Preterm labour is defined as the onset of labour before 259 days of gestation or 37 completed weeks.

When diagnosing a case of preterm labour, problems arise because of the difficulty in defining established labour before 259 days of labour. Labour is usually heralded by the onset of regular uterine contractions which produce effective cervical dilatation. Premature births account for a large fraction of perinatal mortality and morbidity. Despite major advances in neonatal care, 50 % of patients who present with premature birth is imminent, and 50% or more of patients who present with regular contractions will respond to simple bed rest.

It is often difficult to determine if premature birth is imminent, and 50% or more of patients who present with regular contractions will respond to simple bed rest. If this fails, a tocolytic may be administered. The desire to prolong intrauterine development must be balanced against the risks of continuing the pregnancy, for both the mother and the foetus. One must also consider the risks of pharmacological intervention in the particular patient.

In general, the use of tocolytic agents is reserved for those pregnancies where the gestational age is greater than 20 and less than 34 weeks. At more advanced gestational ages, definite evidence of foetal immaturity should be sought. When the decision to use a tocolytic agent is taken, therapeutic success is most likely if cervical dilatation is less than 4 cm and cervical effacement less than 50%.

Definite contra-indications include eclampsia or sever pre-eclampsia, premature detachment of the placenta, foetal distress and overt chorioamnionitis.

Various drugs have been used in order to suppress uterine contractions including intravenous ethanol. However, since it was shown that uterine relaxation is a sympathetic receptor function, pharmacological manipulation of the synaptic junction has been successfully attempted.

β_2 Adrenergic Agonists

These agents are preferred for the treatment of premature labour. Currently, only ritodrine is approved for this purpose in the USA. Ritodrine hydrochloride is available in a solution (10mg/ml) for IV administration and in 10mg tablet preparations. Treatment is initiated by the intravenous infusion of a solution of ritodrine (0.3mg/ml) at the rate of 0.1mg per minute. If tolerated, the dose is gradually increased (0.05mg per min. every 10 mins.) to a maximum of 0.35mg per min. or until labour is controlled. Once contractions cease, the infusion is usually continued for up to 12 hours at the rate attained. Oral therapy is begun 30 minutes before termination of the infusion by the administration of 10mg every 2 hours for the first 24 hours, followed by 10mg to 20mg every 4 to 6 hours. The total daily dose should not exceed 120mg. A number of other selective β_2 agonists have been used in preterm labour, and include salbutamol, terbutaline, fenoterol and orciprenaline.

No tissue in the body is either strictly β_1 or β_2, but the relative receptor concentrations vary in the various organs. Selective beta-agonist therapy is therefore associated with both β_1 and β_2 side-effects, of which probably the most important are the cardiac side-effects. The pulse rate of the patient is the usual dose-limiting side-effect of treatment.

With β_2-agonist use in preterm labour there is a consistent rise in cardiac output, which reaches its highest value at 40 minutes from the initiation of therapy (56% over the control). To this, one must remember that the cardiac output naturally rises in normal pregnancies, reaching the highest value by the first trimester. This rise is mostly due to a rise in the stroke volume as opposed to the increase in pulse rate mediated by β-agonists.

The systolic blood pressure rises by about 12% during treatment with β_2-agonists while the diastolic pressure is decreased by about 10%. The result is a raised pulse pressure while the mean arterial blood pressure remains stable.

There are a number of situations where it is considered unwise to use β-agonists in the management of preterm labour:

1. Hyperthyroidism is considered to be a hyper-beta-adrenergic activity state. Theoretically a patient with this disease could be pushed into thyroid storm.
2. The patient with insulin-dependent diabetes mellitus; the risks to the patient with non-insulin dependent diabetes mellitus are far less.
5. The hypertensive patient.
6. Monoamine oxidase inhibitors will modify the dosage of β-agonists used for uterine relaxation.
7. Chronic medical disease may result in placental insufficiency thereby contra-indicating prolongation of the pregnancy.

Maternal Side Effects

Many patients experience nausea and vomiting which may be central or secondary to an effect on the gastrointestinal tract (decreased motility). Other phenomena reported are allergic dermatitis, effects on the bladder detrusor reflex, and thrombocytopenia secondary to the effect on platelet adenylate cyclase activity. With use, β-agonists cause a decrease in the number of β-adrenergic receptor sites leading to tachyphylaxis.

The most dramatic complications of β-agonist therapy in the suppression of preterm labour which have been reported are pulmonary oedema (even fatal and especially associated with the use of fenoterol) and hyperglycaemia which may lead to diabetic ketoacidosis.

Pulmonary oedema has been reported from single case reports and were associated with sudden stopping of the drug postpartum without the appropriate weaning and the concurrent use of corticosteroids. At least two maternal deaths have been reported. One had an underlying viral myocarditis and the other congenital Dardiomypathy. Patients with pulmonary hypertension or obstruction to the left ventricular outflow, such as with hypertrophic subaortic stenosis, could be at particular risk as the cardiac output increases. The use of electrocardiograms in pregnant women about to be embarked on β-agonist therapy is strongly recommended in an effort to identify those at risk. Furthermore, total fluid intake should be restricted to less than 2 litres over 24 hours as overhydration will increase the chances of pulmonary oedema.

β-agonists cause hyperglycaemia by phosphorylation of liver glycoenerolytic enzymes and cause hyperinsulaemia by a direct stimulation on the pancreatic islet cell. This can be enough to cause diabetic ketoacidosis in an insulin-dependent diabetic. The concurrent use of corticosteroids will exaggerate the hyperglycaemia in the diabetic. However, with careful blood glucose monitoring during I.V. ritodrine therapy and appropriate exogenous insulin, euglycaemia can be maintained.

Hypokalaemia has also been shown to occur due to a concomitant influx of potassium into the cell because of insulin-dependent glucose movement and as a direct effect on the Na⁺-K⁺ pump. Correction of the hypokalemia occurs rapidly on stopping the transfusion.

As a result of β-stimulated lipolysis there is a mobilisation of free fatty acids in the blood and glycerol as well. These are metabolised to acetoacetic CoA, which in turn is converted to aceto-acetic acid, β-hydroxybutyric acid and acetone. The presence of these ketone bodies in the blood stream will lead to acidosis.

Foetal Side-effects

Foetal tachycardia, acidosis and hyperglycaemia also occur as a result of β-agonists. Changes in foetal heart rate are inconsistent, occur later and return sooner to baseline than those of the mother. Foetal pH may decrease as a result of placental passage of fixed organic acids. Foetal hyperglycaemia results from maternal hyperglycaemia and as a result of a direct effect on the foetal liver. β-

agonists also have a positive effect on lung maturation producing a synergistic action with corticosteroids, if these are employed.

In conclusions, it is important to remember that although β-agonists can delay delivery for at least 24 hours and slightly reduce the proportion of preterm deliveries, they do not reduce the incidence of low birthweight or perinatal mortality.

Other Tocolytic Agents

Magnesium sulphate in doses higher than those used to treat pre-eclampsia, and ethanol (a 10% solution at a rate of 7.5mg/hr for 25 hours and 1.5mg/hr for a maximum of another eight hours) are effective alternatives. Most of the expertise in the use of magnesium sulphate, as for its use in pre-eclampsia, is in North America. The side-effects of ethanol have made it obsolete with the availability of better drugs.

Calcium channel antagonists are known to relax the myometrium in vitro and to inhibit markedly the amplitude (but not the frequency) of oxytocin-induced contractions. One such agent, nifedipine, appears to be effective in delaying parturition by 4 to 27 days. However, the available date are limited and the potential usefulness of nifedipine or related agents cannot be estimated at this time.

Inhibitors of prostaglandin synthesis, such as indomethacin, can prolong gestation in both term and preterm pregnancies, but their use in the management of premature labour has been curtailed because of concern in their potential to cause adverse effects in the foetus. Of particular importance is the possibility of premature closure of the ductus arteriosus and the development of pulmonary hypertention. This class of drugs may be much less hazardous if employed for brief periods at earlier gestational ages when there is less possibility of premature closure of the ductus.
The latest innovative approach is an oxytocin inhibitor introduced by Dr. Akerlund in a pilot study in November 1987. The preparation is an analogue of oxytocin which acts as a competitive inhibitor of the action of oxytocin on the uterus. The greatest advantage of this approach is the absence of side-effects and if proven to be equally effective as beta-agonists, would obviously make it the drug of choice.

References

ERRATA CORRIGE

Issue No 13, Autumn '89

Pg 2 Fig. 2 'Terminals (eg In GP rooms/wards)' to read ' ... in GP rooms ...
Pg 5 Col. 1 line 18 'tests' to read 'test'
Col. 3 line 12 'erythrocytes' to read 'erythrocyte'
Col. 3 line 46 '1 Gm' to read '1Gm'
Pg 26 Table 2 'Familiar hyperlipidaemia' to read 'Familial hyperlipidaemia'
Pg 31 Fig 4 'a tipetide: ygl - cys - gly' to read 'a tipetide: glu - cys - gly'
Pg 32 Table 2 'asthenia' to read 'asthenia'
'Diarrrhea' to read 'diarrhoea'
Pg 36 Col. 3 line 23 'AT' to read anti-tetanus toxoid
'ATG' to read anti-tetanus globulin

GUIDLINES FOR AUTHORS

Authors are encouraged to submit material for publication in Medi-Scope hoping that the work is original and is not intended for publication elsewhere. All authors must give signed consent to publication. The Editor retains the customary right to style and, if necessary, to shorten material accepted for publication.

Acceptable material includes review articles, reports of studies (mostly those carried out in Malta), case presentations, aides memories for students, articles on practical subjects not usually well discussed in standard textbooks and quiz material. Manuscripts should not be lengthy: one may consider that three typewritten pages on A4 sized paper, with one inch margin on either side and double spacing will occupy one page in the journal.

The number of authors should be kept to one or two: further acknowledgements can be added to the text. The author's appointments and qualifications at the time of writing the article should be given and the Editor informed of any change of appointment. It should be made clear on the manuscript which author is responsible for correcting gally proofs and answering queries and correspondence. His/her address and telephone number must be stated. Proof corrections must be kept to a minimum; sizeable alterations should be discussed with the Editor.

A summary of about 80 words should precede the article giving the main argument of findings. The manuscript submitted must be typed with double spacing and one inch margin on either side of the text. Articles should be typed on only one side of the paper; sheets should be numbered and the end of the article denoted by a double line. Authors are strongly advised to keep a copy. Acceptance of material sent for publication is at the sole discretion of the Board.

Drugs should be given their approved name. Abbreviations may be used provided that they signify clearly is expressed at least once, on their first appearance in the article. Scientific measurements should be given in SI units with traditional units in parenthesis if necessary.

References:

References should be limited to approximately half a dozen. They should be in alphabetical order of the Authors' names and should conform to the following style:

Articles in Journals:

- Authors' names and initials; year of publication: title of article; Editor of book; title of book; publisher; place of publication; first and last page numbers e.g.:

ERRATA CORRIGE

Author's names and initials; year of publication: title of article; Editor of book; title of book; publisher; place of publication; first and last page numbers e.g.:

Books:

Authors' names and initials; year of publication; title of book; publisher; place of publication; pages of reference e.g.:

Illustrations:

Tables, illustrations and graphs should be submitted on separate sheets of paper from the text proper. A reference must be made clear and highlighted in the text. Each should be accompanied by a caption. Graphs must contain all the relevant information including properly labelled axes. Line drawings and rough sketches may also be supplied. Photographs are most useful in the form of prints rather than slides. The top left hand corner should be marked. Patients shown in photographs should have their identity concealed or should give their written consent to publication. Photographic material will only be returned to the authors if specifically requested in writing on submission of manuscripts. If any tables or illustrations submitted have been published elsewhere, written consent to reproduction should be obtained by the author from the copyright holder (usually the publisher) and the authors.

Letters:

Letters to the Editors are welcome, particularly those which take up points from material published in the journal. They should not normally exceed one type-written page in length and may include an illustration or table.

The Editorial Board would like to take this opportunity to thank all those who help in the development of each issue of Medi-Scope as well as those who by their kind words, constructive criticism and suggestions are helping in making this a fine journal. The Board will be pleased to discuss any problem or difficulties as may arise in connection with Medi-Scope.

List of Journals Indexed - printed in the Index Medicus.

ERRATA CORRIGE