
A Summary of Research in System Software and
Concurrency at the University of Malta: I/O and

Communication

Joseph Cordina

Department of Computer Science and AI,
University of Malta

Abstract. Traditional operating systems and commodity hardware are never used to their
full potential due to underlying design limitations. Applications that make use of blocking
system calls incur large overheads on the operating systems and in turn end up wasting
CPU resources. In addition, traditional solutions are not adequate for high-performance
networking. In this report, we present a summary of the research conducted by the System
Software Research Group (SSRG) at the University of Malta. We discuss some of the solutions
we have developed and pinpoint their effectiveness to solve each of the above problems.

1 Introduction

Facilities commonly offered by operating systems, such as memory protection and I/O resource
usage, often result in huge bottlenecks to applications demanding huge computational resources.
The traditional way of accessing resources is through system calls. Each system call demands
switching of protection boundaries which is quite computationally expensive. In addition, CPU
time and consequently application time is wasted when waiting for these resources to terminate
their requests. Such slow resources are disk usage, network communication and even memory access.

The System Software Research Group[15] (SSRG) was set up in the Department of Computer
Science at around 1999. Its main aim is to conduct research in the area of System Software. The
above problems proved to be an ideal direction for further research. In [22] Vella proposes several
methods that the SSRG has worked on to improve performance at the application level. Some
of these optimisations are based on user-level multithreading techniques. Unfortunately user-level
thread schedulers fail in their utility when invoking system calls, in that the user-level thread
scheduler becomes blocked until the underlying kernel thread itself is re-scheduled by the kernel.
The propose several solutions to this problem developed within the research group and analyse
their performance.

Computing today is tightly dependent on network performance. In tests performed in [6] we have
shown the limitations proposed by current commodity hardware in dealing with high bandwidth
networking. Thus this research group has also concentrated on removing the bandwidth bottlenecks
while still using commodity hardware. We show that cheap hardware solutions are able to cater
for highly demanding network applications.

2 Operating System Integration

Any application that makes use of system resources such as disk I/O and networking needs to make
calls into the underlying kernel. The reason for this barrier is due to current operating systems that



System Software and Concurrency at the University of Malta: I/O and Communication 49

protect the above application from access intricacies and to protect one application from another.
Unfortunately when accessing slow resources, the application remains blocked until the resource
can service the request. In the mean time, other kernel processes or threads can continue executing.

In highly demanding applications that make use of such resources, the common alternative is to
make use of multiple kernel entities that will be utilised whenever the running thread gets blocked.
This provides better CPU usage. Yet this is not ideal due to the expense of creating new kernel
threads and the expense of switching to other kernel threads. In addition, when utilising user-level
thread schedulers, when one user level thread makes a blocking call, all the other user level threads
are not able to continue executing. Within the SSRG we have investigated various solutions to this
problem. One of the most basic solutions is the use of wrappers. This is a modification of potentially
blocking system calls, such that such calls invoke a second kernel thread that continues to execute
other user-level threads that are not blocked. Whenever the blocked user-level thread unblocks, the
second kernel thread halts and the original user-level thread continues executing. Wrappers provide
an adequate solution when the system call actually blocks. Unfortunately system calls that do not
block (for example when a read call is issued that already has data locally in a memory buffer)
cause unnecessary overheads. In addition, wrappers provide a solution which is not transparent to
the application programmer.

In addition to system calls, the application may also block whenever accessing memory pages that
are not readily available (memory pages have to be initialised or have been swapped out to disk
space). Such page faults still cause the application to block for an undefined amount of time, wasting
CPU time. Wrappers are obviously not capable of solving such problems. Within the SSRG we
have concentrated on providing solutions that achieve high performance while being transparent
to the programmer.

2.1 Activations

We have developed a solution that is capable of solving the above problems. Through Linux kernel
modifications, we were able to use a mechanism such that whenever a system call blocks, a call is
made from the underlying kernel to the blocked application. This kind of information allows the
application to react accordingly to the changing environment of the operating system. By making
use of thread pools within the kernel and utilising user-level thread schedulers, we were able to
solve most of the problems associated with blocking calls. Our results[3] have shown that this
solution is able to achieve high performance when applied to an application that is dependent on
a large number of potentially blocking system calls such as a web server. This solution was also
extended to be applied to SMP architectures. Unfortunately due to limitations in the underlying
kernel modifications, this solution cannot be applied to blocking due to page faults.

2.2 Shared Memory Asynchronous Communication

In comparison to the above solution, we have developed a further mechanism whereby a shared
memory region is used by the application and the underlying kernel to pass information to each
other. This mechanism offers a solution scalable primitive that was applied to the above blocking
call problem and also to the extended spinning problem1[18]. By making use of this asynchronous
mechanism, the kernel can create new kernel threads whenever a blocking system call occurs and
can also inform the user-level thread scheduler whenever a system call unblocks. This solution was
found to be comparable in performance to the activation mechanism while providing additional
scalability.

1 This is a problem that occurs whenever several processes make use of a shared lock to execute critical
sections in a multiprogrammed environment[19]



50 Joseph Cordina

3 Network Communication

Most applications today depend heavily on network connectivity and fast bandwidth. While CPU
speed is ever increasing, advances in network technologies, interconnecting architectures and op-
erating system software has not kept pace. The SSRG has performed several tests to analyse
bottlenecks within the connection pipeline. We have found that that on commodity platforms the
main bottlenecks are the operating system network stack, common interconnecting architectures
such as the PCI and the network protocol itself. We set out to prove that gigabit connectivity can
be achieved on commodity platforms and Ethernet standards.

3.1 Ethernet Bandwidth

Various tests were carried out by Dobinson et al.2[13] to analyse network traffic on Ethernet
hardware. The test controller used was the Alteon Tigon controller[16], a gigabit Ethernet controller
that allows custom software to be uploaded and executed on board the card. It was found out that
making use of larger Ethernet packets3 it was possible to achieve gigabit data bandwidth on the
physical line.

The SSRG then concentrated on solving the problem in other layers of the communication pipeline.
In his project, Wadge[24] made use of the processing power of the Alteon card by modifying the
firmware such that bottlenecks on the PCI were bypassed for Ethernet packets. This was performed
by transferring large chunks of data through the PCI instead of the traditional 1.5K packets.
When using Ethernet packets, we achieved almost gigabit bandwidth, a first when making use of
33MHz, 32 bit PCI. In addition, the group took ideas from MESH[2], a user-level thread scheduler
integrated with Ethernet communication, to make use of an area of memory accessible only to the
application thus allowing user-level access to the Alteon’s frame buffer.

3.2 TCP/IP bandwidth

The group still desired to extend the above results further to bypass restrictions found in most
networking stacks of traditional operating systems. It was found that the cost of crossing the
protection barrier between the application and the underlying kernel, coupled with several data
copies that are made within the kernel for TCP/IP connection, severely degrades the point to
point bandwidth. In addition, we found that CPU utilisation is substantial for high bandwidth
networking to the point that on commodity hardware, applications are devoid of CPU resources.
Thus we have investigated the development of user-level networking, where the kernel does not take
part in the communication process[6]. This was achieved through the use of the Alteon Ethernet
Controller and an area of memory reserved to the application. While this mechanism does not offer
the traditional protection facilities provided by the operating system, we felt justified in bypassing
this restriction due to the high-demand environment of this application. We have also developed a
TCP/IP stack, solely at the user level and using zero-copy communication. We managed to achieve
very high bandwidth rates with very low CPU utilisation on relatively slow commodity hardware,
showing that demanding applications can be developed and executed on inexpensive hardware.

2 In collaboration with CERN and the SSRG
3 Known as Jumbo packets that are 9K large instead of the standard 1.5K packets



System Software and Concurrency at the University of Malta: I/O and Communication 51

3.3 User-Level Threads and Networking

To make use of the high-performance techniques proposed in [22] and above, the research group
has developed certain extensions to SMASH[8] (a user-level thread scheduler). SCOMM[4] is a
product that allows CSP-like channel connectivity on the network. It makes use of TCP/IP yet was
developed to allow integration of other network drivers underneath. It solves the blocking problem
of traditional communication calls by allocating the responsibility of network communication to
another kernel thread, thus avoiding the user-level thread scheduler from blocking. In addition
Nickovic[17] has further enhanced SCOMM by designing and implementing shared variables though
this communication protocol. This mechanism was built without requiring any central servers for
variable consistency.

4 Conclusion

We have shown the various areas that have tackled by the System Software Research Group in
terms of I/O and communication. We solved the problem of applications that make use of blocking
system calls and applied our solutions to maximise CPU usage. In addition, we have developed
several high-performance networking solutions that cater for high bandwidth and low CPU usage.
While various projects have been developed from this research, and most of the work is at par or
better with the best research done in this area, there is still more work that we plan to achieve.
We plan to integrate our user-level TCP/IP package with SMASH. When integrated, this would
provide a high-performance solution towards computation with high-bandwidth networking at very
little cost. In addition we plan to work towards building higher level applications on top of SMASH.
We aim to be able to apply peer to peer algorithms[14] and distributed data structures[7] to provide
a framework for high-performance distributed computation and space storage.

The System Software Research, while burdened by limited resources, both in terms of hardware
and man power, has managed to achieve products of very high quality. We have developed several
novel solutions that are capable of servicing a large number of demanding request making full use
of the capabilities of the underlying hardware.

References

1. S. Abela. Improving fine-grained multithreading performance through object-affinity scheduling. B.Sc.
I.T. Final Year Project, Department of Computer Science and Artificial Intelligence, University of
Malta, June 2002.

2. M. Boosten. Fine-Grain Parallel Processing on a Commodity Platform: a Solution for the ATLAS
Second Level Trigger. PhD thesis, Eindhoven University of Technology, 1999.

3. A. Borg. Avoiding blocking system calls in a user-level thread scheduler for shared memory multipro-
cessors. B.Sc. I.T. Final Year Project, Department of Computer Science and Artificial Intelligence,
University of Malta, June 2001.

4. S. Busuttil. Integrating fast network communication with a user-level thread scheduler. B.Sc. I.T.
Final Year Project, Department of Computer Science and Artificial Intelligence, University of Malta,
June 2002.

5. J. Cordina. Fast multithreading on shared memory multiprocessors. B.Sc. I.T. Final Year Project,
Department of Computer Science and Artificial Intelligence, University of Malta, June 2000.

6. J. Cordina. High performance TCP/IP for multi-threaded servers. Master’s thesis, University of Malta,
March 2002.

7. J. Cutajar. A scaleable and distributed B-Tree with parallel out-of-order traversal. B.Sc. I.T. Final
Year Project, Department of Computer Science and Artificial Intelligence, University of Malta, June
2003.



52 Joseph Cordina

8. K. Debattista. High performance thread scheduling on shared memory multiprocessors. Master’s
thesis, University of Malta, February 2001.

9. K. Debattista and K. Vella. High performance wait-free thread scheduling on shared memory mul-
tiprocessors. In H.R. Arabnia, editor, Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications, pages 1022–1028, June 2002.

10. K. Debattista, K. Vella, and J. Cordina. Cache-affinity scheduling for fine grain multithreading. In
J.S. Pascoe, P.H. Welch, R.J. Loader, and V.S. Sunderam, editors, Proceedings of Communicating
Process Architectures 2002, volume 60 of Concurrent Systems Engineering, pages 135–146. IOS Press,
September 2002.

11. K. Debattista, K. Vella, and J. Cordina. Wait-free cache-affinity thread scheduling. IEE Proceedings
- Software, 150(2):137–146, April 2003.

12. R.W. Dobinson, E. Knezo, M.J. LeVine, B. Martin, C. Meirosu, F. Saka, and K. Vella. Characterizing
Ethernet switches for use in ATLAS trigger/DAQ / Modeling the ATLAS second level trigger Ether-
net network using parameterized switches. In Proceedings of the IEEE Nuclear Science Symposium:
Workshop on Network-Based Data Acquisition and Event-Building, October 2000.

13. R.W. Dobinson, E. Knezo, M.J. LeVine, B. Martin, C. Meirosu, F. Saka, and K. Vella. Testing and
modeling Ethernet switches for use in ATLAS high level triggers. IEEE Transactions on Nuclear
Science, 48(3):607–612, June 2001.

14. J. Farrugia. P2P .NET-a peer to peer platform for the Microsoft .NET framework. B.Sc. I.T. Final
Year Project, Department of Computer Science and Artificial Intelligence, University of Malta, June
2003.

15. K. Vella J. Cordina, K. Debattista. System software research group website.
URL:http://cs.um.edu.mt/~ssrg.

16. Alteon Networks. Gigabit ethernet/PCI network interface, host/NIC software interface definition.
Alteon Networks Documentation, June 1999.

17. D. Nickovic. Distributed shared variables for user-level fine grained multithreading. B.Sc. I.T. Final
Year Project, Department of Computer Science and Artificial Intelligence, University of Malta, June
2003.

18. I. Sant. An asynchronous interaction mechanism between the kernel and the user application. B.Sc.
I.T. Final Year Project, Department of Computer Science and Artificial Intelligence, University of
Malta, June 2003.

19. A. Tucker and A. Gupta. Process control and scheduling issues for shared-memory multiprocessors.
In Proceedings of the 12th ACM Symposium on Operating Systems Principles, pages 159–166, 1989.

20. K. Vella. CSP/occam on networks of workstations. In C.R. Jesshope and A.V. Shafarenko, editors,
Proceedings of UK Parallel ’96: The BCS Parallel Processing Specialist Group Annual Conference,
pages 70–91. Springer-Verlag, July 1996.

21. K. Vella. Seamless Parallel Computing on Heterogeneous Networks of Multiprocessor Workstations.
PhD thesis, University of Kent at Canterbury, December 1998.

22. K. Vella. A summary of research in system software and concurrency at the University of Malta:
multithreading. In Proceedings of the Computer Science Annual Research 2003, University of Malta,
June 2003.

23. K. Vella and P.H. Welch. CSP/occam on shared memory multiprocessor workstations. In B.M. Cook,
editor, Proceedings of WoTUG-22: Architectures, Languages and Techniques for Concurrent Systems,
volume 57 of Concurrent Systems Engineering, pages 87–120. IOS Press, April 1999.

24. W. Wadge. Achieving gigabit performance on programmable ethernet network interface cards. B.Sc.
I.T. Final Year Project, Department of Computer Science and Artificial Intelligence, University of
Malta, June 2001.


