
SimpleNLG: A realisation engine for practical applications

Albert Gatt and Ehud Reiter
Department of Computing Science

University of Aberdeen
Aberdeen AB24 3UE, UK

{a.gatt,e.reiter}@abdn.ac.uk

Abstract

This paper describes SimpleNLG, a re-
alisation engine for English which aims
to provide simple and robust interfaces to
generate syntactic structures and linearise
them. The library is also flexible in al-
lowing the use of mixed (canned and non-
canned) representations.

1 Introduction

Over the past several years, a significant consensus
has emerged over the definition of the realisation
task, through the development of realisers such as
REALPRO (Lavoie and Rambow, 1997), ALETH-
GEN (Coch, 1996), KPML (Bateman, 1997),
FUF/SURGE (Elhadad and Robin, 1996), HALO-
GEN (Langkilde, 2000), YAG (McRoy et al., 2000),
and OPENCCG (White, 2006).

Realisation involves two logically distinguish-
able tasks. Tactical generation involves making
appropriate linguistic choices given the semantic
input. However, once tactical decisions have been
taken, building a syntactic representation, apply-
ing the right morphological operations, and lin-
earising the sentence as a string are comparatively
mechanical tasks. With the possible exception
of template-based realisers, such as YAG, exist-
ing wide-coverage realisers usually carry out both
tasks. By contrast, a realisation engine focuses on
the second of the two tasks, making no commit-
ments as to how semantic inputs are mapped to
syntactic outputs. This leaves the (tactical) prob-
lem of defining mappings from semantic inputs
to morphosyntactic structures entirely up to the
developer, something which may be attractive in
those applications where full control of the out-
put of generation is required. Such control is not
always easily available in wide-coverage tactical
generators, for a number of reasons:

1. Many such realisers define an input formal-
ism, which effectively circumscribes the (se-
mantic) space of possibilities that the realiser
handles. The developer needs to ensure that
the input to realisation is mapped to the req-
uisite formalism.

2. Since the tactical problem involves search
through a space of linguistic choices, the
broader the coverage, the more efficiency
may be compromised. Where real-time de-
ployment is a goal, this may be an obstacle.

3. Many application domains have sub-
language requirements. For example, the
language used in summaries of weather data
(Reiter et al., 2005) or patient information
(Portet et al., to appear) differs from standard
usage, and does not always allow variation
to the same extent. Since realisers don’t
typically address such requirements, their
use in a particular application may require
the alteration of the realiser’s rule-base or,
in the case of statistical realisers, re-training
on large volumes of appropruately annotated
data.

This paper describes SimpleNLG, a realisa-
tion engine which grew out of recent experiences
in building large-scale data-to-text NLG systems,
whose goal is to summarise large volumes of nu-
meric and symbolic data (Reiter, 2007). Sub-
language requirements and efficiency are impor-
tant considerations in such systems. Although
meeting these requirements was the initial motiva-
tion behind SimpleNLG, it has since been devel-
oped into an engine with significant coverage of
English syntax and morphology, while at the same
time providing a simple API that offers users di-
rect programmatic control over the realisation pro-
cess.



Feature Values Applicable classes
lexical ADJPOSITION Attrib1/2/3, PostNominal, Predicative ADJ

ADVPOSITION Sentential, PostVerbal, Verbal ADV
AGRTYPE Count, Mass, Group, Inv-Pl, Inv-Sg N
COMPLTYPE AdjP, AdvP, B-Inf, WhFin, WhInf, . . . V
VTYPE Aux, Main, Modal V

phrasal FUNCTION Subject, Obj, I-Obj, Prep-Obj, Modifier all
SFORM B-Inf, Gerund, Imper, Inf, Subj S
INTERROGTYPE Yes/No, How, What, . . . S
NUMBERAGR Plural, Singular NP
TENSE Pres, Past, Fut VP
TAXIS (boolean) true (=perfective), false VP
POSSESSIVE (boolean) true (=possessive), false NP
PASSIVE (boolean) true, false VP

Table 1: Features and values available in SimpleNLG

2 Overview of SimpleNLG

SimpleNLG is a Java library that provides inter-
faces offering direct control over the realisation
process, that is, over the way phrases are built and
combined, inflectional morphological operations,
and linearisation. It defines a set of lexical and
phrasal types, corresponding to the major gram-
matical categories, as well as ways of combining
these and setting various feature values. In con-
structing a syntactic structure and linearising it as
text with SimpleNLG, the following steps are un-
dertaken:

1. Initialisation of the basic constituents re-
quired, with the appropriate lexical items;

2. Using the operations provided in the API to
set features of the constituents, such as those
in bottom panel of Table 1;

3. Combining constituents into larger struc-
tures, again using the operations provided in
the API which apply to the constituents in
question;

4. Passing the resulting structure to the lin-
eariser, which traverses the constituent struc-
ture, applying the correct inflections and lin-
ear ordering depending on the features, be-
fore returning the realised string.

Constituents in SimpleNLG can be a mixture
of canned and non-canned representations. This
is useful in applications where certain inputs can
be mapped to an output string in a deterministic
fashion, while others require a more flexible map-
ping to outputs depending, for example, on seman-
tic features and context. SimpleNLG tries to meet

these needs by providing significant syntactic cov-
erage with the added option of combining canned
and non-canned strings.

Another aim of the engine is robustness: struc-
tures which are incomplete or not well-formed will
not result in a crash, but typically will yield infe-
licitous, though comprehensible, output. This is a
feature that SimpleNLG shares with YAG (McRoy
et al., 2000). A third design criterion was to
achieve a clear separation between morphological
and syntactic operations. The lexical component
of the library, which includes a wide-coverage
morphological generator, is distinct from the syn-
tactic component. This makes it useful for applica-
tions which do not require complex syntactic op-
erations, but which need output strings to be cor-
rectly inflected.

2.1 Lexical operations
The lexical component provides interfaces that de-
fine a Lexicon, a MorphologicalRule, and
a LexicalItem, with subtypes for different lex-
ical classes (Noun, Preposition etc). Mor-
phological rules, a re-implementation of those in
MORPHG (Minnen et al., 2001), cover the full
range of English inflection, including regular and
irregular forms1. In addition to the range of mor-
phological operations that apply to them, various
features can be specified for lexical items. For ex-
ample, as shown in the top panel of Table 1, ad-
jectives and adverbs can be specified for their typ-
ical syntactic positions. Thus, an adjective such
as red would have the values Attrib2, indicating
that it usually occurs in attribute position 2 (fol-
lowing Attrib1 adjectives such as large), and Pred-
icative. Similarly, nouns are classified to indicate

1Thanks are due to John Carroll at the University of Sus-
sex for permission to re-use these rules.



their agreement features (count, mass, etc), while
verbs can be specified for the range of syntactic
complement types they allow (e.g. bare infinitives
and WH-complements).

A typical development scenario involves the
creation of a Lexicon, the repository of the rel-
evant items and their properties. Though this
can be done programmatically, the current distri-
bution of SimpleNLG provides an interface to a
database constructed from the NIH Specialist Lexi-
con2, a large (> 300,000 entries) repository of lex-
ical items in the medical and general English do-
mains, which incorporates information about lexi-
cal features such as those in Table 1.

2.2 Syntactic operations
The syntactic component of SimpleNLG de-
fines interfaces for HeadedPhrase and
CoordinatePhrase. Apart from various
phrasal subtypes (referred to as PhraseSpecs)
following the usage in Reiter and Dale (2000)),
several grammatical features are defined, includ-
ing Tense, Number, Person and Mood (see
Table 1). In addition, a StringPhraseSpec
represents a piece of canned text of arbitrary
length.

A complete syntactic structure is achieved by
initialising constituents with the relevant fea-
tures, and combining them using the operations
specified by the interface. Any syntactic struc-
ture can consist of a mixture of Phrase or
CoordinatePhrase types and canned strings.
The input lexical items to phrase constructors can
themselves be either strings or lexical items as de-
fined in the lexical component. Once syntactic
structures have been constructed, they are passed
to a lineariser, which also handles basic punctua-
tion and other orthographic conventions (such as
capitalisation).

The syntactic component covers the full range
of English verbal forms, including participals,
compound tenses, and progressive aspect. Sub-
types of CoordinatePhrase allow for fully
recursive coordination. As shown in the bottom
panel of Figure 1, subjunctive forms and different
kinds of interrogatives are also handled using the
same basic feature-setting mechanism.

The example below illustrates one way of con-
structing the phrase the boys left the house, ini-

2http://lexsrv3.nlm.nih.gov/
SPECIALIST/index.html

tialising a sentence with the main verb leave
and setting a Tense feature. Note that the
SPhraseSpec interface allows the setting of the
main verb, although this is internally represented
as the head of a VPPhraseSpec dominated by
the clause. An alternative would be to construct
the verb phrase directly, and set it as a constituent
of the sentence. Similarly, the direct object, which
is specified directly as a constituent of the sen-
tence, is internally represented as the object of the
verb phrase. In this example, the direct object
is an NPPhraseSpec consisting of two words,
passed as arguments and internally rendered as
lexical items of type Determiner and Noun re-
spectively. By contrast, the subject is defined as a
canned string.

(1) Phrase s1 =
new SPhraseSpec(‘leave’);

s1.setTense(PAST);
s1.setObject(
new NPPhraseSpec(‘the’, ‘house’));

Phrase s2 =
new StringPhraseSpec(‘the boys’);

s1.setSubject(s2);

Setting the INTERROGATIVETYPE feature of
sentence (1) turns it into a question. Two exam-
ples, are shown below. While (2) exemplifies a
simple yes/no question, in (3), a WH-constituent
is specified as establishing a dependency with the
direct object (the house).

(2) s1.setInterrogative(YES NO);
(Did the boys leave home?)

(3) s1.setInterrogative(WHERE, OBJECT);

(Where did the boys leave?)

In summary, building syntactic structures in
SimpleNLG is largely a question of feature setting,
with no restrictions on whether representations are
partially or exclusively made up of canned strings.

2.2.1 Interaction of lexicon and syntax
The phrasal features in the bottom panel of Table 1
determine the form of the output, since they are
automatically interpreted by the realiser as instruc-
tions to call the correct morphological operations
on lexical items. Hence, the syntactic and morpho-
logical components are closely integrated (though
distinct). Currently, however, lexical features such
as ADJPOSITION are not fully integrated with the
syntactic component. For example, although ad-
jectives in the lexicon are specified for their po-
sition relative to other modifiers, and nouns are



specified for whether they take singular or plural
agreement, this informaiton is not currently used
automatically by the realiser. Full integration of
lexical features and syntactic realisation is cur-
rently the focus of ongoing development.

2.3 Efficiency
As an indication of efficiency, we measured the
time taken to realise 26 summaries with an aver-
age text length of 160.8 tokens (14.4 sentences),
and sentences ranging in complexity from simple
declaratives to complex embedded clauses3. The
estimates, shown below, average over 100 itera-
tions per text (i.e. a total of 2600 runs of the re-
aliser) on a Dell Optiplex GX620 machine running
Windows XP with a 3.16 GHz Pentium proces-
sor. Separate times are given for the initialisation
of constituents based on semantic representations,
along the lines shown in (1), (SYN), and linearisa-
tion (LIN). These figures suggest that a medium-
length, multiparagraph text can be rendered in un-
der a second in most cases.

MEAN (ms) SD MIN MAX
SYN 280.7 229.7 13.8 788.34
LIN 749.38 712.6 23.26 2700.38

3 Conclusions and future work

This paper has described SimpleNLG, a realisa-
tion engine which differs from most tactical gen-
erators in that it provides a transparent API to carry
out low-level tasks such as inflection and syntac-
tic combination, while making no commitments
about input specifications or input-output map-
pings.

The simplicity of use of SimpleNLG is reflected
in its community of users. The currently avail-
able public distribution4, has been used by several
groups for three main purposes: (a) as a front-end
to NLG systems in projects where realisation is not
the primary research focus; (b) as a simple natu-
ral language component in user interfaces for other
kinds of systems, by researchers who do not work
in NLG proper; (c) as a teaching tool in advanced
undergraduate and postgraduate courses on Natu-
ral Language Processing.

SimpleNLG remains under continuous develop-
ment. Current work is focusing on the inclusion of
output formatting and punctuation modules, which

3The system that generates these summaries is fully de-
scribed by Portet et al. (to appear).

4SimpleNLG is available, with exhaus-
tive documentation, at the following URL:
http://www.csd.abdn.ac.uk/∼ereiter/simplenlg/.

are currently handled using simple defaults. More-
over, an enhanced interface to the lexicon is being
developed to handle derivational morphology and
a fuller integration of complementation frames of
lexical items with the syntactic component.

References
J. A. Bateman. 1997. Enabling technology for multi-

lingual natural language generation: the KPML de-
velopment environment. Natural Language Engi-
neering, 3(1):15–55.

J. Coch. 1996. Overview of AlethGen. In Proceedings
of the 8th International Natural Language Genera-
tion Workshop.

M. Elhadad and J. Robin. 1996. An overview of
SURGE: A reusable comprehensive syntactic realiza-
tion component. In Proceedings of the 8th Interna-
tional Natural Language Generation Workshop.

I. Langkilde. 2000. Forest-based statistical language
generation. In Proceedings of the 1st Meeting of
the North American Chapter of the Association for
Computational Linguistics.

B. Lavoie and O. Rambow. 1997. A fast and portable
realizer for text generation systems. In Proceedings
of the 5th Conference on Applied Natural Language
Processing.

S.W. McRoy, S. Channarukul, and S. Ali. 2000. YAG:
A template-based generator for real-time systems.
In Proceedings of the 1st International Conference
on Natural Language Generation.

G. Minnen, J. J. Carroll, and D. Pearce. 2001. Ap-
plied morphological processing of English. Natural
Language Engineering, 7(3):207–223.

F. Portet, E. Reiter, A. Gatt, J. Hunter, S. Sripada,
Y. Freer, and C. Sykes. to appear. Automatic gener-
ation of textual summaries from neonatal intensive
care data. Artificial Intelligence.

E. Reiter and R. Dale. 2000. Building Natural Lan-
guage Generation Systems. Cambridge University
Press, Cambridge, UK.

E. Reiter, S. Sripada, J. Hunter, J. Yu, and I. Davy.
2005. Choosing words in computer-generated
weather forecasts. Artificial Intelligence, 167:137–
169.

E. Reiter. 2007. An architecture for Data-to-Text sys-
tems. In Proceedings of the 11th European Work-
shop on Natural Language Generation.

M. White. 2006. Chart realization from disjunctive
inputs. In Proceedings of the 4th International Con-
ference on Natural Language Generation.


