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Abstract

When a recurrent neural network (RNN) language model is used for caption generation, the

image information can be fed to the neural network either by directly incorporating it in the

RNN – conditioning the language model by ‘injecting’ image features – or in a layer following

the RNN – conditioning the language model by ‘merging’ image features. While both options

are attested in the literature, there is as yet no systematic comparison between the two. In this

paper, we empirically show that it is not especially detrimental to performance whether one

architecture is used or another. The merge architecture does have practical advantages, as

conditioning by merging allows the RNN’s hidden state vector to shrink in size by up to four

times. Our results suggest that the visual and linguistic modalities for caption generation need

not be jointly encoded by the RNN as that yields large, memory-intensive models with few

tangible advantages in performance; rather, the multimodal integration should be delayed to

a subsequent stage.

1 Introduction

Image caption generation is the task of generating a natural language description

of the content of an image (Bernardi et al. 2016), also known as a caption. One way

to do this is to use a neural language model, typically in the form of a recurrent

neural network (RNN), which is used to generate text (illustrated in Figure 1). Given

a sentence prefix, a neural language model will predict which words are likely to

follow. With a small modification, this simple model can be extended into an image

caption generator, that is, a language model whose predictions are conditioned on

image features. To do this, the neural language model must somehow accept as

†The research in this paper is partially funded by the Endeavour Scholarship Scheme
(Malta). Scholarships are part-financed by the European Union – European Social Fund
(ESF) – Operational Programme II Cohesion Policy 2014–2020 “Investing in human capital
to create more opportunities and promote the well-being of society”.
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Fig. 1. How RNN-based neural language models work. Legend: RNN – Recurrent Neural

Network; FF – Feed-Forward layer; wordi – the ith generated word in the text; wordstart – the

START token which is an artificial word placed at the beginning of every sentence in order

to still have a prefix when predicting the first word (likewise there is an END token to predict

the end of a sentence). Note that state1 represents the prefix ‘wordstart’, state2 represents the

prefix ‘wordstart word1’, etc. After processing a prefix, the RNN passes its final state statet to

a feed-forward layer, which then predicts how likely each known word is to be the next word

in the prefix.

input not only the sentence prefix, but also the image being captioned. This raises

the question: At which stage should image information be introduced into a language

model?

Recent work on image captioning has answered this question in different ways,

suggesting different views of the relationship between image and text in the caption

generation task. To our knowledge, however, these different models and architectures

have not been systematically compared. Yet, the question of where image information

should feature in captioning is at the heart of a broader set of questions concerning

how language can be grounded in perceptual information, questions which have been

addressed by cognitive scientists (Harnad 1990) and AI practitioners (Roy 2005).

As we will show in more detail in Section 2, differences in the way caption

generation architectures treat image features can be characterised in terms of three

distinct sets of design choices:

Conditioning by injecting versus conditioning by merging: A neural language model

can be conditioned by injecting the image (Figure 1a) or by merging the image

(Figure 1b). In ‘inject’ architectures, the image vector (usually derived from the

activation values of a hidden layer in a convolutional neural network) is injected

into the RNN, for example, by treating it on a par with a ‘word’ and including it

as part of the caption prefix. The RNN is trained to encode the image–language

mixture into a single vector in such a way that this vector can be used to predict

the next word in the prefix. On the other hand, in the case of ‘merge’ architectures,

the image is left out of the RNN subnetwork, such that the RNN handles only the

caption prefix, that is, handles only purely linguistic information. After the prefix has

been encoded, the image vector is then merged with the prefix vector in a separate

‘multimodal layer’ that comes after the RNN subnetwork. Merging can be done by,

for example, concatenating the two vectors together. In this case, the RNN is trained

to only encode the prefix and the mixture is handled in a subsequent feed-forward

layer.
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The image in caption generation 469

In the terminology adopted in this paper: if an RNN’s hidden state vector is

somehow influenced by both the image and the words then the image is being injected,

otherwise it is being merged.

Early versus late inclusion of image features: As the foregoing description suggests,

merge architectures tend to incorporate image features somewhat late in the

generation process, that is, after processing the whole caption prefix. On the other

hand, some inject architectures tend to incorporate image features early in the

generation process. Other inject architectures incorporate image features for the

whole duration of the generation process. Different architectures can make visual

information influence linguistic choices at different stages.

Fixed versus modifiable image features: For each word predicted, some form of

visual information must be available to influence the likelihood of each word.

Merge architectures typically use the exact same image representation for every

word output. On the other hand, injecting the image features into the RNN allows

the internal representation of the image inside the hidden state vector to be changed

by the RNN’s internal updates after each time step. Different architectures allow for

different degrees of modification in the image features for each generated word.

The main contribution of this paper is to present a systematic comparison of

the different ways in which the ‘conditioning’ of linguistic choices based on visual

information can be carried out, studying their implications for caption generator

architectures. Thus, rather than seeking new results that improve on the state of the

art, we seek to determine, based on an exhaustive evaluation of inject and merge

architectures on a common dataset, where image features are best placed in the

caption generation and image retrieval process.1

From a scientific perspective, such a comparison would be useful for shedding

light on the way language can be grounded in vision. Should images and text

be intermixed throughout the process, or should they initially be kept separate

before being combined in some multimodal layer? Many papers speak of RNNs

as ‘generating’ text. Is this the case or are RNNs better viewed as encoders that

vectorise a linguistic prefix so that the next feed-forward layer can predict the next

word, conditioned on an image? Answers to these questions would help inform

theories of how caption generation can be performed. The architectures we compare

provide different answers to these questions. Hence, it is important to acquire some

insights into their relative merits.

From an engineering perspective, insights into the relative performance of different

models could provide rules of thumb for selecting an architecture for the task of

image captioning, possibly for other tasks as well such as machine translation. This

would make it easier to develop new architectures and new ways to perform caption

generation.

1 All the code used in our experiments is available at https://github.com/mtanti/
where-image2
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Fig. 2. The inject and merge architectures for caption generation. Legend: RNN – Recurrent

Neural Network; FF – Feed-Forward layer.

The remainder of this paper is structured as follows. We first give an overview of

published caption generators based on neural language models, focusing in particular

on the architectures used. Section 3 discusses the architectures we compare, followed

by a description of the data and experiments in Section 4. Results are presented and

discussed in Section 5. We conclude with some general discussion and directions for

future work.

2 Background

In this section, we discuss a number of recent image caption generation models with

emphasis on how the image conditions the neural language model, based on the

distinction between inject and merge architectures illustrated in Figure 2. Before we

discuss these models, we first outline four broad sub-categories of architectures that

we have identified in the literature.

2.1 Types of architectures

In Section 1, we made a high-level distinction between architectures that merge

linguistic and image features in a multimodal layer, and those that inject image

features directly into the caption prefix encoding process. We can in fact distinguish

four theoretical possibilities arising from these, as illustrated in Figure 3 and

described below.

• Init-inject: The RNN’s initial hidden state vector is set to be the image vector

(or a vector derived from the image vector). It requires the image vector to

have the same size as the RNN hidden state vector. This is an early binding

architecture and allows the image representation to be modified by the RNN.

• Pre-inject: The first input to the RNN is the image vector (or a vector derived

from the image vector). The word vectors of the caption prefix come later.

The image vector is thus treated as a first word in the prefix. It requires the

image vector to have the same size as the word vectors. This too is an early

binding architecture and allows the image representation to be modified by

the RNN.
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The image in caption generation 471

Fig. 3. Different ways of conditioning a neural language model with an image. The

feed-forward layer was left out to save space.

• Par-inject: The image vector (or a vector derived from the image vector)

serves as input to the RNN in parallel with the word vectors of the caption

prefix, such that either (a) the RNN takes two separate inputs; or (b) the

word vectors are combined with the image vector into a single input before

being passed to the RNN. The image vector does not need to be exactly

the same for each word (such as is the case with attention-based neural

models); nor does it need to be included with every word. This is a mixed

binding architecture and, whilst allowing some modification in the image

representation, it will be harder for the RNN to do so if the same image

is fed to the RNN at every time step due to its hidden state vector being

refreshed with the original image each time.

• Merge: The RNN is not exposed to the image vector (or a vector derived

from the image vector) at any point. Instead, the image is introduced into

the language model after the prefix has been encoded by the RNN in its

entirety. This is a late binding architecture and it does not modify the image

representation with every time step.

With these distinctions in mind, we next discuss a selection of recent contributions,

placing them in the context of this classification.

Init-inject architectures: Architectures conforming to the init-inject model treat

the image vector as the initial hidden state vector of an RNN (Devlin et al. 2015;

Liu et al. 2016). Wang et al. (2016) combine two RNNs in parallel, both initialized

with the same image.

A similar architecture to init-inject is used in traditional deep learning machine

translation systems (Sutskever, Vinyals and Le 2014) where a source sentence is
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encoded into a vector and used to condition a language model to generate a

sentence in another language. This is the basis for the system described by Ma and

Han (2016), who first extract a sequence of attributes from an image, then translate

this sequence into a caption.

It is also used in attention mechanisms in order to provide a vector representing

information about the whole image, whilst parts of the image that are attended

differently during each time step are provided via par-injection. For example, Xu

et al. (2015) initialize the RNN with the centroid of all image parts before attending

to some parts as needed.

Pre-inject architectures: Pre-inject models treat the image as though it were the

first word in the prefix (Nina and Rodriguez 2015; Vinyals et al. 2015; Rennie et al.

2017). Image attributes are sometimes used instead of image vectors (Wu et al. 2015;

Yao et al. 2017). Yao et al. (2017) also try passing an image as the first two words

instead of just one word by using the image vector as the first word and image

attributes as a second, or vice versa.

Just like init-inject, pre-inject is also used to provide information about the whole

image in attention mechanisms (You et al. 2016; Zhou et al. 2016).

Par-inject architectures: Par-injection inputs the image features into the RNN

jointly with each word in the caption. It is by far the most common architecture

used and has the largest variety of implementation. For example, Donahue et al.

(2015) do this with two RNNs in series and find that it is better to inject the

image in the second RNN than the first. Yao et al. (2017) par-inject the image

whilst pre-injecting image attributes (or vice versa); and Liu et al. (2016) par-inject

attributes from the image whilst init-injecting the image vector. Other, less common

instantiations include par-injecting the image, but only with the first word (this is

not pre-inject as the image is not injected on a separate time step) (Karpathy and

Fei-Fei 2015; Hessel, Savva and Wilber 2015); and passing the words through a

separate RNN, such that the resulting hidden state vectors are what is combined

with the image vector (Oruganti et al. 2016).

Many times this architecture is used in order to pass a different representation of

the same image with every word so that visual information changes for different parts

of the sentence being generated. For example, Zhou et al. (2016) perform element-

wise multiplication of the image vector with the last generated word’s embedding

vector in order to attend to different parts of the image vector. Oruganti et al. (2016)

pass the image through its own RNN for as many times as there are words in order

to use a different image vector for every word. Chen and Zitnick (2014; 2015) use a

simple RNN to try to predict what the image vector looks like given a prefix. This

predicted image is then used as a second image representation, which is par-injected

together with the actual image vector.

More commonly, modified image representations come from attention mechanisms

(Xu et al. 2015; You et al. 2016; Rennie et al. 2017). Rennie et al. (2017) inject the

image not as an input to the RNN but use a modified long short-term memory

network (Hochreiter and Schmidhuber 1997), or LSTM, which allows them to inject
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the attended image directly inside the input gated expression (the part of the LSTM

which is multiplied by the input gate).

Like init-inject and pre-inject, par-inject is sometimes used to provide information

about the whole image in attention mechanisms whilst the attended image regions

are merged (Lu et al. 2017).

Merge architectures: Rather than combining image features together with lin-

guistic features from within the RNN, merge architectures delay their combination

until after the caption prefix has been vectorised (Mao et al. 2014, 2015a, 2015b).

Hendricks et al. (2016) use a merge architecture in order to keep the image out of

the RNN and thus be able to train the part of the neural network that handles

images and the part that handles language separately, using images and sentences

from separate training sets.

Some work on attention mechanisms also uses merge architectures with attention

mechanisms by merging a different image representation at every time step. You

et al. (2016) and Xu et al. (2015) merge as well as par-inject the attended visual

regions, whilst Lu et al. (2017) only merge the regions whilst par-injecting a fixed

image representation.

Though they do not use an RNN and hence are not focussed on in this review,

caption generators that use log-bilinear models (Mnih and Hinton 2007) usually

merge the image with the prefix representation (Kiros, Salakhutdinov and Zemel

2014a, 2014b; Song and Yoo 2016).

2.2 Summary and outlook

While the literature on caption generation now provides a rich range of models and

comparative evaluations, there is as yet very little explicit systematic comparison

between the performances of the architectures surveyed above, each of which

represents a different way of conditioning the prediction of language sequences

on visual information. Work that has tested both par-inject and pre-inject, such as

(Vinyals et al. 2015), reports that pre-inject works better. The work of (Mao et al.

2015a) compares inject and merge architectures and concludes that merge is better

than inject. However, Mao et al.’s comparison between architectures is a relatively

tangential part of their overall evaluation, and is based only on the BLEU metric

(Papineni et al. 2002).

Answering the question of which architecture is best is difficult because different

architectures perform differently on different evaluation measures, as shown for

example by Wang et al. (2016), who compared architectures with simple RNNs

and LSTMs. Although the state of the art systems in caption generation all use

inject-type architectures, it is also the case that they are more complex systems than

the published merge architectures and so it is not fair to conclude that inject is

better than merge based on a survey of the literature alone.

In what follows, we present a systematic comparison between all the different

architectures discussed above. We perform these evaluations using a common dataset

and a variety of quality metrics, covering (a) the quality of the generated captions; (b)

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324918000098
Downloaded from https://www.cambridge.org/core. University of Saskatchewan Library, on 30 Apr 2018 at 00:43:38, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324918000098
https://www.cambridge.org/core


474 M. Tanti et al.

Fig. 4. An illustration of the main architecture schema that is instantiated in the four different

architectures tested in this paper. Legend: ‘FF’ – fully connected layer with bias; ‘FFimg’ –

layer projecting the image vector (may or may not have an activation function); ‘FFout’ –

layer projecting into the softmax output; ‘l’ – the layer size (which is the same for three

different layers); ‘v’ – the vocabulary size (which is different for different datasets). Only

one of the dashed arrows is used depending on whether the architecture is one of merge

or inject.

the linguistic diversity of the generated captions; and (c) the networks’ capabilities

to determine the most relevant image given a caption.

3 Architectures

In this section, we go over the different architectures that are evaluated in this paper.

A diagram illustrating the main architecture schema, which is the basis of every

tested architecture, is shown in Figure 4. The schema is based on the architecture

described by Vinyals et al. (2015), without the ensemble. This architecture was

chosen for its simplicity, whilst still being the best performing system in the 2015

MSCOCO image captioning challenge.2

Word embeddings: Word embeddings, that is, the vectors that represent known

words prior to being fed to the RNN, consist of vectors that have been randomly

initialised. No precompiled vector embeddings such as word2vec (Mikolov et al.

2013) were used. Instead, the embeddings are trained as part of the neural network

in order to learn the best representations of words for the task.

Recurrent neural network: The purpose of the RNN is to take a prefix of

embedded words (with image vector in inject architectures) and produce a single

vector that represents the sequence. A gated recurrent unit (Chung et al. 2014), or

GRU, was used in our experiments for the simple reason that it is a powerful RNN

that only has one hidden state vector. By contrast, an LSTM has two state vectors

(hidden and cell states). This would make architecture comparisons more complex,

as the presence of two state vectors raise the possibility of multiple versions of the

init-inject architecture. By using an RNN with a single hidden state vector there is

only one way to implement init-inject.

2 See: http://mscoco.org/dataset/#captions-leaderboard
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Image: Prior to training, all images were vectorised using the activation values

of the penultimate layer of the VGG OxfordNet nineteen-layer convolutional

neural network (Simonyan and Zisserman 2014), which is trained to perform object

recognition and returns a 4096-element vector. The convolutional neural network

is not influenced by the caption generation training process. During training, a

feed-forward layer of the neural network compresses this vector into a smaller

vector.

Output: Once the image and the caption prefix have been vectorised and mixed

into a single vector, the next step is to use them to predict the next word in the

caption. This is done by passing the mixed vector through a feed-forward layer with

a softmax activation function that outputs the probability of each possible next

word in the vocabulary. Based on this distribution, the next word that comes after

the prefix is selected.

The four architectures discussed in the previous section are evaluated in our

experiments as follows:

• init-inject: The image vector is treated as an initial hidden state vector for

the RNN. After initialising the RNN, the vectors in the caption prefix are

then fed to the RNN as usual.

• pre-inject: The image vector is used as the first ‘word’ in the caption prefix.

This makes the image vector the first input that the RNN will see.

• par-inject: The image vector is concatenated to every word vector in the

caption prefix in order to make the RNN take a mixed word-image vector.

Every word would have the exact same image vector concatenated to it.

• merge: The image vector and caption prefix vector (RNN state vector) are

concatenated into a single vector before being fed to the output layer.

4 Experiments

This section describes the experiments conducted in order to compare the perform-

ance of the different architectures described in the previous section. Tensorflow3 v1.2

was used to implement the neural networks.

4.1 Datasets

The datasets used for all experiments were the version of Flickr8K (Hodosh, Young

and Hockenmaier 2013), Flickr30K (Young et al. 2014), and MSCOCO (Lin et al.

2014) distributed by Karpathy and Fei-Fei (2015).4 All three datasets consist of

images taken from Flickr combined with between five and seven manually written

captions per image. The provided datasets are split into a training, validation, and

test set using the following number of images respectively: Flickr8K – 6000, 1000,

1000; Flickr30K – 29000, 1014, 1000; MSCOCO – 82783, 5000, 5000. The images

3 See: https://www.tensorflow.org/
4 See: http://cs.stanford.edu/people/karpathy/deepimagesent/
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are already vectorised into 4096-element vectors via the activations of layer ‘fc7’ (the

penultimate layer) of the VGG OxfordNet 19-layer convolutional neural network

(Simonyan and Zisserman 2014), which was trained for object recognition on the

ImageNet dataset (Deng et al. 2009).

The known vocabulary consists of all the words in the captions of the training

set that occur at least five times. This amounts to 2539 for Flickr8K, 7415 for

Flickr30K, and 8792 for MSCOCO. These words are used both as inputs, which are

embedded and fed to the RNN, and as outputs, which are assigned probabilities

by the softmax function. Any other word which is not part of the vocabulary is

replaced with an UNKNOWN token.

4.2 Hyperparameter tuning

For the results to be reliable, it is important to find the best (within practical limits)

hyperparameters for each architecture so that we can judge the performance of

the architectures when they are optimally tuned, rather than using one-size-fits-

all hyperparameter settings that might cause some architectures to under-perform.

For this reason, we used a multi-step process of hyperparameter tuning, which is

described below. We optimized the hyperparameters in order to maximize caption

quality on the Flickr8K validation set, using beam search as a generation method

and CIDEr as the objective function. The optimal hyperparameters were then fixed

across all datasets. Mao et al. (2015a) also used Flickr8K for hyperparameter tuning

and CIDEr was shown by Rennie et al. (2017) to be a useful metric to optimise

on, yielding an improvement on other quality metrics when used as the objective

function.

The following hyperparameters were fixed across all architectures:

• Parameter optimization is performed using the Adam algorithm (Diederik

and Ba 2014) with its hyperparameters kept as suggested in the original

paper: α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8.

• Loss function is the mean of the cross-entropy of each word in each caption

in a minibatch.

• An early stopping criterion is used, such that the geometric mean of the

language model perplexity on the validation set is measured and as soon as

one epoch results in a worse perplexity than the previous epoch, the training

stops. A maximum number of epochs are still used to prevent training from

going on for too long (more on this later).

• During caption generation, the caption must be between five and fifty words

long. Beam search will not end a sentence before there are at least five words

in it and will abruptly stop a sentence that is fifty words long.

• All biases are initialized to zeros.

The following are hyperparameters that were tuned (the ranges of values were

minimized in order to keep the search space tractable):

• The weights initialization procedure (normal distribution or xavier (Glorot

and Bengio 2010) with normal distribution).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1351324918000098
Downloaded from https://www.cambridge.org/core. University of Saskatchewan Library, on 30 Apr 2018 at 00:43:38, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1351324918000098
https://www.cambridge.org/core


The image in caption generation 477

• The weights initialization range (−0.1 to 0.1 or −0.01 to 0.01).

• The size of the layers for embedding, image projection (FFimg in Figure 4),

and RNN hidden state vector (64, 128, 256, or 512), all three of which are

constrained to be equal.5

• Whether to normalize the image vector before passing it to the neural network.

• Whether to use ReLU after the image projection (FFimg in Figure 4) or to

leave it linear.

• Whether to use an all-zeros vector as an initial RNN hidden state vector or

to use a learnable vector (not applicable to init-inject since its initial hidden

state vector is the image projection).

• Whether to use L2 weights regularization with a weighting constant of 10−8.

• Whether to apply dropout regularisation at different points in the architecture

(in Figure 4: after ‘image’, after ‘FFimg’, after ‘embed’, and/or after ‘RNN’).

Each application of dropout (if any) has a dropout rate of 0.5.

• The minibatch size (32, 64, or 128).

The following steps were followed in order to tune these hyperparameters, which

were evaluated by training a neural network for a maximum of ten epochs,

generating captions with a beam width of 2, and evaluating the captions using

CIDEr:

(1) Randomly generate 100 unique hyperparameter combinations and record their

performance.

(2) Use Baysian optimization via the library GPyOpt6 for 100 iterations and record

each generated candidate combination’s performance. Use the combinations

from step 1 to initialize the search.

(3) Use trees of Parzan estimators via the library hyperopt7 for 100 iterations and

record each generated candidate combination’s performance.

(4) Take the best combination found in all of the previous steps and fine-tune it

using greedy hill climbing and record each modified combination. This is to

check if changing any one hyperparameter will improve the performance.

The previous steps do not have very reliable CIDEr scores associated with them as

their score was produced using just one training and generation run and so might

coincidentally be an unusual score (far from the mean score if we trained the same

neural network several times). Ideally, we would have tested each hyperparameter

combination three times and taken the mean of the resulting CIDEr scores. Ideally,

we would have also tried different values for maximum number of epochs and

beam width. This, however, would have been extremely time consuming. Thus, we

5 Note that if we allowed each layer to change freely from the other layers, init-inject
would still require that the image size and RNN size be equal and pre-inject would still
require that the image size and the embedding size be equal, whilst par-inject and merge
would have no such size restrictions. This would make the former two architectures have
significantly less hyperparameter combinations to explore that would likely result in an
unfair advantage after hyperparameter tuning.

6 See: http://sheffieldml.github.io/GPyOpt/
7 See: https://jaberg.github.io/hyperopt/
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only apply the procedure to a subset of the best performing combinations from the

previous steps. We ensure that the subset is diverse by only choosing combinations

that are dissimilar from each other, as follows:

(5) Take all duplicate combinations generated in all of the previous steps and replace

them with a single combination with their average CIDEr score. Take the top

ten scoring combinations.

(6) Out of the selected ten combinations take the three combinations that are

most different from each other in terms of Hamming distance. Ensure that

one of these three combinations is the best combination found in the previous

step.

(7) Take the three combinations selected and try different maximum epochs (ten and

100) and beam widths (1, 2, 3, 4, 5, and 6) on them. Each evaluation is measured

using the average CIDEr score of three independent training and generation

runs.

(8) Return the best combination found in the previous step.

In Section 5.1, we will discuss the optimal hyperparameters found.

4.3 Evaluation metrics

To evaluate the different architectures, the test set captions (which are shared among

all architectures) are used to measure the architectures’ quality using metrics that

fall into three classes, described below.

Generation metrics: These metrics quantify the quality of the generated captions

by measuring the degree of overlap between generated captions and those in the test

set. We use the MSCOCO evaluation code8 that measures the standard evaluation

metrics BLEU-(1,2,3,4) (Papineni et al. 2002), ROUGE-L (Lin and Och 2004),

METEOR (Banerjee and Lavie 2005), and CIDEr (Vedantam, Zitnick and Parikh

2015).

Diversity metrics: Apart from measuring the caption similarity to the ground truth

we also measure the diversity of the vocabulary used in the generated captions. This

is intended to shed light on the extent to which the captions produced by models

are ‘stereotyped’, that is, the extent to which a model re-uses (sub-)strings from case

to case, irrespective of the input image.

As a limiting case, consider a caption generator that always outputs the same

caption. Such a generator would have the lowest possible diversity score. In order

to quantify this, we measure the percentage of known vocabulary words used in all

generated captions and the entropy of the unigram and bigram frequencies in all

8 See: https://github.com/tylin/coco-caption
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the generated captions together, which is calculated as

entropy(F) = −
|F |∑

i=1

Pi(F) log2 Pi(F) (1)

Pi(F) =
Fi

∑|F |
j=1 Fj

(2)

where F is the frequency distribution over generated unigrams or bigrams with |F |
different types of unigrams or bigrams and Pi is the maximum likelihood estimate

probability of encountering unigram or bigram i. Note that Fi is the frequency of

the unigram or bigram i.

Entropy gives a measure of how uniform the frequency distributions are (with

higher entropy for more uniform distributions). The more uniform, the more likely

that each unigram or bigram was used in equal proportion, rather than using the

same few words for the majority of the time, hence the greater the variety of words

used.

Finally, we also measure the percentage of generated captions that already exist

in the training set, as an estimate of the extent to which a model evinces ‘parroting’,

or wholesale caption reuse from the training set.

For these diversity metrics, we obtain a ceiling estimate by computing the same

measures on the test set captions themselves. We take the first caption out of the

group of human-written captions available for each image in the test set and apply

these diversity metrics on them.

Retrieval metrics: Retrieval metrics are metrics that quantify how well the archi-

tectures perform when retrieving the correct image out of all the test set images in

the test set given a corresponding caption. A conditioned language model can be

used for retrieval by measuring the degree of relevance each image has to the given

caption. Relevance is measured as the probability of the whole caption given the

image (by multiplying together each word’s probability). Different images will give

different probabilities for the same caption. The more probable the caption is, the

more relevant the image.

We use the standard R@n recall measures (Hodosh et al. 2013), and report recall

at 1, 5, and 10. Recall at n is the percentage of captions whose correct image is

among the top n most relevant images.

Since this process takes time proportional to the number of captions multiplied

by the number of images, the pool of possible captions to consider during retrieval

excluded all captions except the first out of the group of captions available for each

image in order to reduce the evaluation time. For MSCOCO, we only used the first

1,000 test set images out of 5,000 for the same reason, similar to Flickr8K and

Flickr30K that only have 1,000 images.

We also included the language model perplexity. In order to aggregate the caption

perplexity of the entire test set of captions into a single number, we report the

geometric mean of all the caption’s scores.
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Table 1. The optimal hyperparameters found for each architecture, tuned on Flickr8K
with CIDEr as an objective function. Each row is explained in Section 4.2

Init-inject Pre-inject Par-inject Merge

Init. method Xavier Normal Normal Normal

Init. weight range −0.01 – 0.01 −0.1 – 0.1 −0.1 – 0.1 −0.1 – 0.1

Layer size 512 512 256 128

Normalize image Yes Yes Yes Yes

Image activation None None None None

Init. RNN hidden state N/A Zero Learnable Learnable

Regularize weights No No Yes No

Image dropout No No Yes No

Image proj. dropout No No No No

Embedding dropout Yes Yes Yes No

RNN dropout Yes Yes Yes Yes

Minibatch size 128 32 64 128

Max. epochs 100 100 100 100

Beam width 3 3 5 3

5 Results and discussion

Three runs of each experiment, on each of the three datasets, were performed. For

the various evaluation measures, we report the mean together with the standard

deviation (reported in parentheses) over the three runs. For each run, the initial

model weights, minibatch selections, and dropout selections are different since these

are randomly determined. Everything else is identical across runs.

5.1 Optimal hyperparameters

We start by discussing the optimal hyperparameters found for each architecture

which are listed in Table 1.

It is interesting to note that, in every architecture’s optimal hyperparameters, the

RNN output needs to be regularized with dropout, the image vector should not have

a non-linear activation function or be regularized with dropout, and the image input

vector must be normalized before being fed to the neural network. Par-inject seems

to need the most help in terms of regularization and even in terms of beam width,

whilst the small size of merge means that it needs the least amount of regularization.

The most interesting observation is that the merge architecture is much ‘leaner’

overall. In terms of RNN size, it needs half of what par-inject needs, and only

a quarter of what init-inject and pre-inject require for optimal performance. This

makes sense, since merge only needs the RNN for storing linguistic information,

whilst the other architectures need to additionally store visual information from

the image. Using a larger RNN with the merge architecture would likely lead to

overfitting.

The implication is that init-inject and pre-inject are much more memory-hungry

architectures that require large RNN hidden state vectors in order to function

well, whilst merge is more efficient. In fact, the number of parameters for merge is
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Table 2. Results of caption quality metrics (CIDEr, METEOR, and ROUGE-L).
Best values are in bold.

Results for Flickr8K

CIDEr METEOR ROUGE-L

Init-inject 0.481 (0.010) 0.194 (0.000) 0.445 (0.002)

Par-inject 0.475 (0.004) 0.193 (0.002) 0.448 (0.003)

Pre-inject 0.469 (0.009) 0.191 (0.001) 0.444 (0.003)

Merge 0.469 (0.015) 0.193 (0.002) 0.443 (0.003)

Results for Flickr30K

CIDEr METEOR ROUGE-L

Merge 0.385 (0.006) 0.174 (0.000) 0.423 (0.001)

Init-inject 0.383 (0.005) 0.177 (0.002) 0.425 (0.003)

Pre-inject 0.380 (0.006) 0.174 (0.001) 0.420 (0.002)

Par-inject 0.361 (0.004) 0.170 (0.002) 0.418 (0.001)

Results for MSCOCO

CIDEr METEOR ROUGE-L

Init-inject 0.818 (0.005) 0.226 (0.002) 0.499 (0.003)

Pre-inject 0.807 (0.007) 0.224 (0.000) 0.498 (0.002)

Merge 0.791 (0.010) 0.222 (0.001) 0.494 (0.002)

Par-inject 0.774 (0.003) 0.219 (0.001) 0.493 (0.001)

between three and four times smaller than the number of parameters for init-inject

and pre-inject. Merge is also about two or three times faster to train.

Of the inject architectures, par-inject has the smallest optimal RNN size. This is

probably due to the fact that, in this model, the image is present at all-time steps,

thereby necessitating less memory to be allocated to ‘remember’ visual information

together with linguistic information, compared to early binding architectures. It’s

interesting to note that the par-inject RNN size is equal to the size of the

concatenated image and RNN hidden state vector in the merge architecture.

5.2 Quality of generated captions

Tables 2 and 3 display the metrics that measure the quality of generated captions,

calculated using the MSCOCO evaluation toolkit and averaged over the three

experimental runs.

Does merge’s small size impact its performance when generated captions are

compared to corpora? The metrics reported here show considerable variability in

ranking of the various architectures depending on dataset. For example, CIDEr

scores place init-inject at the top for both Flickr8K and MSCOCO, but merge

outperforms it on this measure on Flickr30K. Comparing ROUGE-L, METEOR,

and CIDEr, init-inject seems to be ranked highest over most datasets (the situation

is far more variable with the BLEU scores in Table 3, however). However, the
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Table 3. Results of caption quality metrics (BLEU-1, BLEU-2, BLEU-3, and
BLEU-4). Best values are in bold.

Results for Flickr8K

BLEU-4 BLEU-3 BLEU-2 BLEU-1

Par-inject 0.191 (0.003) 0.287 (0.003) 0.424 (0.002) 0.611 (0.001)

Init-inject 0.191 (0.004) 0.285 (0.005) 0.424 (0.005) 0.611 (0.002)

Pre-inject 0.190 (0.003) 0.285 (0.004) 0.421 (0.005) 0.609 (0.007)

Merge 0.178 (0.004) 0.273 (0.005) 0.413 (0.006) 0.600 (0.007)

Results for Flickr30K

BLEU-4 BLEU-3 BLEU-2 BLEU-1

Pre-inject 0.192 (0.002) 0.284 (0.001) 0.419 (0.003) 0.613 (0.004)

Init-inject 0.191 (0.002) 0.283 (0.002) 0.419 (0.002) 0.613 (0.004)

Merge 0.187 (0.001) 0.280 (0.002) 0.419 (0.002) 0.614 (0.002)

Par-inject 0.183 (0.004) 0.275 (0.003) 0.410 (0.003) 0.605 (0.004)

Results for MSCOCO

BLEU-4 BLEU-3 BLEU-2 BLEU-1

Init-inject 0.271 (0.002) 0.367 (0.002) 0.502 (0.002) 0.679 (0.003)

Pre-inject 0.267 (0.002) 0.366 (0.003) 0.501 (0.003) 0.677 (0.002)

Par-inject 0.265 (0.003) 0.359 (0.004) 0.492 (0.004) 0.667 (0.003)

Merge 0.262 (0.003) 0.362 (0.003) 0.500 (0.003) 0.677 (0.003)

differences among architectures are very small. This is especially true for the larger

MSCOCO dataset. Thus, though init-inject often comes out on top, the other

architectures are not lagging behind by a wide margin.

5.3 Image retrieval

Image retrieval results across the three datasets are shown in Table 4.

When it comes to retrieving the most relevant image for a caption, we once again

see merge ranked first on Flickr30K, while init-inject is at the top on Flickr8K and

MSCOCO, on practically all R@n measures, as well as median rank. Interestingly,

in the two sets of cases where init-inject outperforms other architectures, merge is

a close second, at least for R@1. In terms of perplexity, the general picture is in

favour of inject models, with merge evincing marginally greater perplexity on all

datasets. Overall, however, the outcomes mirror those of the previous sub-section:

differences among architectures do not seem compelling and although the init-inject

model outperforms merge in a number of instances, merge is a close second.

5.4 Caption diversity metrics

Next, we turn to the caption diversity metrics, shown in Table 5.

These diversity metrics evince the most dramatic performance differences. If we

focus on the proportion of generated captions that were found in the training
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Table 4. Results of the image retrieval metrics. Language model perplexity was also
included here. Best values are in bold.

Results for Flickr8K

R@1 % R@5 % R@10 % Med. rank Pplx.

Init-inject 17.5 (0.6) 43.2 (1.1) 56.1 (0.4) 7.7 (0.5) 13.70 (0.02)

Merge 17.3 (0.1) 41.1 (0.4) 54.6 (0.6) 8.5 (0.4) 13.96 (0.07)

Par-inject 15.8 (0.4) 39.7 (0.6) 53.3 (0.6) 9.0 (0.0) 13.42 (0.08)

Pre-inject 14.8 (0.2) 37.9 (0.8) 51.8 (1.1) 9.3 (0.5) 13.54 (0.13)

Results for Flickr30K

R@1 % R@5 % R@10 % Med. rank Pplx.

Merge 24.2 (0.0) 51.0 (0.5) 61.5 (0.7) 5.0 (0.0) 22.08 (0.03)

Par-inject 22.8 (0.8) 48.1 (0.4) 60.0 (0.9) 6.0 (0.0) 21.09 (0.46)

Init-inject 22.7 (0.7) 48.6 (0.3) 60.1 (0.1) 6.0 (0.0) 19.50 (0.12)

Pre-inject 21.5 (0.4) 48.1 (0.7) 60.0 (0.5) 6.0 (0.0) 20.18 (0.03)

Results for MSCOCO

R@1 % R@5 % R@10 % Med. rank Pplx.

Init-inject 29.1 (0.9) 63.8 (0.9) 77.2 (0.8) 3.0 (0.0) 9.27 (0.03)

Merge 28.7 (0.7) 62.2 (0.5) 74.8 (0.5) 3.0 (0.0) 10.40 (0.04)

Par-inject 27.2 (0.4) 58.4 (0.7) 73.3 (1.0) 4.0 (0.0) 10.07 (0.05)

Pre-inject 27.1 (0.9) 60.5 (0.6) 75.1 (0.2) 4.0 (0.0) 9.88 (0.04)

set, on MSCOCO, this figure ranges from just over forty percent for merge to

over sixty percent for par-inject. With the exception of Flickr8K, merge has the

lowest proportion of caption reuse overall. If these results are compared to those in

preceding sub-sections, the fact that those models with the greatest tendency to reuse

captions tend to perform well on corpus-based metrics such as CIDEr suggests that

the datasets under consideration are highly stereotyped, perhaps with a significant

amount of redundancy and lack of variety.

A similar observation has been made by Devlin et al. (2015). In a comparison

of retrieval-based and neural architectures for image captioning, these authors

found that corpus-based metrics (especially BLEU) tend to give higher scores on

test instances where the images were very similar to training instances. Neural

architectures performed better for more similar images overall.

The results obtained for the human captions (bottom rows of Table 5) suggest

that the level of caption reuse by humans is extremely low compared to the models

under consideration, though it stands at seven percent on MSCOCO.

Turning to the extent to which architectures use their training vocabulary, the

picture that emerges is consistent with the above. While humans used between

twenty-nine percent and forty-seven percent of the known vocabulary (taken from

the training set) to describe the test set images, none of the evaluated systems used

more than fourteen percent. The merge architecture tops the ranks for all datasets
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Table 5. Results of the caption diversity metrics. The metrics were also applied to the
first caption of each image in the human written test set captions. Best values are in
bold.

Results for Flickr8K

Vocab. Used % Unigram Ent. Bigram Ent. Existing Caps. %

Merge 13.52 (0.97) 5.591 (0.091) 7.626 (0.159) 11.03 (0.54)

Pre-inject 12.46 (0.74) 5.623 (0.064) 7.672 (0.066) 9.43 (0.31)

Init-inject 12.01 (0.34) 5.617 (0.043) 7.649 (0.050) 11.13 (0.05)

Par-inject 10.67 (0.53) 5.507 (0.023) 7.421 (0.024) 13.30 (2.20)

Human 46.75 (0.00) 7.333 (0.000) 10.836 (0.000) 1.10 (0.00)

Results for Flickr30K

Vocab. Used % Unigram Ent. Bigram Ent. Existing Caps. %

Merge 5.95 (0.13) 5.368 (0.058) 7.215 (0.099) 6.77 (0.45)

Init-inject 5.70 (0.11) 5.509 (0.067) 7.407 (0.078) 8.70 (0.73)

Pre-inject 5.45 (0.36) 5.511 (0.045) 7.438 (0.118) 10.07 (2.34)

Par-inject 3.77 (0.19) 5.125 (0.028) 6.720 (0.076) 11.27 (1.10)

Human 29.40 (0.00) 8.011 (0.000) 11.786 (0.000) 0.00 (0.00)

Results for MSCOCO

Vocab. Used % Unigram Ent. Bigram Ent. Existing Caps. %

Merge 7.91 (0.10) 6.073 (0.023) 8.738 (0.025) 40.93 (0.11)

Init-inject 7.26 (0.05) 6.128 (0.009) 8.768 (0.025) 51.88 (0.20)

Pre-inject 6.59 (0.16) 6.064 (0.048) 8.657 (0.049) 51.92 (0.81)

Par-inject 5.00 (0.05) 5.863 (0.008) 8.192 (0.028) 62.73 (0.97)

Human 34.92 (0.00) 7.833 (0.000) 11.915 (0.000) 7.14 (0.00)

by a small margin, although unigram and bigram entropy is highest for pre-inject

(Flickr8K and Flickr30K) and init-inject (MSCOCO).

We interpret these results as showing that neural caption generators require

seeing a word in the training set very often in order to learn to use it. From a

methodological perspective, this further implies that setting an even higher frequency

threshold, below which words are mapped to the UNKNOWN token (the current

experiments set the threshold at five), would be feasible and would make relatively

little difference to the results.

5.5 Visual information retention

As noted in Section 1, one of the differences between the architectures under

consideration is whether they incorporate the image features early or late. This

raises the possibility of differences in the degree to which visual information is

retained by each architecture in the multimodal vector, that is, the input to ‘FFout’
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in Figure 4. This is where information about visual and linguistic input is combined

and is the information bottleneck that the output depends on. The question we

want to answer is: Do (early-binding) inject architectures tend to ‘forget’ about the

image as more words are input into the RNN? Given that the RNN’s memory is

finite, it should be difficult to retain information about all inputs as the length of

the sequence increases, so information about the image might start fading away as

the input sequence gets longer. Merge architectures do not have this problem with

visual information as it is kept outside of the RNN and so is fully retained in the

multimodal vector regardless of the number of time steps.

To measure how much visual information is retained as the number of time steps

grows, we do the following:

(1) Take a trained neural network and input an image and a matching caption.

(2) Record the multimodal vector in the neural network at every time-step.

(3) Replace the image from the original neural network in step 1 with a randomly

selected image, paired with the original caption, thus introducing an image-

caption mismatch.

(4) Record the new, adulterated multimodal vector at every time-step for the new

caption-image combination.

(5) Compare the original and adulterated vectors: if these converge as more words

are fed to the model, it implies that the multimodal vector is losing image

information, as it would be getting influenced less by the image and more by

the prefix.

As a measure of distance between original and adulterated vectors, we use the

mean absolute difference, that is, we take the absolute difference between each

corresponding dimension in the two multimodal vectors and then take the mean of

these differences. Mean absolute difference avoids giving a larger distance to larger

vectors and is also intuitive as a measure of difference between vectors. It also keeps

the distance between time steps exactly equal for merge, which is desirable since

merge does not lose visual information across time steps.

For this set of experiments, we used all twenty-word captions in the MSCOCO

test set and measured the mean distance over all twenty-one time steps (the twenty

words plus the START token). Twenty-word captions are long enough to see a trend

without ending up with too few captions (the mean caption length on the MSCOCO

test set is about 10.4). To create a more reliable mean, we repeat this procedure 100

times so that the mean is over all images in the test set using 100 random images

per instance. The results are shown in Figure 5.

None of the inject architectures maintained a consistent distance between the

original and adulterated multimodal vectors. Crucially, the merge architecture also

has the largest distance among all architectures, demonstrating that, in this archi-

tecture, the words in a caption exhibit a greater dependency on the image to which

they pertain (hence, adulterating the multimodal vector with an irrelevant image

alters the representation considerably). Par-inject comes in second place in terms of

multimodal vector distance. This suggests that it retains more visual information

than the other inject architectures, though not as much as merge. It seems that the
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Fig. 5. (Colour online) Difference between multimodal vectors over time, when the caption is

held constant but the image is changed. For a trained model, markers show mean absolute

difference between multimodal vectors when a twenty-word caption is fed to the model with

the original, versus a randomly chosen image. The marker at position 0 gives the multimodal

vector difference after feeding in the START token whilst the marker at position twenty gives

the multimodal vector difference after feeding in the last word in the caption.

amount of retention across time steps changes somewhat unpredictably, but tends

to decrease overall, which means that information gets lost over time (though not to

the extent of init-inject and pre-inject). Init-inject comes third in visual information

retention followed by pre-inject, both of which decrease over time. It seems that, in

a GRU trained for caption generation, the initial hidden state vector exerts more

influence on the final hidden state vector than the first input.

These results predict that if the generated captions needed to be very long,

late binding architectures will produce better captions as they will retain visual

information over longer time steps, maintaining a tighter coupling between visual

and linguistic information.

6 Conclusion

This paper presented a systematic evaluation of a number of variations on ar-

chitectures for image caption generation and retrieval. The primary focus was on

the distinction between what we have termed ‘inject’ and ‘merge’ architectures. The

former type of model mixes image and language information by training an RNN

to encode an image-prefix mixture. By contrast, merge architectures maintain a

separation between an RNN subnetwork, which encodes a linguistic string, and the

image vector, merging them late in the process, prior to a prediction step. These

models are therefore compatible with approaches to image caption generation using

a ‘multimodal’ layer (Mao et al. 2014, 2015a, 2015b; Hendricks et al. 2016). While

both types of architectures have been discussed in the literature, the inject architec-

ture has been more popular.

Yet, there has been little systematic evaluation of its advantages compared to

merge. Our experiments show that on standard corpus-based metrics such as CIDEr,

the difference in performance between architectures is rather small. Init-inject tends

to be better at generation and retrieval measures. Thus, from the perspective of

corpus similarity, early binding of image features in models that view such features
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as ‘modifiable’ (in the sense outlined in the introduction) appear to be better than

the alternatives.

Crucially, however, we also show that inject architectures are much more likely

to re-generate captions wholesale from the training data and evince less vocabulary

variation. Hence, from the perspective of variation, late-binding models that treat

image features as fixed (i.e. not mixed with linguistic features) are better. While

this is due in part to the nature of the available corpora, the superior performance

of merge on this measure does suggest that, by encoding information from the

two modalities separately, merge architectures might be producing less generic and

stereotyped captions, exploiting their multimodal resources more effectively.

Our experiments on visual information retention show that, over time, inject

architectures tend to loosen the coupling between visual and linguistic features, so

that the difference between actual and adulterated multimodal vectors gets smaller.

This too supports the view that inject models may, especially for longer captions,

tend towards more generic and less image-specific captions, a finding that echoes

the observations of Devlin et al. (2015), to some extent. In any case, late merging is,

by definition, not susceptible to this problem.

From an engineering perspective, there is a significant difference between the

required sizes of the RNN hidden state vectors. Whilst merge only requires a hidden

state vector size sufficient to ‘remember’ caption prefixes, which depends on the length

and complexity of the training set captions, inject architectures require additional

memory to also store image information. This means that merge architectures

make better use of their RNN memory. They also require less regularization whilst

maintaining similar performance as other architectures.

The work presented here opens up some avenues for future research. In future

work, we hope to investigate whether the results in this paper would remain similar

when the experiments are repeated on other applications of conditioned neural

language models such as neural machine translation or question answering.

Furthermore, by keeping language and image information separate, merge ar-

chitectures lend themselves to potentially greater portability and ease of training.

For example, it should be possible in principle to take the parameters of the RNN

and embedding layers of a general text language model and transfer them to the

corresponding layers in a caption generator. This would reduce training time as it

would avoid learning the RNN weights and the embedding weights of the caption

generator from scratch. As understanding of deep learning architectures evolves

in the NLP community, one of our goals should be to maximise the degree of

transferability among model components.
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