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Abstract  

 
The Church of Santa Maria is one of the finest examples of seventeenth century heritage 

monuments in the Maltese archipelago. The provenance of limestone used in the restoration 

works is different from the original heritage fabric.  It is obtained from a quarry located 5.2 
km south of the church whilst the original source of the limestone, according to tradition, is 

from an area 2.2 km north of the monument. This petrological study concludes that although 

both extracted from the same geological formation, there are physical, textural, geochemical 
and mineralogical differences even over a distance of 7.4 km. The limestone used in 

replacement is more resistance in terms of compressive strength and is less porous. Although 

having same principal non-carbonate oxides, the quantitative variations in the geochemistry 
and the mineralogy are indicative of qualitative differences between the two lithotypes; they 

are diagnostic indicators of the provenance of the limestone. 
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Introduction  

 

Birkirkara is the largest settlement in mainland Malta. The Church of Santa Maria, 

locally referred to as the Old Church, (UTM coordinates: 14.46367, 35.89624; WGS84 

coordinates: 14.46302, 35.89503), is the former parish church of the town and an outstanding 

example of ecclesiastical early Baroque architecture of Malta (Fig. 1, left). It was designed in 

circa 1600 by Vittorio Cassar, the son of the architect who was responsible for the design of the 

Conventual Church of the Knights of the Order of St John in the capital Valletta. Its 

construction spanned over six decades. Although the interior of the church is richly carved and 

decorated, the exterior is plain except for the elevation of the main entrance which recalls the 

Church of Santi Spiritus at Salamanca and the Pellejeria door of Burgos Cathedral, both in 

Spain [1]. This elevation, introduced by Tommaso Dingli in 1617, is the finest part of the 

building. It is influenced by the retrograde Renaissance style of the sixteenth century executed 

in Vitruvian language. Once the new parish of Birkirkara was completed in 1745, the Church of 

Santa Maria was allowed to fall in to disrepair and, until restoration commenced in 1969, was a 

partial ruin. Although more than three and a half centuries had lapsed, the original carvings on 
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the elevation have weathered well and the acanthus capitals are crisp and sharp (Fig. 1, right). It 

is entirely constructed of Lower Globigerina Limestone, the oldest stratigraphy of the 

Globigerina formation, a Miocene carbonate sedimentary limestone of shallow marine origin.  

 

  
 

Fig. 1. The Church of Santa Maria; the location of the springer which is covered by 

this study is indicated in red (left) and a well weathered acanthus capital (right) 

 

The selection of dimension stone is critical in the preservation and restoration of built 

heritage [2-4]. During the period of the Knights of St John (1530-1798) the selection of 

limestone was not just restricted by availability and suitable technology but also by the 

designated properties required [5].  

 

 
Fig. 2. Site location map (left) and position of C samples from the original, replaced springer (right) 

 

An important consideration in heritage buildings is the provenance of limestone used in 

their erection [6-9]. Although the exact location of the historic quarry used to supply the 

limestone for the construction of the church is not known, according to tradition it was located 

in the limits of Tal-Balal (UTM coordinates: 14.46363, 35.91616; WGS84 coordinates: 

14.46298, 35.91496), 2.2 km north (Fig. 2, left). At the time of the restoration works undertaken 

in the 1990s, quarrying areas extracting the Lower Globigerina Limestone in Malta were at Tal-

Balal and Mqabba [10]. Instead of utilizing limestone from the former, the latter was selected to 
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replace the deteriorated heritage fabric as it was the best quality limestone on the market at the 

time. This paper is based on a study of the characteristics of this limestone. A spectrum of 

analytical tests was undertaken to establish the properties of the original building fabric. 

 

Materials and methods 

 

The limestone used in the construction of the church represented the building stone 

available at the time. The original weathered stone is considerably harder; it had withstood the 

elements and the number of dimension stones requiring replacement was minimal. The areas 

most affected are the lower courses up to circa 1.8 metres above present ground level, the area 

prone to rising damp. The professionals involved in the restoration works selected Piccolo 

Fewda quarry located on the outskirts of Mqabba (UTM coordinates: 14.47091, 35.84992; 

WGS84 coordinates: 14.47026, 35.84871), 5.2 km south of the church (Fig. 2, left).  

The samples analyzed are listed in Table 1. The church samples are derived from a 

replaced springer (Fig. 1, left and Fig. 2, right). In the opinion of the author, the only reason 

which justified its replacement was aesthetical compatibility with the surrounding fabric 

because, otherwise, the limestone seemed structurally sound. The samples from the quarry were 

identified by its owner Salvu Bondin, the third generation working in the industry and former 

president of the quarry association (of Malta). He had been involved in the mineral extractive 

industry for circa six and a half decades. No details regarding the horizons of these samples 

were unavailable. 

 

Table 1. Sample descriptions 

 

Source Code Description of sample  

Church C1 Springer stone, undeteriorated surface 

Church C2 Springer stone, deteriorated surface 

Quarry Q1 Limestone referred by quarry owner as ‘first’ quality; it is the limestone used in the 

restoration work 

Quarry Q2 Limestone referred by quarry owner as identical to Q1 but seasoned for 12 years 

Quarry Q3 Limestone referred by quarry owner as ‘second’ quality. According to him this 

limestone, which contains a lot of glass fragments, is suitable for dimension stone 

provided that it is used at least 2 courses (circa 60cm) above the damp 

proof course.  

 

The petrographical characterization of the samples was established through 

petrophysical, textural, geochemical and mineralogical analysis. The physical properties 

assessed were apparent density, uniaxial compressive strength (Avery-Denison model) and 

ultrasonic pulse velocity (PUNDIT model). Tests were undertaken on oven dried (temperature 

105
+
/-5

o
C) and saturated (fully submerged for 24 hours) samples. In case of sample C1, a cube 

measuring 40x40x40mm could only be secured; C2 was fragile and broke up during sample 

preparation. Correlation exists between uniaxial compressive strength and ultrasonic pulse 

velocity [11].  

Petrographical microscopy, scanning electron microscopy (Hitachi S-520 model), and 

mercury intrusion porosimetry (Quantachrome SP-33B) were used to obtain information on the 

texture. The scanning electron microscope was equipped with energy dispersive analyser. Thin 

section analysis was carried out to study the cement fabric, porosity and permeability. All 
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sections were impregnated with dyed blue araldite so that the pore structure could be easily 

observed. Scanning electron microscopy was used to study the texture, the cementing fabric, the 

microphotograph pores, and the non-carbonate fraction remaining on the filter paper [12-13]. 

Mercury intrusion porosimeter was used to obtain a quantitative classification of the pores. 

Porosimetry reflects the proportion of voids contained; information is not planar but volumetric. 

In calculating the pore number fraction, pores were assumed to be cylindrical and equal in 

length. 

Chemical analysis was determined through loss-on-ignition and x-ray fluorescence 

analysis. Loss on ignition is the traditional analytical chemical method to estimate the organic 

and carbonate content of sediments [14]. An ARL 8420+ X-ray fluorescence spectrometer was 

used on pressed powder pellets to determine the bulk chemistry [15]. The mineralogical 

techniques employed were acid insoluble residue and x-ray diffraction. The former was used to 

quantitatively estimate the non-carbonate fraction. X-ray diffraction (Philips PW1729 X-ray 

generator) analysis was performed on this fraction to establish the mineralogical composition of 

the residue. Through the analysis of the filter paper containing the acid insoluble residue, the 

non-carbonate constituents were identified. X-ray diffraction was also used to determine the 

mineralogy of whole rock powder and of its clay fraction. A semi-quantitative data of each 

mineral present is given by its respective relative intensity. Oriented mount technique was used 

for the clay fraction since the d001 peaks are enhanced [16]. 

 

Results and Discussions 

 

Petrophysical characteristics 

The variation between the apparent density (oven dried and saturated) of the C sample 

and the Q samples is minimal (Table 2). The compressive strength (oven dried and saturated) 

and the USPV (perpendicular and parallel to the bedding plan) for the church sample are lower 

than those of the quarry. The difference between first quality, seasoned lithotype, and the 

second quality limestone was minimal. Same holds for USPV.  

The uniaxial compressive strength for the C and Q samples at 17.1N/mm
2
 and at an 

average of 26.5N/mm
2
 respectively falls in the 15 to 37.5N/mm

2
 range stated in national 

structural handbook [17]. A comprehensive study undertaken in the late nineteenth century on 

the resistance of local stone to thrusting stress [18] included 10 samples from Ta` Marozz 

quarry, at Tal-Balal, which registered an average crushing strength of 17.98N/mm
2
. Although 

not a criterion for limestone quality assessment, this is closer to the compressive strength of the 

church sample.  

 

Table 2. Physical properties 

 

Code Apparent Density (kg/m3) Compressive strength (N/mm2) USPV (km/s) 

 oven dried saturated oven dried saturated perpendicular Parallel 

C1 1717.70 1939.07 17.12 10.78 2.62 2.68 

C2 n.a. n.a. n.a. n.a. n.a. n.a. 

Q1 1725.06 1992.13 29.52 18.59 3.09 3.00 

Q2 1692.93 1955.13 24.84 15.22 3.01 2.88 

Q3 1799.01 2021.20 25.04 14.72 3.00 2.96 

n.d.: not available. 
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Textural characteristics 

Porosity in all samples is intra and inter-particle type. In the undeteriorated church 

sample C1, the rock matrix is unevenly distributed biomicrite. Burrows, 1 to 1.5 mm diameter, 

cut irregularly across the fabric. Burrow infill is wackestone. Bio-retexturing introduces 

unlithified sediment of variable permeability in the host rock [19]. Most allochems are 

cemented by fine grained sparry calcite which imperfectly fills the inter particle voids (Fig. 3, 

left). There are numerous randomly distributed 20 μm diameter intra-particle pores. Ill defined 

area of high permeability is present away from the burrows and within the host rock. Grain 

packing in these areas is about the same as in the lower permeability areas but generally is 

lacking micrite and spar cement. Principal components are planktonic (maximum 160 μm 

diameter) and sparse bentonic foraminifera. Rare echinoid fragments are also present. 

Intermediate bioclasts comprise about 50% of the allochems. Undamaged allochems have 

unfilled chambers. Quartz, glauconite and some iron oxide are also present. Glauconite and 

oxide grain boundaries are ill defined. These minerals have started to break down. Staining of 

the fabric is present. Some of the non-carbonate oxides were captured through 

microphotographing the insoluble residue retained on the filter paper (Fig. 3, right). 

 

  
 

Fig. 3. Scanning electron images of sample C1 showing the mechanical interlocking and pores filled with cement (left) 

and non-carbonate fraction (A: feldspar, B: quartz) of the insoluble residue retained on the filter paper (right) 

 

C2 is packed biomicrite with over 50% allochems. A burrow, mean diameter of about 

1.25 mm, cut across the matrix. Sparse micrite forms burrow infill. Allochems are cemented by 

fine-grained spary calcite. Effective porosity along grain boundaries is more predominant in the 

host rock then in the burrow infill. Principal components include undamaged globigerinoids 

(25%), shell fragments, and various randomly distributed mafic minerals. Rounded glauconite 

grains and elongated monocrystalline quartz grains are less than 50 μm and 80 μm respectively. 

Rounded quartz grains are also present. Staining of some grains by weathering iron oxide/s or 

iron oxide/s in solution is/are present. Weathering and staining of a secondary green/grey 

mineral is also present. It is likely to be glauconite breaking down. Stains are unidirectional and 

perpendicular to bedding.  

The fabric of the Q samples is well-sorted intrabiosparite wackestone (Fig. 4). 

Allochems are cemented with sparry calcite. Such calcite is present on the inside rims of 

unbroken, unfilled allochem chambers (Fig. 4). Random, 10 μm diameter, intraparticle voids 

occur in the sparry calcite. A few 150 μm diameter impregnated pores are also present. 
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Foraminifera make up most of the host rock. Undamaged, unfilled globigerina chambers, mean 

diameter of 50 μm, comprise a quarter of the sediment. Quartz and feldspar are present, the 

former accounting for the glass fragments which the quarry owner had made reference to. The 

main constituents of lithotype Q3 are unbroken, unfilled, allochems (25%), fossil fragments 

(maximum size 7.1 mm), monocrystalline quartz, feldspar, glauconite and iron oxide. Quartz 

grains, occasionally present in clusters, are 70 μm and angularly shaped. Maximum size of 

feldspar is 55 μm. Glauconite grains, 150 μm in diameter, are not breaking down. Staining is 

present where clusters of iron oxide minerals are breaking down. Occasional staining by iron 

oxide in solution is present.  

 

  
Fig. 4. Thin section of Lower Globigerina Limestone in plane polarized light (left) and crossed polars (right) showing 

the foraminiferal wackestone predominately consisting of globigerina grains and echinoid fragments 

 

Mercury intrusion porosimetry establish the volumes and radii of pores within the fabric 

[20-21]. The raw intruded volume obtained was normalised by dividing the volume of mercury 

by the weight of the sample. The interpolated volume for each sample analysed is given in 

Table 3. The samples from the church and the first quality quarry stone have higher volume of 

pores whilst the second quality limestone is about 20% less. The distribution of the pores in the 

C sample and the Q samples indicates petrographical variation indicative of the provenance of 

the limestone.  

 

Table 3. Interpolated mercury intrusion pore diameter 

Code Volume of pores (cm3/g) Total (cm3/g) 

 Pore radius  

 > 40000Å 40-40000Å < 40Å  

C1 0.0091 0.1120 0.0005 0.1216 

C2     

Q1 0.0073 0.1000 0.0003 0.1076 

Q2 0.0014 0.1133 0.0001 0.1148 

Q3 0.0011 0.0889 0.0006 0.0906 

 

 

Geochemistry and mineralogical characteristics 

The geochemical composition of the C samples varies from the Q samples (Table 4). For 

the scope of accuracy and precision of the data retrieved, values are given to three decimal 

places. Second quality limestone has higher non-carbonate content than first quality Q samples 

and a carbonate content equivalent to the C samples. The main non-carbonate fraction in all 

samples is SiO2; the mean in the C samples is 4.96% whilst the second quality Q2 sample, at 

6.4%, is twice the first quality stone (Fig. 5). The C samples registered lowest Al203 and highest 
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MgO contents. Variation may be due to change in allochem mineralogy [22]. Fe2O3 is similar in 

all samples except for the second quality one which is about 250% higher. K2O is higher in the 

Q than the C samples with the second quality having twice the first. The variation of the P2O5 

and TiO2 is similar to SiO2 and K2O respectively with the latter being 200% higher in the 

second quality limestone. Na20 is circa 0.05+/-0.01% except for the freshly quarried stone 

which is negligible. MnO is present in traces of 0.031+/-0.01% in the C samples but absent in 

the Q samples. 

 

Table 4. X-ray fluorescence analysis. 

Code CaO SiO2 Al2O3 MgO Fe2O3 K2O P2O5 TiO2 Na2O MnO LOI 

C1 50.079 4.945 0.678 1.154 0.343 0.246 0.238 0.087 0.062 0.030 42.517 

C2 49.943 4.749 0.620 1.158 0.333 0.265 0.236 0.085 0.041 0.032 42.453 

Q1 52.860 3.280 0.970 0.840 0.360 0.289 0.123 0.090 <LOD 0.000 42.474 

Q2 52.490 3.060 0.910 0.850 0.310 0.259 0.148 0.080 0.050 0.000 42.643 

Q3 50.140 6.380 1.570 0.910 0.910 0.525 0.294 0.180 0.010 0.000 40.398 

Totals for each of the samples analysed for the quarry was in the region of 100+1%. 

 

X-ray diffraction analysis of the whole rock recorded the presence of quartz in all C and 

Q samples (Table 5). The mineralogy of the insoluble residue is mainly quartz and K-feldspar. 

Muscovite, kaolinite, illite and smectite were detected. The second quality limestone contains 

goethite. This mineral occurs as weathering product of iron bearing minerals such as pyrite and 

is usually formed under oxidising conditions. It is one of the hydroxides and oxides of iron 

grouped as limonite. The mineralogy of the clay fraction of all samples is kaolinite, illite, 

smectite, quartz and K-feldspar. Smectite and illite are structurally related to micas. Most of the 

inter layer water of smectites is lost on heating to 335
o
C. Illite differs from muscovite in having 

less potassium and more silica [23]. Illite can form during diagenesis by alteration of other clay 

species or be the result of post depositional weathering of muscovite and silicates, notably 

feldspars. Kaolinite is a byproduct of the weathering of feldspars and other silicates. Glauconite, 

a mineral noted in thin sections, was not detected in X-ray diffraction. 

 

 

 
Fig. 5. Non-carbonate fraction of the C and Q samples. 
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Table 5. X-ray diffraction analysis: Summary of identified minerals. 

Code Whole rock Insoluble residue Clay fraction 

 Cal Qtz Qtz Kfs Ms Kln ill Sme Gp Gt Kln ill Sme 

C1 x x x x x      x x x 

C2 x x x x x x x  x  n.d. n.d. n.d. 

Q1 x x x x x x     x x x 

Q2 x x x x  x  x  x x x x 

Q3 x x x x  x  x   x x x 

n.d.: not detected. 

 

 

Conclusions 

 

The limestone used in the restoration works at the old church of Santa Maria has 

significant different characteristics from the original heritage fabric. The compositional 

differences of the limestone are diagnostic of the provenance. Although extracted from the same 

lithological formation, it is petrological diverse; the physical, textural, geochemical and 

mineralogical compositions are quantitatively different thus giving rise to qualitative different 

properties. The following findings merit noting: 

1. The first quality quarry lithotype is more stress resistant than the C samples. The 

compressive strength of the Lower Globigerina Limestone formation varies. The limestone 

originally used in the old church is on the lower side of the range and it does correspond to 

historical, official analytical results undertaken in the late nineteenth century on a quarry from 

Tal-Balal area; 

2. The church sample is more porous than the quarry samples, the bulk being in the range 

of 40-40000 Å. Passage of water through the matrix encouraged the growth of the post 

depositional interlocking calcite crystal fabric present in the C sample. These crystals provide 

the mechanical bonding which accounts for the durability of the building stone;  

3. The principal non-carbonate oxides are SiO2, Al2O3, Fe2O3, and K2O. Arguing that the C 

samples have a geochemistry composition akin to the second quality Q lithotype is not a correct 

interpretation. Variations in the non-carbonate indicate differences in the lithology of the C and 

Q samples; and 

4. Applying XRD data and microphotographs of the insoluble residue, the principal non-

carbonate oxides are attributed to quartz, clays, K-feldspar, muscovite, and some iron oxide 

mineral(s). These are highest in the second quality lithotype. The variations are quantitative. 

The C samples have higher quartz but less clays than the first quality lithotype from the quarry; 

the muscovite content is higher than the Q samples.  

Selecting limestone for replacement on the basis of crushing strength is rudimentary. A 

consideration for the effectiveness of restoration intervention is compatibility of the limestone 

replacing the original fabric. Compatibility has bearing on the durability of the works 

undertaken. Textural, geochemistry and the corresponding mineralogy variations are indicators 

of the original sediment of deposition.  
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