
Research Journal of Biological Sciences 2 (2): 183-187,2007 
© Medwell J oumals, 2007 

Effect of Extracellular Matrix (ECM) on Clara Cell Differentiation 
Through P21 Regulation 

1,2Renald Blundell, 2David J Harrison 

lDepartment of Physiology and Biochemistry, University of Malta, Msida MSD06 Malta 
2Department of Pathology, University of Edinburgh, Medical School, Edinburgh EH8 9AG, Scotland 

Abstract: Cell-matrix interactions or disruption affects the cell cycle regulation in various ways and thus the 
extracellular Matrix (ECM) can control cell differentiation In this study, Clara cells obtained fonn both wildtype 
(wt) and p2l knockout (p2l ko) mice were isolated and cultured on different ECM combinations, A lower 
expression of cytokeratins 8,18 and 19 in illillttached Clara cells from p21 knockout (ko) mice compared to 
wildtype (wt) mice was observed. The expressions of cytokeratin 8 and 19 were significantly higher in primary 
Clara cells cultures when laminin formed part of the ECM composition. The cell-matrix disruption also played 
an important part on Clara cells differentiation process. 
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INTRODUCTION 

The extracellular matrix contains signals that control 
cell shape, migration, proliferation, differentiation, 
morphogenesis and survival (Lukashev and Werb, 1998; 
Boudreau and Jones, 1999; Streuli, 1999), After an injury 
to the lung epithelial cells, changes in the ECM 
composition could be a key regulator in restoring the 
epithelial barrier otherwise the injury could progress into 
a disease (Roskelley et ai" 1995; Lukashev and Werb, 
1998; Dunsmore and Rarmels, 1996; Chintala and Rao, 
1996; Talpale and Keski-Oja, 1997; Boudreau and Jones, 
1999; Streuli, 1999; Ebihara et ai" 2000), 

Cell-matrix interactions or disruptions affect the cell 
cycle regulation in various ways. A number of studies 
have shown that by the disruption of cell-matrix 
interactions, regulated cell cycle progression and 
influences the expression of a number of cell cycle 
regulatory proteins such as p2l, p27 and p53 (Guadagno 
et ai" 1993; Assoian, 1997; Schwartz and Assoian, 2001; 
Bao et ai" 2002; Nagaki et ai" 2000; Wu and Schbnthal, 
1997). Other studies have shown that cell-matrix 
disruption could lead to apoptosis (Ruoslahti and Reed, 
1994; McGill et ai" 1997; Frisch and Francis, 1994; 
Bourdoulous et ai" 1998; Kettritz et ai" 1999; Sethi et aI" 
1999; Day et ai" 1997), 

The main hypothesis of this study is that cell-matrix 
interaction or disruption regulates cell differentiation 
through p2L To study this hypothesis Clara cells from 
both wt and p21 ko mice were isolated and cultured on 
seven different ECM compositions: FibronectiniCollagen 
IV!Laminin (FniColl IV!Lam); FibronectiniCollagen IV 
(FniCollIV), Collagen IV!Laminin (Collagen IV!Larninin 

(Coll IV !Lam); FibronectinlLarninin(FnlLam); Collagen IV 
(Coll IV); Laminin (Lam); Fibronectin (Fn), The final 
concentration of each ECM composition was 50 ).lg mL -1. 

The effect of ECM composition on Clara cell 
differentiation was studied. 

MATERIALS AND METHODS 

Clara cell isolation and culturing: Mice (C3H1He strain 
or p21 ko mice either male or female, between 4 to 8 weeks 
old) were sacrificed by lethal intraperitoneal injection of 
0,5 mL pentabarbitone (Sagata!"M), p2l ko mice wee kindly 
provided by Dr, Philip Leder, Harvard Medical School, 
Boston. Clara cells were isolated and cultured as 
previously described (Blundell and Harrison, 2005), 

Once isolated, cell were plated onto 16-well glass 
chamber slides (Gibeo) which had been pre-coated with 

Table 1: Different ECMs combinations and the concentrations upon which 
Clara cells were culrured. 

Extracellular Matrix 
(ECM) combinations 

LanvFnfColl IV 
Coli IVlFn 
Coli IVlLam 
LrnniFn 
ColllV 
Lrnn 
Fn 

Concentration 
50 Ilg mL 1 of each added simultaneously 
50 Ilg mL -1 of each added simultaneously 
50 Ilg mL -1 of each added simultaneously 
50 Ilg mL -1 of each added simultaneously 
50 Ilg mL-1 

50 Ilg mL-1 

50ugmL-1 

Table 2: Details of the primary antibody used for immuno-cytochemistry 
and their relative concentrations 

Antibody against Concentration Supplier 
cytokeratin 8 1/10 ICN 
cytokeratin 18 1/10 ICN 
cytokeratin 19 1/10 ICN 

Catalogue number 
10526 
10500 
11417 
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Fig.1: Variation in the expression of cytokeratins 8. 18 and 19 in Clara cells allime O. 24. 72 and 120 h in both wt and p21 
ko mice in different matrix conditions. At time 0 h, the expression of cytokeratin 8, 18 and 19 is lower in Clara cells 
from p21 ko mice compared to cells from wt mice (A - F). The expressions of cytokeratin 8 and 19 in Clara cells 
from p21 ko mice were higher when laminin part of the ECM composition (D and F) 

appropriate ECM and incubated at 37°C, 5% CO/air. 16-
well chamber slides (wells having 6mm diameter) (Gibco) 
were coated with 50).lg ofEC1.1 overnight at 4°C. The next 
morning the chamber slides were washed with sterile PBS 
and stored and -20CC. Three different types of ECM 
components were used in this study: fibronectin (Fn) 
(Sigma). collagen IV (Coli IV) (Sigma) and laminin (Lam) 
(Sigma). Fibronectin was used for the basal culture 
conditions of all cultures. Seven variations ofECM were 
used for further studies as shown in Table l. Cells were 
allowed to attach overnight after which the medium was 
replaced to remove dead and lUlattached cells. Medium 
was subsequently replaced every 2 days. Cells were 
usually fixed at days I. 3 and 5 by methanol at -20CC. 

Immunohisto-chemistry: Slides were equilibrated in 
TBS for 5 min. The slides were block with an appropriate 
serum in which the secondary antibody was raised. 
Primary antibody, details and concentrations as described 
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in Table 2 was applied for 2 h, followed by three 5 min 
washes with TBST. Secondary antibody was put on for 30 
min then washed three times for 5 min each with TBST. 
An Alexa conjugated secondary antibody (diluted I: 200 
in senun) was put on the slide and incubated for 3 min. 
The slides were then washed three times for 5 min each 
and mOlUlted using DAKO fluorescent mOWlting medium. 
The slides were then visualised either Wlder the 
fluorescent microscope or confocal microscope. 

Cell counting: A wide range of variation in the degree of 
immWlohistochemical staining was observed. Thus, 
strongly stained cells were considered as positive 
staining, while negatively or weakly stained cells were 
considered as negative. Experiments and COWlts were 
repeated at least three times and standard deviation was 
calculated using Microsoft Excel. COlUlts of 500 cells 
were sufficient to achieve a stable nmning mean. 
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Fig. 2: Cytokeratins 8, 18 and 19 expression III different matrix conditions. Cytokeratin 19 expression were found 
to be lower in Clara cells from p 2 1 ko mice (B) compared to cell from wt mice (A) at time 0 h. No 
differences in the expression of cytokeratin 18 was found when cells were cultured on collagen IV © 

and larninin (D). The expression of cytokeratin 8 was found to be higher when cells from p2l ko mice 
were cultured on ECM containing larninin eg collagen IV Ilarninin (F) compared to an ECM without laminin 
e g fibronectinlcollagen IV (E), while no difference in cytokeratin 19 in wt mice eg collagen IV Ilarninin 
(G) and fibronectin/collagen IV (H). C, D, E, F, G and H are at time point 72 h. I is a typical negative 
control, whereby the primary antibody was omitted. Magnificationx200 

Statistical analysis: Statistical analysis was carried 

out using Microsoft Minitab software. The general 

linear model test (ANOV A) with Bonferoni corrections 
for multiple tests, was used to find out significant 

changes in cell behaviour upon cell-matrix disruption 

and to find out differences in Clara cells from wt and 

p2l ko mice. Experiments and counts were repeated 
at least three times. For all tests ap value less than 

0.05 was considered significant. 
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RESULTS 

Cytokeratins are a good marker of epithelial cells 
differentiation (Gunning et aI., 1992; McBride et aI., 2000). 
In this study three cytokeratins 8, 18 and 19 were studied 
all of which are present in lung epithelial cells induding 
Clara cells. The variation in the degree of cytokeratin 
expression gives a good indication on the degree of 
differentiation from one cell type to another to an 
intermediate cell. 
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When cells were freshly isolated, thus illillttached at 
day 0, cytokeratins 8, 18 and 19 expressions were fOlUld to 
be lower (p < 0.05) in p21 ko mice when compared to wt 
mice. (Fig. I and 2). 

In p21 ko mice. the cytokeratins 8. 18 and 19 
expressions at time 0 when cell are freshly isolated and 
not attached to ECM. were significantly lower (p < 0.05) 
when compared to attached cells at time 24. 72 and 120 h. 

In wt mice, the ECM composition did not influence 
significantly the cytokeratins 8, 18 and 19 expression and 
the expression of cytokeratins 8, 18 and 19 did not change 
significantly over the time in culture. 

When Laminin was part of the ECM composition in 
cultured Clara cells from p21 ko mice, cytokeratins 8 and 
19 expressions were significantly higher (p < 0.05) when 
compared with ECM without laminin. 

DISCUSSION 

Lower expression of cytokeratins 8, 18 and 19 in 
Wlattached Clara cells from p21 ko mice compared to wt 

mice. Differences in cytokeratin expression in ltmg cells 
have been established and have been used as 
differentiation markers in ltmg epithelial cells. (Gunning et 
01.. 1992; Moll etol .• 1982; Moll. 1987; Blobel etol .• 1984). 
The expression of cytokeratin 8, 18 and 19 in freshly 
isolated Clara cells from p21 ko mice was significantly 
lower (p < 0.05) than cultured cells. By disrupting the cell
matrix interactions, in this case during the isolation 
procedure, the illillttached Clara cells from p21 ko mice 
could be lUldergoing differentiation and thus cytokeratins 
8, 18 and 19 expression was lower. 

No significant changes in the expression of 
cytokeratin 8, 18 or 19 was observed in Clara cells from wt 
mice upon the cell-matrix disruption and when cultured on 
different ECM. Thus changes in cell-matrix interactions 
could be an important factor for cells to lUldergo 
differentiation through a p21-dependent pathway. In p21 
ko mice, normal differentiation has been observed, thus 
p21 is not a mutually exclusive agent that promotes 
differentiation (paramio et 01 .• 2001; Cox. 1997; McDonald 
et 01 .• 1996; Deng et 01 .• 1995). 

"When Clara cells from p21 ko mice were attached and 
cultured to an ECM which contained laminin, the 
expression of cytokeratin 8 and 19 was significantly 
higher (p < 0.05) than cells cultured in the absence of 
laminin. Thus in the absence of p21, the presence of 
laminin was fOlUld to be quite important for cells to 
lUldergo normal differentiation. The actual pathway by 
which the presence of laminin and p21 are involved in 
differentiation in Clara cells is still lUlclear and further 
studies need to be carried out. 
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CONCLUSION 

Although the presence of laminin was fOlUld to be 
important in cytokeratin 8 and 19 expression in Clara cells 
from p21 ko mice, the cell-matrix disruption rather than 
ECM combinations seems to have greater influence on 
cell cycle progression in the absence of p21. Thus, further 
studies have to be carried out in order to lUlderstand the 
role of specific integrins such as laminin on Clara cells 
regulation. 
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