) ( )

1 1

m n
j k

t t t j t t k t
j k

y a y b e e− −
= =

= − + +∑ ∑  (9) 

where ( )j
ta  and ( )k

tb  are the AR and MA parameters at time 
instant t respectively and e is a white noise Gaussian process 
representing the observation error.  

Let tθ  be the vector of ARMA parameters and tψ be the 
regression vector made up of the m past signal values and 
the n past observation error values: 

 (1) ( ) (1) ( )[ , , , , , ]m n
t t t t ta a b bθ = − −… …  (10) 

 1 1[ , , , , , ]t t t m t t ny y e eψ − − − −= … …  (11) 

The ARMA model in (9) can then be re-written as: 
 T

t t t ty eψ θ= +  (12) 

If random walk is allowed, the update of the parameter 
vector can be defined as: 

 1t t tθ θ ω+ = +  (13) 

where tω  is a normally distributed white noise process with 
zero mean and covariance matrix Q. The set of equations 
(12) and (13) represent the structure of a general state-space 
formulation where the model parameters tθ  are also 
referred to as the states of the system. A Kalman smoother 
[15] was then used to find an optimal estimate of the time-
varying model parameter vector tθ . The advantage of using 

a smoother is that since data is not being processed in real 
time, future measurements can be used to find a more 
accurate estimate of the system parameters at time t. 

Once an estimate of the ARMA parameters ( )j
ta  and ( )k

tb  
is available, the poles and zeros of the system can be found 
by finding the roots of the denominator and numerator of 
H(z) respectively, where H(z) is the transfer function of the 
model obtained by taking the Z-transform of (9): 
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These poles and zeros can then be used as features for 
classifying between epileptics and controls. In particular 
three sets of feature vectors were considered: 

• Frequency and/or Magnitude of the whole set of 
poles and zeros. 
• Frequency and/or Magnitude of poles only. 
• Frequency and/or Magnitude of zeros only. 

These feature vectors were extracted for signals recorded at 
each individual channel and using the statistical tool 
ANOVA (section G), the feature vector from specific 
channels resulting in the most significant difference between 
epileptics and controls was used in the classification stage. 

G. Feature Selection 
This study proposes a statistical method for mining the 

most significant lobes, resembling the way many clinical 
neuro-physiological studies evaluate the brain activation 
patterns. Normality of the log-transformed PS is tested using 
the D'Agostino-Pearson test [16]. Since normality was met 
and two classes are being discriminated (test vs. control) t-
test or analysis of variance (ANOVA) is the ideal test to use. 
Greenhouse-Geisser-corrected degrees of freedom are used 
on data that do not meet the sphericity assumption. For those 
bands where the significance criterion (p<0.05) is fulfilled, 
follow-up post-hoc tests for each channel are performed to 
accentuate the best candidates to keep as features, which 
resemble the most significant channels in terms of activity.  

H. Classification 
A Linear discriminant classifier (LDC) and a quadratic 

discriminant classifier (QDC) were used to classify between 
epileptics and controls. Table III shows the percentage of the 
correct classification using the leave-one-out scheme for 
each of the three classes considered (control, math, fractals). 

III. RESULTS 

A. Testing using the simulated signals 
In order to assess the performance of the features obtained 

by CSA, SWT and ARMA modeling, these methods were 
applied on the simulated signals shown in Table I.  
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1) CSA (Fig. 3) 
The CSA method was applied, as described in section IID, 

to the simulated data resulting in the plots shown in Figure 
3.  These plots show that CSA was able to capture the α1 
activity in the first quarter of the signal of Channel 1, 
although some spectral leakage to nearby bands could be 
observed. The γ1 activity in this channel was not captured. 
CSA was able to detect the present α1 activity in both 
Channels 2 and 3 within the correct time periods, while no 
activity was detected in Channel 4, which consisted only of 
random noise. 

2) SWT (Fig. 4) 
Similarly, SWT was applied, as described in section IIE, to 

the simulated data resulting in the time-frequency plots 
shown in Figure 4.  The correct activity was detected for 
Channels 1, 2 and 3; however, some false random activity 
was captured in Channel 4.  
3) ARMA (Fig. 5) 

The ARMA model described in section IIF was applied to 
each simulated channel by dividing the signals into 0.8s 
windows overlapped by 50%. The optimum ARMA order 
was found using AIC [17] in the range of orders between 2 
and 20. The estimated ARMA parameters at the end of each 
window found by the Kalman smoother were converted into 
the signal’s poles and zeros, which were then used to 
generate the frequency spectrum (see Fig 5a for an 
example). 

Figure 5b shows the frequency content of the signal in 
each window, extracted from the ARMA modeled frequency 
spectrum. The simulated activity was detected correctly in 
most time windows, except for some intervals which were 
misclassified because the signal within that interval was 
non-stationary., as can be observed in Channel 3 in the 
interval between 0.8s and 1.0s. 

B. Actual EEG data 
These three methods were then applied to the real EEG 

data described in section IIC giving the classification scores 
in Table III. The feature vector extracted from CSA was 

ind1+ind2. SWT indicated both significant bands and 
channels (Table III). For ARMA modeling, the EEG signal 
at each electrode was modeled by an ARMA (m,n) model 
where m and n were set to 2 and 3, respectively. This choice 
of model order was based on the mode of the optimal orders 
given by AIC when applied across all channels. Since 
subjects were performing a particular task, a stationary 
signal was assumed and the model was applied to the whole 
signal time period. Using ANOVA, it was found that the 

 

 
Fig. 4. Activity captured on the simulated dataset using the SWT method. 
Significant activity is indicated as closed contours. (The y-axis represents 
frequency in Hz and the x-axis represents time in seconds). 
 

 
Fig. 5a. Frequency spectrum for simulated Channel 1, Window 1 
showing expected alpha activity. 

 
Fig. 5b. Activity captured on the simulated dataset using the ARMA 
method. Red and blue regions represent alpha and gamma activity, 
respectively. 
 

 
Fig. 3. Activity captured on the simulated dataset using the CSA method 
(The x-axis represents frequency in Hz and the y-axis represents time in 
seconds). 
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feature vector made up only of the magnitude of the zeros 
gave a significant difference between the two subject groups 
(with p<0.01). Table III shows the classification results for 
the channels with the lowest p-value. 

IV. DISCUSSION 
Using CSA, in the simulated environment it was shown 

that the indicator made up of a combination of bands 
managed to satisfactorily extract the activity present within 
each channel.  The indicator was found to have a higher 
value for control subjects when compared to epileptics. This 
was true for both the simulated and real EEG data. For the 
simulated dataset, the indicator representing the alpha 
activity was smaller for channel 2 which was made up of 4N 
alpha activity than for channel 1 having only 1N alpha 
activity. For the real dataset, different individuals resulted in 
different indicators which overlap, making the classes not 
completely separable. 

The SWT method was found to have good time-frequency 
resolution and it gave reasonable classification results which 
compare well with the other approaches. 

The results of the simulated data modeled by the ARMA 
filter showed that the underlying activity could be well 
represented by the model poles and zeros. However, the 
ARMA features are sensitive to the non-stationarity of the 
signal. Appling the ARMA model to the real EEG data by 
using the vector of magnitudes of the zeros, the two subject 
groups were correctly classified with a classification score 
of up to 73.4%.  

The three approaches analyzed in this paper have all 
provided suitable biomarkers that distinguish between 
children with mild epilepsy and controls. The classification 
results obtained from all three methods are satisfactory, 
considering that no a-priori information was provided.  
When applied to the real EEG dataset, the added value of 
SWT approach was the ability to provide both channel and 
frequency information as compared to the ARMA approach, 
which provided only channel information and the CSA 
approach, which provided no band or channel information 
whatsoever. Although, the classification scores for all three 
approaches were comparable, the ARMA approach gave the 

highest overall scores. Better performance may possibly be 
achieved by adopting other classifiers and by fusing the 
information from the different approaches. 
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TABLE ΙII 
CLASSIFICATION RESULTS: SWT SUGGESTS SIGNIFICANT  BANDS AND CHANNELS,  

ARMA SUGGESTS SIGNIFICANT CHANNELS ONLY (COMBINED BANDS) & CSA MAKES NO BAND OR CHANNEL DISTINCTION  

 Feature Type Alpha (α) Beta (β) Gamma1 (γ1) Gamma2 (γ2) Classification 
 Score 

SWT (PS) - - FP1 - 67.5 % (QDC) 

ARMA (zeros) FC3 72.5 % (LDC) 

C
on

tr
ol

 
(R

es
t) 

CSA (ind1+ind2) Combination of bands All channels were included 
 

72.5 % (LDC) 

SWT (PS) FP1 FP2 F3 C3 Fz FP1 FP1 FP1 72.5 % (QDC) 
ARMA (zeros) F3 FC3 C3 CP3 FCz CPz FC4 73.4 % (LDC) 

M
at

h 
te

st
 

CSA (ind1+ind2) Combination of bands All channels were included 
 

67.5 % (LDC) 

SWT (PS) - FP2 FP1 FP2 FP1 FP2 65.0 % (LDC) 
ARMA (zeros) TP7 65.0 % (LDC) 

Fr
ac

ta
l 

te
st

 

CSA (ind1+ind2) Combination of bands All channels were included 
 

65.0 % (LDC) 
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