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Abstract

This paper surveys the current state of the art in Natural Language
Generation (nlg), defined as the task of generating text or speech from
non-linguistic input. A survey of nlg is timely in view of the changes that
the field has undergone over the past decade or so, especially in relation
to new (usually data-driven) methods, as well as new applications of nlg
technology. This survey therefore aims to (a) give an up-to-date synthesis
of research on the core tasks in nlg and the architectures adopted in
which such tasks are organised; (b) highlight a number of relatively recent
research topics that have arisen partly as a result of growing synergies
between nlg and other areas of artificial intelligence; (c) draw attention
to the challenges in nlg evaluation, relating them to similar challenges
faced in other areas of nlp, with an emphasis on different evaluation
methods and the relationships between them.

1

ar
X

iv
:1

70
3.

09
90

2v
1 

 [
cs

.C
L

] 
 2

9 
M

ar
 2

01
7



Contents

1 Introduction 4
1.1 What is Natural Language Generation? . . . . . . . . . . . . . . 6
1.2 Why a survey on Natural Language Generation? . . . . . . . . . 7
1.3 Goals of this survey . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 NLG Tasks 9
2.1 Content determination . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Text structuring . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Sentence aggregation . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Lexicalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Referring expression generation . . . . . . . . . . . . . . . . . . . 15
2.6 Linguistic realisation . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.1 Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.2 Hand-coded grammar-based systems . . . . . . . . . . . . 19
2.6.3 Statistical approaches . . . . . . . . . . . . . . . . . . . . 20

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 NLG Architectures and Approaches 21
3.1 Rule-based, modular approaches . . . . . . . . . . . . . . . . . . 22
3.2 Planning-based approaches . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Planning through the grammar . . . . . . . . . . . . . . . 26
3.2.2 Stochastic planning under uncertainty using Reinforce-

ment Learning . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Data-driven approaches . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Acquiring data . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 NLG based on language models . . . . . . . . . . . . . . . 31
3.3.3 NLG as classification and optimisation . . . . . . . . . . . 33
3.3.4 NLG as ‘parsing’ . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.5 Deep learning methods . . . . . . . . . . . . . . . . . . . . 37

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 The vision-language interface: Image captioning and beyond 40
4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 The core tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Image analysis . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Text generation or retrieval . . . . . . . . . . . . . . . . . 43

4.3 How is language grounded in visual data? . . . . . . . . . . . . . 45
4.4 Vision and language: Current and future directions for NLG . . . 46

5 Variation: Generating text with style, personality and affect 47
5.1 Generating with style: textual variation and personality . . . . . 48
5.2 Generating with feeling: affect and politeness . . . . . . . . . . . 50
5.3 Style and affect: concluding remarks . . . . . . . . . . . . . . . . 52

2



6 Generating creative and entertaining text 53
6.1 Generating puns and jokes . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Generating metaphors and similes . . . . . . . . . . . . . . . . . 55
6.3 Generating narratives . . . . . . . . . . . . . . . . . . . . . . . . 57
6.4 Generating creative language: Concluding remarks . . . . . . . . 61

7 Evaluation 61
7.1 Intrinsic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.1.1 Subjective (human) judgements . . . . . . . . . . . . . . . 63
7.1.2 Objective humanlikeness measures using corpora . . . . . 65
7.1.3 Evaluating genre compatibility . . . . . . . . . . . . . . . 67

7.2 Extrinsic evaluation methods . . . . . . . . . . . . . . . . . . . . 68
7.3 Black box vs glass box evaluation . . . . . . . . . . . . . . . . . . 69
7.4 On the relationship between evaluation methods . . . . . . . . . 70

7.4.1 Metrics versus human judgements . . . . . . . . . . . . . 70
7.4.2 Using controlled experiments . . . . . . . . . . . . . . . . 73

7.5 Evaluation: Concluding remarks . . . . . . . . . . . . . . . . . . 73

8 Discussion and future directions 74
8.1 Why (and how) should NLG be used? . . . . . . . . . . . . . . . 75
8.2 NLG isn’t about text-to-text. . . or is it? . . . . . . . . . . . . . . 75
8.3 Theories and models in search of applications? . . . . . . . . . . 76
8.4 Where do we go from here? . . . . . . . . . . . . . . . . . . . . . 77

9 Conclusion 79

References 79

3



1 Introduction

In his intriguing story The Library of Babel (La biblioteca de Babel , 1941), Jorge
Luis Borges describes a library in which every conceivable book can be found. It
is probably the wrong question to ask, but readers cannot help wondering: who
wrote all these books? Surely, this could not be the work of human authors?
The emergence of automatic text generation techniques in recent years provides
an interesting twist to this question. Consider Philip M. Parker, who offered
more than 100.000 books for sale via Amazon.com, including for example his The
2007-2012 Outlook for Tufted Washable Scatter Rugs, Bathmats, and Sets That
Measure 6-Feet by 9-Feet or Smaller in India Obviously, Parker did not write
these 100,000 books by hand. Rather, he used a computer program that collects
publicly available information, possibly packaged in human-written texts, and
compiles these into a book. Just like the library of Babel contains many books
that are unlikely to appeal to a broad audience, Parker’s books need not find
many readers. In fact, even if only a small percentage of his books get sold a
few times, this would still make him a sizeable profit.

Parker’s algorithm can be seen to belong to a research tradition of so-called
text-to-text generation methods, applications that take existing texts as
their input, and automatically produce a new, coherent text as output. Other
example applications that generate new texts from existing (usually human-
written) text include:

• fusion and summarization of related sentences or texts to make them more
concise (e.g., Clarke & Lapata, 2010);

• simplification of complex texts, for example to make them more accessible
for low-literacy readers (e.g., Siddharthan, 2014) or for children (Macdon-
ald & Siddharthan, 2016);

• automatic spelling, grammar and text correction (e.g., Kukich, 1992; Dale
et al., 2012);

• automatic generation of peer reviews for scientific papers (Bartoli et al.,
2016);

• generation of paraphrases of input sentences (e.g., Bannard & Callison-
Burch, 2005; Kauchak & Barzilay, 2006); and

• automatic generation of questions, for educational and other purposes
(e.g., Brown et al., 2005; Rus et al., 2010).

Often, however, it is necessary to generate texts which are not grounded in
existing ones. Consider, as a case in point, the minor earthquake that took
place close to Beverly Hills, California on March 17, 2014. The Los Angeles
Times was the first newspaper to report it, within 3 minutes of the event,
providing details about the time, location and strength of the quake. This
report was automatically generated by a ‘robo-journalist’, which converted the
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incoming automatically registered earthquake data into a text, by filling gaps
in a predefined template text.1

Robo-journalism and associated practices, such as data journalism, are sim-
ple examples of what is usually referred to as data-to-text generation. They
have had a considerable impact in the fields of journalism and media studies
(van Dalen, 2012; Clerwall, 2014; Hermida, 2015). The technique used by the
Los Angeles Times was not new; many applications have been developed over
the years which automatically generate text from non-linguistic data including,
but not limited to, systems which produce:

• soccer reports (e.g., Theune et al., 2001; Chen & Mooney, 2008);

• virtual ‘newspapers’ from sensor data (Molina et al., 2011);

• textual descriptions of the day-to-day lives of birds based on satellite data
(Siddharthan et al., 2013);

• weather and financial reports (Goldberg et al., 1994; Reiter et al., 2005;
Turner et al., 2008; Ramos-Soto et al., 2015; Wanner et al., 2015; Pla-
chouras et al., 2016);

• summaries of patient information in clinical contexts (Hüske-Kraus, 2003;
Harris, 2008; Portet et al., 2009; Gatt et al., 2009; Banaee et al., 2013);

• interactive information about cultural artefacts, for example in a museum
context (e.g., O’Donnell, 2001; Stock et al., 2007); and

• text intended to persuade (Carenini & Moore, 2006) or motivate behaviour
modification (Reiter et al., 2003).

These systems may differ considerably in the quality and variety of the texts
they produce, their commercial viability and the sophistication of the underly-
ing methods, but all are examples of data-to-text generation. Many of the
systems mentioned above focus on imparting information to user. On the other
hand, as shown by the examples cited above of systems focussed on persuasion
or behaviour change, informing need not be the exclusive goal of nlg. Nor is it
a trivial goal in itself, since in order to successfully impart information, a system
needs to select what to say, distinguishing it from what can be easily inferred
(possibly also depending on the target user), before expessing it coherently.

Generated texts need not have a large audience. There is no need to automat-
ically generate a report of, say, the Champions League European football final,
which is covered by many of the best journalists in the field anyway. However,
there are many other games, less important to the general public (but presum-
ably very important to the parties involved). Typically, all sports statistics (who
played?, who scored? etc.) for these games are stored, but such statistics are not

1See http://www.slate.com/blogs/future_tense/2014/03/17/quakebot_los_angeles_

times_robot_journalist_writes_article_on_la_earthquake.html.
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as a rule perused by sport-reporters. Companies like Narrative Science2 fill this
niche by automatically generating sport reports for these games. Automated
Insights3 even generates reports based on user-provided ‘fantasy football’ data.
In a similar vein, the automatic generation of weather forecasts for offshore oil
platforms (Sripada et al., 2003), or from sensors monitoring the performance of
gas turbines (Yu et al., 2006), has proven to be a fruitful application of data-to-
text techniques. Such bespoke applications are now the mainstay of companies
like Arria-NLG.4

Taking this idea one step further, data-to-text generation paves the way for
tailoring texts to specific audiences. For example, data from babies in neonatal
care can be converted into text differently, with different levels of technical
detail and explanatory language, depending on whether the intended reader is a
doctor, a nurse or a parent (Mahamood & Reiter, 2011). One could also easily
imagine that different sport reports are generated for fans of the respective
teams; the winning goal of one team is likely to be considered a lucky one from
the perspective of the losing team, irrespective of its ‘objective’ qualities. A
human journalist would not dream of writing separate reports about a sports
match (if only for lack of time), but for a computer this is not an issue and this is
likely to be appreciated by a reader who receives a more personally appropriate
report.

1.1 What is Natural Language Generation?

Both text-to-text generation and data-to-text generation are instances of Nat-
ural Language Generation (nlg). In the most widely-cited survey of nlg
methods to date (Reiter & Dale, 1997, 2000), nlg is characterized as ‘the sub-
field of artificial intelligence and computational linguistics that is concerned with
the construction of computer systems than can produce understandable texts in
English or other human languages from some underlying non-linguistic repre-
sentation of information’ (Reiter & Dale, 1997, p.1). Clearly this definition fits
data-to-text generation better than text-to-text generation, and indeed Reiter
and Dale (2000) focus exclusively on the former, helpfully and clearly describing
the rule-based approaches that dominated the field at the time.

It has been pointed out that precisely defining nlg is rather difficult (e.g.,
Evans et al., 2002): everybody seems to agree on what the output of an nlg
system should be (text), but what the exact input is can vary substantially
(McDonald, 1993). A further complication is that the boundaries between dif-
ferent approaches are themselves blurred. For example, text summarisation was
characterized above as a text-to-text application; this is clear for so called ‘ex-
tractive’ summarizers (which produce summaries using sentences from source
documents). However, ‘abstractive’ summarizers (which generate sentences not
present in any of the source documents) increasingly rely on techniques which
are also used in data-to-text, as when opinions are extracted from reviews and

2https://www.narrativescience.com
3https://automatedinsights.com
4http://www.arria.com
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expressed in completely new sentences (e.g., Labbé & Portet, 2012). Conversely,
a data-to-text generation system could conceivably rely on text-to-text genera-
tion techniques for learning how to express pieces of data in different or creative
ways (McIntyre & Lapata, 2009; Gatt et al., 2009; Kondadadi et al., 2013).

Considering other applications of nlg similarly highlights how blurred bound-
aries can get. For example, the generation of spoken utterances in dialogue
systems (e.g., Walker et al., 2007a; Rieser & Lemon, 2009; Dethlefs, 2014) is
another application of nlg, but typically it is closely related to dialogue man-
agement, so that management and realisation policies are sometimes learned in
tandem (e.g., Rieser & Lemon, 2011b). Even what constitutes ‘a non-linguistic
representation of information’ in the context of data-to-text is subject to change:
traditionally, this was taken to be database or logically structured information,
but in recent times there has been an increased interest in using visual data as
input, resulting in so-called vision-to-text systems which automatically pro-
duce descriptions of static or moving images based on computer vision input
(e.g., Mitchell et al., 2012; Kulkarni et al., 2013; Thomason et al., 2014, among
many others).

1.2 Why a survey on Natural Language Generation?

Arguably Reiter and Dale (2000) is still the most complete available survey of
nlg and the most cited. However, the field of nlg has changed drastically
in the last 15 years, with the emergence of successful applications generating
tailored reports for specific audiences, and with the emergence of text-to-text
as well as vision-to-text generation applications, which also tend to rely more
on statistical methods than traditional data-to-text. None of these are covered
in Reiter and Dale (2000). Also notably absent are discussions of applications
that move beyond standard, ‘factual’ text generation, such as those that account
for personality and affect, or creative text such as metaphors and narratives.
Finally, a striking omission by Reiter and Dale (2000) is the lack of discussion
of evaluation methodology. Indeed, evaluation of nlg output has only recently
started to receive systematic attention, in part due to a number of shared tasks
that were conducted within the nlg community.

Since Reiter and Dale (2000), various other nlg overview texts have also
appeared. Bateman and Zock (2005) covers the cognitive, social and compu-
tational dimensions of nlg. McDonald (2010) offers a general characterization
of nlg as ‘the process by which thought is rendered into language’ (p. 121).
Wanner (2010) zooms in on automatic generation of reports, while Di Euge-
nio and Green (2010) looks at specific applications, especially in education and
health-care. Various specialized collections of articles have also been published,
including Krahmer and Theune (2010), which targets data-driven approaches;
and Bangalore and Stent (2014) which focusses on interactive systems. The
web offers various unpublished technical reports, such as Theune (2003), which
surveys dialogue systems, and Piwek (2003) and Belz (2003) on affective nlg.
While useful, these resources do not discuss recent developments or offer a com-
prehensive review. This indicates that a new state-of-the-art survey is highly
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timely.

1.3 Goals of this survey

The goal of the current paper is to present a comprehensive overview of nlg de-
velopments since 2000, both in order to provide nlg researchers with a synthesis
and pointers to relevant research, and to introduce the field to researchers who
are less familiar with nlg. Though nlg has been a part of ai and nlp from the
early days (see e.g., Winograd, 1972; Appelt, 1985), as a field it has arguably
not been fully embraced by these broader communities, and has only recently
began to take full advantage of recent advances in data-driven, machine learning
and deep learning approaches.

As in Reiter and Dale (2000), our main focus, especially in the first part of
the survey, will be on data-to-text generation. In any case, doing full justice
to recent developments in the various text-to-text generation applications is
beyond the scope of a single survey, and many of these are covered in other
individual surveys, including Mani (2001) and Nenkova and McKeown (2011)
for summarisation; Androutsopoulos and Malakasiotis (2010) for paraphrasing;
and Piwek and Boyer (2012) for automatic question generation. However, we
will in various places discuss connections between data-to-text and text-to-text
generation, both because – as noted above – the boundaries are blurred, but
also, and perhaps more importantly, because text-to-text systems have long been
couched in the data-driven frameworks that are becoming increasingly popular
in data-to-text generation, also giving rise to some hybrid systems that combine
rule-bused and statistical techniques (e.g., Kondadadi et al., 2013).

Our review will start with an updated overview of the core nlg tasks that
were introduced in Reiter and Dale (2000), followed by a discussion of architec-
tures and approaches, where we pay special attention to those not covered in the
Reiter and Dale (2000) survey. These two sections constitute the ‘core’ part of
the survey. Beyond these, we highlight several new developments, including ap-
proaches where the input data is visual; and research aimed at generating more
varied, engaging or creative and entertaining texts, taking nlg beyond the fac-
tual, repetitive texts it is sometimes accused of producing. We believe that these
applications are not only interesting in themselves, but may also inform more
’utility’-driven text generation application. For example, by including insights
from narrative generation we may be able to generate more engaging reports
and by including insights from metaphor generation we may be able to phrase
information in these reports in a more original manner. Finally, we will discuss
recent developments in evaluation of natural language generation applications.

In short, the goals of this survey are:

• To give an up-to-date synthesis of research on the core tasks in nlg, as
well as the architectures adopted in the field, especially in view of recent
developments exploiting data-driven techniques (Sections 2 and 3);

• To highlight a number of relatively recent research issues that have arisen
partly as a result of growing synergies between nlg and other areas of
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artificial intelligence, such as computer vision, stylistics and computational
creativity (Sections 4, 5 and 6);

• To draw attention to the challenges in nlg evaluation, relating them to
similar challenges faced in other areas of nlp, with an emphasis on different
evaluation methods and the relationships between them (Section 7).

2 NLG Tasks

Traditionally, the nlg problem of converting input data into output text was
addressed by splitting it up into a number of subproblems. The following six
are frequently found in many nlg systems (Reiter & Dale, 1997, 2000); their
role is illustrated in Figure 1:

1. Content determination: Deciding which information to include in the text
under construction,

2. Text structuring : Determining in which order information will be pre-
sented in the text,

3. Sentence aggregation: Deciding which information to present in individual
sentences,

4. Lexicalisation: Finding the right words and phrases to express informa-
tion,

5. Referring expression generation: Selecting the words and phrases to iden-
tify domain objects,

6. Linguistic realisation: Combining all words and phrases into well-formed
sentences.

These tasks could be thought of in terms of early decision processes (which
information to convey to the reader?) to late ones (which words to use in a
particular sentence, and how to put them in their correct order?). This charac-
terization reflects a long-running distinction in nlg between strategy and tactics
(a distinction that goes back at least to Thompson, 1977). This distinction also
suggests a temporal order in which the tasks are executed, at least in systems
with a modular, pipeline architecture (discussed in Section 3.1): for example,
the system first needs to decide which input data to express in the text, before
it can order information for presentation. However, such ordering of modules
is nowadays increasingly put into question in the data-driven architectures dis-
cussed below (Section 3). Here, we refer to ‘early’ and ‘late’ tasks by way of
distinguishing between choices that are more oriented towards the data (such
as what to say) and choices that are of an increasingly linguistic nature (e.g.,
lexicalisation, or realisation).

In this section, we briefly describe these six tasks, illustrating them with
examples, and highlight recent developments in each case. As we shall see,
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(a) (b)


Event
type existential
pred be
tense past

args

[
theme {b1, b2, b3}
min-val 69

]


(c) (d)

Figure 1: Tasks in nlg, illustrated with a simplified example from the neonatal
intensive care domain. First the system has to decide what the important events
are in the data (a, content determination), in this case, occurrences of low heart
rate (bradycardias). Then it has to decide in which order it wants to present
data to the reader (b, text structuring) and how to express these in individual
sentence plans (c, aggregation, lexicalisation, reference). Finally, the resulting
sentences are generated (d, linguistic realisation).

while the ‘early’ tasks are crucial for the development of nlg systems, they are
often intimately connected to the specific application. By contrast, ‘late’ tasks
are more often investigated independently of an application, and hence have
resulted in approaches that can be shared between applications.

2.1 Content determination

As a first step in the generation process, the nlg system needs to decide which
information should be included in the text under construction, and which should
not. Typically, more information is contained in data than we want to convey
through text, or the data is more detailed than we care to express in text. This is
clear in Figure 1a, where the input signal – a patient’s heart rate – only contains
a few patterns of interest. Selection may also depend on the target audience
(e.g. does it consist of experts or novices, for example) and on the overall
communicative intention (e.g. should the text inform the reader or convince
him to do something).

Content determination involves choice. In a soccer report, we may not want
to verbalise each pass and foul committed, even though the data may con-
tain this information. In the case of neonatal care, data might be collected
continuously from sensors measuring heart rate, blood pressure and other phys-
iological parameters. Data thus needs to be filtered and abstracted into a set
of preverbal messages, semantic representations of information which are often
expressed in a formal representation language, such as logical or database lan-
guages, attribute-value matrices or graph structures. They can express, among
other things, which relations hold between which domain entities, for example,
expressing that player X scored the first goal for team Y at time T.

Though content determination is present in most nlg systems (cf. Mellish
et al., 2006), approaches are typically closely related to the domain of applica-
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tion. A notable exception is Guhe (2007), an incremental account of content
determination based on studies of speakers’ descriptions of dynamic events as
they unfold. This work belongs to a strand of research which considers nlg
first and foremost as a methodology eminently suitable for understanding hu-
man language production.

In recent years, researchers have started exploring data-driven techniques
for content determination ((see e.g., Barzilay & Lee, 2004; Bouayad-Agha et al.,
2013; Kutlak et al., 2013; Venigalla & Di Eugenio, 2013). Barzilay and Lee
(2004), for example, used hidden markov models to model topic shifts in a par-
ticular domain of discourse (say, earthquake reports), where the hidden states
represented ‘topics’, modelled as sentences clustered together by similarity. A
clustering approach was also used by Duboue and McKeown (2003) in the biog-
raphy domain, using texts paired with a knowledge base, from which semantic
data was clustered and scored according to its occurrence in text. In a similar
vein Barzilay and Lapata (2005) use a database of American football records
and corresponding text. Their aim was not only to identify bits of information
that should be mentioned, but also dependencies between them, since mention-
ing a certain event (say, a score by a quarterback) may warrant the mention
of another (say, another scoring event by a second quarterback). The solution
proposed by Barzilay and Lapata was to compute both individual preference
scores for events, and a link preference score.

More recently, various researchers have addressed the question of how to au-
tomatically learn alignments between data and text, also in the broader context
of grounded language acquisition, i.e., modelling how we learn language by look-
ing at correspondences between objects and events in the world and the way we
refer to them in language (Roy, 2002; Yu & Ballard, 2004; Yu & Siskind, 2013).
For example, Liang et al. (2009) extended the work by Barzilay and Lapata
(2005) to multiple domains (soccer and weather), relying on weakly supervised
techniques; in a similar vein, Koncel-Kedziorski et al. (2014) presented a weakly
supervised multilevel approach, to deal with the fact that there is no one-to-one
correspondence between, for example, soccer events in data and sentences in as-
sociated soccer reports. We shall return to these methods as part of a broader
discussion of data-driven approaches below (Section 3.3).

2.2 Text structuring

Having determined what messages to convey, the nlg system needs to decide
on their order of presentation to the reader. For example, Figure 1b shows
three events of the same type (all bradycardia events, that is, brief drops in
heart rate), selected (after abstraction) from the input signal and ordered as a
temporal sequence.

This stage is often referred to as text (or discourse or document) structuring.
In the case of the soccer domain, for example, it seems reasonable to start with
general information (where and when the game was played, how many people
attended, etc.), before the goals are described, typically in temporal order. In
the neonatal care domain, a temporal order can be imposed among specific
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events, as in Figure 1b, but larger spans of text may reflect ordering based on
importance, and grouping of information based on relatedness (e.g. all events
related to a patient’s respiration) (Portet et al., 2009). Naturally, alternative
discourse relations may exist between separate messages, such as contrasts or
elaborations. The result of this stage is a discourse, text or document plan,
which is a structured and ordered representation of messages.

These examples again imply that the application domain imposes constraints
on ordering preferences. Early approaches, such as McKeown (1985), often
relied on hand-crafted, domain-dependent structuring rules (which McKeown
called schemata). To account for discourse relations between messages, re-
searchers have alternatively relied on Rhetorical Structure Theory (rst; e.g.,
Mann & Thompson, 1988; Scott & Sieckenius de Souza, 1990; Hovy, 1993),
which also typically involved domain-specific rules. For example, Williams and
Reiter (2008) used rst relations to identify ordering among messages that would
maximise clarity to low-skilled readers.

Various researchers have explored the possibilities of using machine learning
techniques for document structuring (e.g., Dimitromanolaki & Androutsopou-
los, 2003), sometimes doing this in tandem with content selection (Duboue &
McKeown, 2003). General approaches for information ordering (Barzilay & Lee,
2004; Lapata, 2006) have been proposed, which automatically try to find an op-
timal ordering of ‘information-bearing items’. These approaches can be applied
to text structuring, where the items to be ordered are typically preverbal mes-
sages; however, they can also be applied in (multidocument) summarisation,
where the items to be ordered are sentences from the input documents which
are judged to be summary-worthy enough to include (e.g., Barzilay et al., 2002;
Bollegala et al., 2010).

2.3 Sentence aggregation

Not every message in the text plan needs to be expressed in a separate sen-
tence; by combining multiple messages into a single sentence, the generated
text becomes potentially more fluid and readable (e.g., Dalianis, 1999; Cheng &
Mellish, 2000), although there are also situations where it has been argued that
aggregation should be avoided (discussed in Section 5.2). For instance, the three
events selected in Figure 1b are shown as ‘merged’ into a single pre-linguistic
representation, which will be mapped to a single sentence. The process by
which related messages are grouped together in sentences is known as sentence
aggregation.

To take another example, from the soccer domain, one (unaggregated) way
to describe the fastest hat-trick in the English Premier League would be:

(1) Sadio Mane scored for Southampton after 12 minutes and 22 seconds.

(2) Sadio Mane scored for Southampton after 13 minutes and 46 seconds.

(3) Sadio Mane scored for Southampton after 15 minutes and 18 seconds.
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Clearly, this is rather redundant, not very concise or coherent, and generally
unpleasant to read. An aggregated alternative, such as the following, would
therefore be preferred:

(4) Sadio Mane scored three times for Southampton in less than three
minutes.

In general, aggregation is difficult to define, and has been interpreted in
various ways, ranging from redundancy elimination to linguistic structure com-
bination. Reape and Mellish (1999) offer an early survey, distinguishing between
aggregation at the semantic level (as illustrated in Figure 1c) and at the level
of syntax, illustrated in the transition from (2.3) to (4) above.

It is probably fair to say that much early work on aggregation was strongly
domain-dependent. This work focussed on domain- and application-specific
rules (e.g. ‘if a player scores two consecutive goals, describe these in the
same sentence’), that were typically hand-crafted (e.g., Hovy, 1988; Dalianis,
1999; Shaw, 1998). Once again, more recent work has evinced a turn towards
data-driven approaches, where aggregation rules are acquired from corpus data
(e.g., Walker et al., 2001; Cheng & Mellish, 2000). Barzilay and Lapata (2006)
present a system that learns how to aggregate on the basis of a parellel corpus
of sentences and corresponding database entries, by looking for similarities be-
tween entries. As was the case with the content selection method of Barzilay
and Lapata (2005), Barzilay and Lapata (2006) view the problem in terms of
global optimisation: an initial classification is done over pairs of database en-
tries which determines whether they should be aggregated or not on the basis of
their pairwise similarity. Subsequently, a globally optimal set of linked entries is
selected based on transitivity constraints (if 〈ei, ej〉 and 〈ej , ek〉 are linked, then
so should 〈ei, ek〉) and global constraints, such as how many sentences should
be aggregated in a document. Global optimisation is cast in terms of Integer
Linear Programming, a well-known mathematical optimization technique (e.g.,
Nemhauser & Wolsey, 1988).

With syntactic aggregation, it is arguably more feasible to define domain-
independent rules to eliminate redundancy (Harbusch & Kempen, 2009; Kem-
pen, 2009). For example, converting the first example into the second below

(5) Sadio Mane scored in the 12th minute and he scored again in the 13th
minute.

(6) Sadio Mane scored in the 12th minute and again in the 13th.

could be achieved by identifying the parallel verb phrases in the two con-
joined sentences and eliding the subject and verb in the second. Recent work
has explored the possibility of acquiring such rules from corpora automatically.
For example, Stent and Molina (2009) describe an approach to the acquisition
of sentence-combining rules from a discourse treebank, which are then incorpo-
rated into the sparky sentence planner described by Walker et al. (2007b). A
more general approach to the same problem is discussed by White and Howcroft
(2015).
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Arguably, aggregation on the syntactic level can only account for relatively
small reductions, compared to aggregation at the level of messages. Further-
more, syntactic aggregation assumes that the sentence planning process (which
includes lexicalisation) is complete. Hence, while traditional approaches to nlg
view aggregation as part of sentence planning, which occurs prior to syntactic
realisation, the validity of this claim depends on the type of aggregation being
performed (see also Theune et al., 2006).

2.4 Lexicalisation

Once the content of the sentence has been finalised, possibly also as a result
of aggregation at the message level, the system can start converting it into
natural language. In our example (Figure 1c), the outcome of aggregation and
lexicalisation are shown together: here, the three events have been grouped, and
mapped to a representation that includes a verb (be) and its arguments, though
the arguments themselves still have to be rendered in a referring expression (see
below). This reflects an important decision, namely, which words or phrases
to use to express the messages’ building blocks. A complication is that often
a single event can be expressed in natural language in many different ways. A
scoring event in a soccer match, for example, can be expressed as ‘to score a
goal’, ‘to have a goal noted’, ‘to put the ball in the net’, among many others.

The complexity of this lexicalisation process critically depends on the num-
ber of alternatives that the nlg system can entertain. Often, contextual con-
straints play an important role here as well: if the aim is to generate texts with
a certain amount of variation (e.g., Theune et al., 2001), the system can decide
to randomly select a lexicalisation option from a set of alternatives (perhaps
even from a set of alternatives not used earlier in the text). However, stylistic
constraints come into play: ‘to score a goal’ is an unfortunate way of expressing
an own goal, for example. In other applications, lexical choice may even be in-
formed by other considerations, such as the attitude or affective stance towards
the event in question (e.g., Fleischman & Hovy, 2002, and the discussion in Sec-
tion 5). Whether or not nlg systems aim for variation in their output or not
depends on the domain. For example, variation in soccer reports is presumably
more appreciated by readers than variation in weather reports (on which see
Reiter et al., 2005); it may also depend on where in a text the variation occurs
(e.g., variation in expressing timestamps may be less appreciated than variation
in referential forms, see e.g., Ferreira et al. (2016)).

One straightforward model for lexicalisation – the one assumed in Figure 1
– is to operate on preverbal messages, converting domain concepts directly into
lexical items. This might be feasible in well-defined domains. More often, lex-
icalisation is harder, for at least two reasons (cf. Bangalore & Rambow, 2000):
First, it can involve selection between semantically similar, near-synonymous
or taxonomically related words (e.g. animal vs dog; Stede, 2000; Edmonds &
Hirst, 2002). Second, it is not always straightforward to model lexicalisation in
terms of a crisp concept-to-word mapping. One source of difficulty is vagueness,
which arises, for example, with terms denoting properties that are gradable.
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For example, selecting the adjectives ‘wide’ or ‘tall’ based on the dimensions
of an entity requires the system to reason about the width or height of simi-
lar objects, perhaps using some standard of comparison (since a ‘tall glass’ is
shorter than a ‘short man’; cf. Kennedy & McNally, 2005; van Deemter, 2012).
A similar issue has been noted in the context of presenting numerical informa-
tion, such as timestamps and quantities (Reiter et al., 2005; Power & Williams,
2012). For example, Reiter et al. (2005) discussed time expressions in the con-
text of weather-forecast generation, pointing out that a timestamp 00:00 could
be expressed as late evening, midnight, or simply evening (Reiter et al., 2005,
p. 143). Not surprisingly, humans (including the professional forecasters that
contributed to Reiter et al.’s evaluation), show considerable variation in their
lexical choices.

It is interesting to note that many issues related to lexicalisation have also
been discussed in the psycholinguistic literature on lexical access (Levelt, 1989;
Levelt et al., 1999). Among these is the question of how speakers home in on
the right word and under what conditions they are liable to make errors, given
that the mental lexicon is a densely connected network in which lexical items are
connected at multiple levels (semantic, phonological, etc). This has also been a
fruitful topic for computational modelling (e.g., Levelt et al., 1999). In contrast
to cognitive modelling approaches, however, research in nlg increasingly views
lexicalisation as part of surface realisation (discussed below) (a similar obser-
vation is made by Mellish & Dale, 1998, p.351). A fundamental contribution
in this context is by Elhadad et al. (1997), who describe a unification-based
approach, unifying conceptual representations (i.e., preverbal messages) with
grammar rules encoding lexical as well as syntactic choices.

2.5 Referring expression generation

Referring Expression Generation (reg) is characterised by Reiter and Dale
(1997, p.11) as ‘the task of selecting words or phrases to identify domain en-
tities’. This characterisation suggests a close similarity to lexicalisation, but
Reiter and Dale (2000) point out that the essential difference is that referring
expression generation is a ‘discrimination task, where the system needs to com-
municate sufficient information to distinguish one domain entity from other
domain entities’. reg is among the tasks within the field of automated text
generation that has received most attention in recent years (Mellish et al., 2006;
Siddharthan et al., 2011). Since it can be separated relatively easily from a
specific application domain and studied in its own right, various ‘standalone’
solutions for the reg problem exist.

In our running example, the three bradycardia events shown in Figure 1b
are later represented as a set of three entities under the theme argument of be,
following lexicalisation (Figure 1c). How the system refers to them will depend,
among other things, on whether they’ve already been mentioned (in which case,
a pronoun or definite description might work) and if so, whether they need to
be distinguished from any other similar entities (in which case, they might need
to be distinguished by some properties, such as the time when they occurred).
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(a) Visual domain from the
gre3d corpus (Viethen &
Dale, 2008)

Domain objects
Attributes d1 d2 d3
Color blue green blue
Shape ball cube ball
Size small large large
Relation before(d2) behind(d1) next to(d2)

(b) Tabular representation of the vi-
sual domain

Figure 2: Visual domain and tabular representation

The first choice is therefore related to referential form: whether entities
are referred to using a pronoun, a proper name or an (in)definite description,
for example. This depends partly on the extent to which the entity is ‘in fo-
cus’ or ‘salient’ (see e.g., Poesio et al., 2004) and indeed such notions underlie
many computational accounts of pronoun generation (e.g., McCoy & Strube,
1999; Callaway & Lester, 2002; Kibble & Power, 2004). Choosing referential
forms has recently been the topic of a series of shared tasks on the Genera-
tion of Referring Expressions in Context (grec; Belz et al., 2010), using data
from Wikipedia articles, which included choices such as reflexive pronouns and
proper names. Many systems participating in this challenge framed the prob-
lem in terms of classification among these many options. Still, it is probably
fair to say that much work on referential form has focussed on when to use
pronouns. Forms such as proper names remain understudied, although recently
various researchers have highlighted the problems of proper name generation
(Siddharthan et al., 2011; van Deemter, 2016; Ferreira et al., 2017).

Determining the referential content usually comes into play when the chosen
form is a description. Typically, there are multiple entities which have the same
referential category or type in a domain (more than one player, for example, or
several bradycardias). As a result, other properties of the entity will need to be
mentioned if it is to be identified by the reader or hearer. Earlier reg research
often worked with simple visual domains, such as Figure 2a or its corresponding
tabular representation, taken from the gre3d corpus (Viethen & Dale, 2008).
In this example, the reg content selection problem is to find a set of properties
for a target (say d1) that singles it out from its two distractors (d2 and d3).

reg content determination algorithms can be thought of as performing a
search through the known properties of the referent for the ‘right’ combination
that will distinguish it in context. What constitutes the ‘right’ combination
depends on the underlying theory. Too much information in the description (as
in the small blue ball before the large green cup) might be misleading or even
boring; too little (the ball) might hinder identification. Much work on reg has
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appealed to the Gricean maxim stating that speakers should make sure that
their contributions are sufficiently informative for the purposes of the exchange,
but not more so (Grice, 1975). How this is interpreted has been the subject of
a number of algorithmic interpretations, including:

• Conducting an exhaustive search through the space of possible descriptions
and choosing the smallest set of properties that will identify the target
referent, the strategy incorporated by the Full Brevity procedure (Dale,
1989). In our example domain, this would select size.

• Selecting properties incrementally, but choosing the one which rules out
most distractors at each step, thereby minimising the possibility of in-
cluding information that isn’t directly relevant to the identification task.
This is the underlying idea of the Greedy Heuristic algorithm (Dale, 1989,
1992), and it has more recently been revived in stochastic utility-based
models such as Frank et al. (2009). In our example scene, such an algo-
rithm would once again consider size first.

• Selecting properties incrementally, but based on domain-specific prefer-
ence or cognitive salience. This is the strategy incorporated in the Incre-
mental Algorithm (Dale & Reiter, 1995), which would predict that color
should be preferred over size in our example.

While these heuristics focus exclusively on the requirement that a referent
be unambiguously identified, research on reference in dialogue (e.g., Jordan
& Walker, 2005) has shown that under certain conditions, referring expressions
may also include ‘redundant’ properties in order to achieve other communicative
goals, such as confirmation of a previous utterance by an interlocutor. Similarly,
White et al. (2010) present a system which generates user-tailored descriptions
in spoken dialogue, arguing that, for example, a frequent flyer would prefer
different descriptions of flights than a student who only flies occasionally.

These various algorithms compute (possibly different) distinguishing descrip-
tions for target referents (more precisely: they select sets of properties that dis-
tinguish the target, but that still need to be expressed in words; see Section 2.6
below). Various strands of more recent work can be distinguished (surveyed in
Krahmer & van Deemter, 2012). Some researchers have focussed on extending
the expressivity of the ‘classical’ algorithms, to include plurals (the two balls)
and relations (the ball in front of a cube) (e.g., Horacek, 1997; Stone, 2000;
Gardent, 2002; Kelleher & Kruijff, 2006; Viethen & Dale, 2008, among many
others). Other work has cast the problem in probabilistic terms; for example,
FitzGerald et al. (2013) frame reg as a problem of estimating a log-linear distri-
bution over a space of logical forms representing expressions for sets of objects.
Other work has concentrated on evaluating the performance of different reg
algorithms, by collecting controlled human references and comparing these with
the references predicted by various algorithms (e.g., Belz, 2008; Gatt & Belz,
2010; Jordan & Walker, 2005, again among many others). In a similar vein,
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researchers have also started exploring the relevance of reg algorithms as psy-
cholinguistic models of human language production (e.g., van Deemter et al.,
2012b).

A different line of work has moved away from the separation between content
selection and form, performing these tasks jointly. For example, Engonopou-
los and Koller (2014) use a synchronous grammar that directly relates surface
strings to target referents, using a chart to compute the possible expressions
for a given target. This work bears some relationship to planning-based ap-
proaches we discuss in Section 3.2 below, which exploit grammatical formalisms
as planning operators (e.g. Stone & Webber, 1998; Koller & Stone, 2007), solv-
ing realisation and content determination problems in tandem (including reg
as a special case).

Finally, in earlier work visual information was typically ‘simplified’ into a
table (as we did above), but there has been substantial progress on reg in more
complex scenarios. For example, the give challenge (Koller et al., 2010), pro-
vided impetus for the exploration of situated reference to objects in a virtual
environment (see also Stoia & Shockley, 2006; Garoufi & Koller, 2013). More
recent work has started exploring the interface between computer vision and
reg to produce descriptions of objects in complex, realistic visual scenes, in-
cluding photographs (e.g., Mitchell et al., 2013; Kazemzadeh et al., 2014; Mao
et al., 2016). This forms part of a broader set of developments focussing on the
relatonship between vision and language, which we turn to in Section 4.

2.6 Linguistic realisation

Finally, when all the relevant words and phrases have been decided upon, these
need to be combined to form a well-formed sentence. The simple example in
Figure 1d shows the structure underlying the sentence there were three successive
bradycardias down to 69, the linguistic message corresponding to the portion
selected from the original signal in Figure 1a.

Usually referred to as linguistic realisation, this task involves ordering con-
stituents of a sentence, as well as generating the right morphological forms
(including verb conjugations and agreement, in those languages where this is
relevant). Often, realisers also need to insert function words (such as auxiliary
verbs and prepositions) and punctuation marks. An important complication at
this stage is that the output needs to include various linguistic components that
may not be present in the input (an instance of the ‘generation gap’ discussed
in Section 3.1 below); thus, this generation task can be thought of in terms
of projection between non-isomorphic structures (cf. Ballesteros et al., 2015).
Many different approaches have been proposed, of which we will discuss

1. human-crafted templates;

2. human-crafted grammar-based systems;

3. statistical approaches.
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2.6.1 Templates

When application domains are small and variation is expected to be minimal,
realisation is a relatively easy task, and outputs can be specified using templates
(e.g., Reiter et al., 1995; McRoy et al., 2003), such as the following.

(7) $player scored for $team in the $minute minute.

This template has three variables, which can be filled with the names of a player,
a team, and the minute in which this player scored a goal. It can thus serve to
generate sentences like:

(8) Ivan Rakitic scored for Barcelona in the 4th minute.

An advantage of templates is that they allow for full control over the quality
of the output and avoid the generation of ungrammatical structures. Modern
variants of the template-based method include syntactic information in the tem-
plates, as well as sophisticated rules for filling the gaps (Theune et al., 2001),
making it difficult to distinguish templates from more sophisticated methods
(van Deemter et al., 2005). The disadvantage of templates is that they are
labour-intensive if constructed by hand (though templates have recently been
learned automatically from corpus data, see e.g., Angeli et al., 2012; Kondadadi
et al., 2013, and the discussion in Section 3.3 below). They also do not scale
well to applications which require considerable linguistic variation.

2.6.2 Hand-coded grammar-based systems

An alternative to templates is provided by general-purpose, domain-independent
realisation systems. Most of these systems are grammar-based, that is, they
make some or all of their choices on the basis of a grammar of the language
under consideration. This grammar can be manually written, as in many classic
off-the-shelf realisers such as fuf/surge (Elhadad & Robin, 1996), mumble
(Meteer et al., 1987), kpml (Bateman, 1997), nigel (Mann & Matthiessen,
1983), and RealPro (Lavoie & Rambow, 1997). Hand-coded grammar-based
realisers tend to require very detailed input. For example, kpml (Bateman,
1997) is based on Systemic-Functional Grammar (sfg; Halliday & Matthiessen,
2004), and realisation is modelled as a traversal of a network in which choices
depend on both grammatical and semantico-pragmatic information. This level
of detail makes these systems difficult to use as simple ‘plug-and-play’ or ‘off
the shelf’ modules (e.g., Kasper, 1989), something which has motivated the
development of simple realisation engines which provide syntax and morphology
apis, but leave choice-making up to the developer(Gatt et al., 2009; Vaudry &
Lapalme, 2013; Bollmann, 2011; de Oliveira & Sripada, 2014).

One difficulty for grammar-based systems is how to make choices among
related options, such as the following, where hand-crafted rules with the right
sensitivity to context and input are difficult to design:

(9) Ivan Rakitic scored for Barcelana in the 4th minute.
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(10) For Barcelona, Ivan Rakitic scored in minute four.

(11) Barcelona player Ivan Rakitic scored after four minutes.

2.6.3 Statistical approaches

Recent approaches have sought to acquire probabilistic grammars from large
corpora, cutting down on the amount of manual labour required, while increas-
ing coverage. Essentially, two approaches have been taken to include statistical
information in the realisation process. One approach, introduced by the semi-
nal work of Langkilde and Knight (Langkilde-Geary, 2000; Langkilde-Geary &
Knight, 2002) on the halogen/nitrogen systems, relies on a two-level ap-
proach, in which a small, hand-crafted grammar is used to generate alternative
realisations represented as a forest, from which a stochastic re-ranker selects
the optimal candidate. Langkilde and Knight rely on corpus-based statistical
knowledge in the form of n-grams, whereas others have experimented with more
sophisticated statistical models to perform reranking (e.g., Bangalore & Ram-
bow, 2000; Ratnaparkhi, 2000; Cahill et al., 2007). The second approach does
not rely on a computationally expensive generate-and-filter approach, but uses
statistical information directly at the level of generation decisions. An example
of this approach is the pcru system developed by Belz (2008), which generates
the most likely derivation of a sentence, given a corpus, using a context-free
grammar. In this case, the statistics are exploited to control the generator’s
choice-making behaviour as it searches for the optimal solution.

In both approaches, the base generator is hand-crafted, while statistical
information is used to filter outputs. An obvious alternative would be to also
rely on statistical information for the base-generation system. Fully data-driven
grammar-based approaches have been developed by acquiring grammatical rules
from treebanks. For example, the Openccg framework (Espinosa et al., 2008;
White & Rajkumar, 2009, 2012) presents a broad coverage English surface re-
alizer, based on Combinatory Categorial Grammar (ccg; Steedman, 2000),
relying on a corpus of ccg representations derived from the Penn Treebank
(Hockenmaier & Steedman, 2007) and using statistical language models for re-
ranking. There are several other approaches to realisation that adopt a similar
rationale, based on a variety of grammatical formalisms, including Head-Driven
Phrase Structure Grammar (hpsg; Nakanishi et al., 2005; Carroll & Oepen,
2005), Lexical-Functional Grammar (lfg; Cahill & Josef, 2006) and Tree Ad-
joining Grammar (tag; Gardent & Narayan, 2015). In the many of these
systems, the base generator uses some variant of the chart generation algorithm
(Kay, 1996) to iteratively realise parts of an input specification and merge them
into one or more final structures, which can then be ranked (see Rajkumar &
White, 2014, for further discussion). The existence of stochastic realisers with
wide-coverage grammars has motivated a greater focus on subtle choices, such
as how to avoid structural ambiguity, or how to handle choices such as explicit
complementiser insertion in English (see e.g., Rajkumar & White, 2011).

Other approaches to realisation also rely on one or more classifiers to im-
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prove outputs. For example, Filippova and Strube describe an approach to
linearisation of constituents using a two-step approach with Maximum Entropy
classifiers, first determining which constituent should occupy sentence-initial
position, then ordering the constituents in the remainder of the sentence (Fil-
ippova & Strube, 2007, 2009). Bohnet et al. (2010) describe a realiser using
underspecified dependency structures as input, in a framework based on Sup-
port Vector Machines, where classifiers are organised in a cascade. An initial
classifier decodes semantic input into the corresponding syntactic features, while
two subsequent classifiers first linearise the syntax and then render the correct
morphological realisation for the component lexemes. This ‘deep generation’
approach was applied to four languages – Chinese, English, German and Span-
ish – and found to outperform the approach of Filippova and Strube (2009)
on English when compared to a corpus using the bleu metric (Papineni et al.,
2002), though it falls somewhat short of the German realiser of Filippova and
Strube (2007), where the two-step classification approach does better.

Modelling choices using classifier cascades is not restricted to realisation;
indeed, in some cases, it has been adopted as a model for the nlg process as a
whole, a topic we will return to in Section 3.3.3. One outcome of this view of nlg
is that the nature of the input representation also changes: the more decisions
that are made within the statistical generation system, the less linguistic and
more abstract the input representation becomes, paving the way for integrated,
end-to-end stochastic generation systems, such as Konstas and Lapata (2013),
which we also discuss in the next section.

2.7 Discussion

This section has given an overview of some classic tasks that are found in most
nlg systems. One of the common trends that can be identified in each case
is the steady move from early, hand-crafted approaches based on rules, to the
more recent stochastic approaches that rely on corpus data, with a concomitant
move towards more domain-independent approaches. Historically, this was the
case already for tasks, such as referring expression generation or realisation,
which became topics of intensive research in their own right. However, as more
and more approaches to all nlg tasks begin to take a statistical turn, there
is increasing emphasis on learning techniques; the domain-specific aspect is, as
it were, incidental, a property of the training data itself. As we shall see in
the next section, this trend has also influenced the way different nlg tasks are
organised, that is, the architecture of systems for text generation from data.

3 NLG Architectures and Approaches

Having given an overview of the most common sub-tasks that nlg systems incor-
porate, we now turn to the way such tasks can be organised. Broadly speaking,
we can distinguish between three dominant approaches to nlg architectures:
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sentence
plan Realiser text

Figure 3: Classical three-stage NLG architecture, after Reiter and Dale (2000).
Darker segments illustrate the three main modules; lighter segments show the
outputs.

1. Modular architectures: These are often typical of systems with roots in the
classical, symbol-processing paradigm that dominated early ai research.
By design, such architectures involve fairly crisp divisions among sub-
tasks, though with significant variations among them;

2. Planning perspectives: Again with deep roots in the ai tradition, viewing
text generation as planning affords a more integrated, less modular design;

3. Data-driven, integrated approaches: Now the dominant trend in nlg (as
it is in nlp more generally), such approaches place a heavy reliance on
statistical learning of correspondences between (non-linguistic) inputs and
outputs. Such correspondences often cut across task divisions, resulting
once again in more integrated approaches to the nlg problem.

Of these three, the first, modular design is the oldest and for a long time,
following Reiter (1994), was referred to as the ‘consensus’. While we review it
in some depth below, we emphasise that its consensual status has been repeat-
edly put into question. Indeed, more recent planning-based and/or data-driven
research has strongly challenged the modular view. For this reason, in what fol-
lows, we will often explicitly contrast the encapsulated design of the older model
with these more ‘global’ approaches, with a view to highlighting computational
solutions aimed to address nlg sub-tasks jointly.

3.1 Rule-based, modular approaches

Existing surveys of nlg, including Reiter and Dale (Reiter & Dale, 1997, 2000)
and Reiter (2010) typically refer to some version of the pipeline architecture
displayed in Figure 3 as the ‘consensus’ architecture in the field. Originally
introduced by (Reiter, 1994), the pipeline was a generalisation based on actual
practice and achieved the status of a ‘de facto standard’.

Different modules in the pipeline incorporate different subsets of the tasks de-
scribed in Section 2. The first module, the Text Planner (or Document Planner,
or Macroplanner), combines content selection and text structuring (or document
planning). Thus, it is concerned mainly with strategic generation (McDonald,
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1993), the choice of ‘what to say’. The resulting text plan, a structured repre-
sentation of messages, is the input to the Sentence Planner (or microplanner),
which typically combines sentence aggregation, lexicalisation and referring ex-
pression generation (Reiter & Dale, 2000). If text planning amounts to deciding
what to say , sentence planning can be understood as deciding how to say it.
All that remains then is to actually say it, i.e., generate the final sentences in
a grammatically correct way, by applying syntactic and morphological rules.
This task is performed by the Linguistic Realiser. Together, sentence planning
and realisation encompass the set of tasks traditionally referred to as tactical
generation.

Interestingly, when Reiter (1994) proposed this three-stage architecture as
the emerging consensus architecture in nlg, he drew a parallel with human
speech production, where the most influential psycholinguistic model of lan-
guage production, proposed by Levelt (1989, 1999), makes a similar distinction
between deciding what to say and determining how to say it. Levelt’s model
allows for a limited degree of self-monitoring through feedback loops, a feature
that is absent in Reiter’s nlg pipeline, but continues to play an important role
in psycholinguistics (cf. Pickering & Garrod, 2013), though here too there has
been increasing emphasis on more integrated models.

The consensus pipeline also shares a number of characteristics with a widely-
used architecture in text summarisation (Mani, 2001; Nenkova & McKeown,
2011). Rather like the program used by Parker to generate books (see Section
1), summarisation systems take as input one or more texts, seeking to produce
a summary for the reader. Traditionally (as discussed by Mani, 2001, among
others), summarisation can be broken down into the following steps:

1. Analysis of the source text(s), whereby information – in the form of phrases
or sentences – is selected for inclusion in the eventual summary. Since this
stage involves selection, it shares some features with the text planning
stage of a data-to-text system, where content determination is one of the
tasks;

2. Transformation of the selected input, where selected phrases or sentences
can undergo processes such as aggregation, fusion or paraphrasing to re-
duce redudnancy and make the text fluent. This stage, which is especially
important in abstractive summarisation, shares some features with the
sentence planning stage in Figure 3;

3. Synthesis, that is, the process of generating the summary, based on the
selected information. In this case, systems are typically dealing with tex-
tual input, but the higher the level of abstraction in the summary, the
more this stage will play a role in re-generating text that might look quite
different in its essentials from the original input text(s). Hence, this task
may share some features with the realisation stage in Figure 3.

A hallmark of the architecture in Figure 3 is that it represents clear-cut
divisions among tasks that are traditionally considered to belong to the ‘what’
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(strategic) and the ‘how’ (tactical). However, this does not imply that this di-
vision is universally accepted in practice. In a survey conducted approximately
a decade ago, Mellish et al. (2006) already concluded that while several nlg
systems incorporate many of the core tasks outlined in Section 2, their organ-
isation varies considerably from system to system. Indeed, some tasks may
be split up across modules. For example, the content determination part of
referring expression generation might be placed in the sentence planner, but
decisions about form (such as whether to use an anaphoric np, and if so, what
kind of np to produce) may have to wait until at least some realisation-related
decisions have been taken. Based on these observations, Mellish et al. proposed
an alternative formalism, the ‘objects-and-arrows’ framework, within which dif-
ferent types of information flow between nlg sub-tasks can be accommodated.
Rather than offering a specific architecture, this framework was intended as a
formalism within which high-level descriptions of different architectures can be
specified. However, it retains the principle that the tasks, irrespective of their
organisation, are well-defined and distinguished.

A more recent development in relation to the pipeline architecture in Figure
3 is a proposal by Reiter (2007) to accommodate systems in which input con-
sists of raw (often numeric) data that requires some preprocessing before it can
undergo the kind of selection and planning that the Text Planner is designed to
execute. The main characteristic of these systems is that input is unstructured,
in contrast to systems which operate over logical forms, or database entries. Ex-
amples of application domains where this is the case include weather reporting
(e.g., Goldberg et al., 1994; Busemann & Horacek, 1997; Coch, 1998; Turner
et al., 2008; Sripada et al., 2003; Ramos-Soto et al., 2015), where the input often
takes the form of numerical weather predictions; and generation of summaries
from patient data (e.g., Hueske-Kraus, 2003; Harris, 2008; Gatt et al., 2009;
Banaee et al., 2013). In such cases, nlg systems often need to perform some
form of data abstraction (for example, identifying broad trends in the data), fol-
lowed by data interpretation. The techniques used to perform these tasks range
from extensions of signal processing techniques (e.g., Portet et al., 2009) to the
application of reasoning formalisms based on fuzzy set theory (e.g., Ramos-Soto
et al., 2015). Reiter (2007)’s proposal accommodates these steps by extending
the pipeline ‘backwards’, incorporating stages prior to Text Planning.

Notwithstanding its elegance and simplicity, there are challenges associated
with a pipeline nlg architecture, of which two are particularly worth highlight-
ing:

• The generation gap (Meteer, 1991) refers to mismatches between strategic
and tactical components, so that early decisions in the pipeline have un-
foreseen consequences further downstream. To take an example from Inui
et al. (1992), a generation system might determine a particular sentence
ordering during the sentence planning stage, but this might turn out to
be ambiguous once sentences have actually been realised and orthography
has been inserted;

• Generating under constraints: Itself perhaps an instance of the generation
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gap, this problem can occur when the output of a system has to match
certain requirements, for example, it cannot exceed a certain length (see
Reiter, 2000, for discussion). Formalising this constraint might appear
possible at the realisation stage – by stipulating the length constraint in
terms of number of words or characters, for instance – but it is much
harder at the earlier stages, where the representations are pre-linguistic
and their mapping to the final text are potentially unpredictable.

These, and related problems, motivated the development of alternative ar-
chitectures. For instance, some early nlg systems were based on an interactive
design, in which a module’s initially incomplete output could be fleshed out
based on feedback from a later module (the pauline system is an example of
this; Hovy, 1988). An even more flexible stance is taken in blackboard architec-
tures, in which task-specific procedures are not rigidly pre-organised, but per-
form their tasks reactively as the output, represented in a data structure shared
between tasks, evolves (e.g., Nirenburg et al., 1989). Finally, revision-based ar-
chitectures allow a limited form of feedback between modules under monitoring,
with the possibility of altering choices which prove to be unsatisfactory (e.g.,
Mann & Moore, 1981; Inui et al., 1992). This has the advantage of not requiring
‘early’ modules to be aware of the consequences of their choices for subsequent
modules, since something that goes wrong can always be revised (Inui et al.,
1992). Revision need not be carried out exclusively to rectify shortcomings.
For instance, Robin (1993) used revision in the context of sports summaries;
an initial draft was revised to add historical background information that was
made relevant by the events reported in the draft, also taking decisions as to
where to place them in relation to the main text. The price that all of these
alternatives potentially incur is, of course, a reduction in efficiency, as noted by
De Smedt et al. (1996).

Alternatives to pipelines often end up blurring the boundaries between mod-
ules in the nlg system. This is a feature that is even more evident in some
planning-based and data-driven approaches proposed in recent years. It is to
these that we now turn.

3.2 Planning-based approaches

In ai, the planning problem can be described as the process of identifying a
sequence of one or more actions to satisfy a particular goal. An initial goal
can be decomposed into sub-goals, satisfied by actions each of which has its
preconditions and effects. In the classical planning paradigm (strips; Fikes
& Nilsson, 1971), actions are represented as tuples of such preconditions and
effects.

The connection between planning and nlg lies in that text generation can
be viewed as the execution of planned behaviour to achieve a communicative
goal, where each action leads to a new state, that is, a change in a context
that includes both the linguistic interaction or discourse history to date, but
also the physical or situated context and the user’s beliefs and actions (see
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Lemon, 2008; Rieser & Lemon, 2009; Dethlefs, 2014; Garoufi & Koller, 2013;
Garoufi, 2014, for some recent perspectives on this topic). This perspective
on nlg is therefore related to the view of ‘language as action’ (Clark, 1996),
itself rooted in a philosophical tradition inaugurated by the work of Austin
(1962) and Searle (1969). Indeed, some of the earliest ai work in this tradition
(especially Cohen & Perrault, 1979; Cohen & Levesque, 1985) sought an explicit
formulation of preconditions (akin to Searle’s felicity conditions) for speech acts
and their consequences.

Given that there is in principle no restriction on what types of actions can
be incorporated in a plan, it is possible for plan-based approaches to nlg to cut
across the boundaries of many of the tasks that are normally encapsulated in
the classic pipeline architecture, combining both tactical and strategic elements
by viewing the problems of what to say and how to say it as part and parcel of
the same set of operations. Indeed, thre are important precedents in early work
for a unified view of nlg as a hierarchy of goals, the kamp system (Appelt,
1985) being among the best known examples. For instance, to generate refer-
ring expressions in kamp, the starting point was reasoning about interlocutors’
beliefs and mutual knowledge, whereupon the system generated sub-goals that
percolated all the way down to property choice and realisation, finally produc-
ing a referential np whose predicted effect was to alter the hearer’s belief state
about the referent (see Heeman & Hirst, 1995, for a similar approach to the
generation of referring expressions in dialogue).

One problem with these perspectives, however, is that deep reasoning about
beliefs, desires and intentions (or bdi, as it is often called following the work of
Bratman, 1987) requires highly expressive formalisms and incurs considerable
computational expense. One solution is to avoid general-purpose reasoning for-
malisms and instead adapt a linguistic framework to the planning paradigm for
nlg.

3.2.1 Planning through the grammar

The idea of interpreting linguistic formalisms in planning terms is again prefig-
ured in early nlg work. For example, some early systems (e.g. kpml, which we
briefly discussed in the context of realisation in Section 2.6; Bateman, 1997) were
based on Systemic-Functional Grammar (sfg; Halliday & Matthiessen, 2004),
which can be seen as a precursor to contemporary planning-based approaches,
since sfg models linguistic constructions as the outcome of a traversal through
a decision network that extends backwards to pragmatic intentions. In a similar
vein, both Hovy (1991) and Moore and Paris (1993) interpreted the relations of
Rhetorical Structure Theory (Mann & Thompson, 1988) as operators for text
planning.

Some recent approaches integrate much of the planning machinery into the
grammar itself, viewing linguistic structures as planning operators. This re-
quires grammar formalisms which integrate multiple levels of linguistic analysis,
from pragmatics to morpho-syntax. It is common for contemporary planning-
based approaches to nlg to be couched in the formalism of Lexicalised Tree
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Adjoining Grammar (ltag; Joshi & Schabes, 1997), though other formalisms,
such as Combinatory Categorial Grammar (Steedman, 2000) have also been
shown to be adequate to the task (see especially Nakatsu & White, 2010, for an
approach to generation using Discourse Combinatory Categorial Grammar).

In an ltag, pieces of linguistic structure (so-called elementary trees in a
lexicon) can be coupled with semantic and pragmatic information that specify
(a) what semantic preconditions need to obtain in order for the item to be
felicitously used; and (b) what pragmatic goals the use of that particular item
will achieve (see Stone & Webber, 1998; Garoufi & Koller, 2013; Koller &
Striegnitz, 2002, for planning-based work using ltag). As an example of how
such a formalism could be deployed in a planning framework, let us focus on
the task of referring to a target entity. Koller and Stone (2007) formulated
the task in a way that obviates the need to distinguish between the content
determination and realisation phases (an approach already taken by Stone &
Webber, 1998). Furthermore, they do not separate sentence planning, reg and
realisation, as is done in the traditional pipeline. Consider the sentence Mary
likes the white rabbit. Simplifying the formalism for ease of presentation, we
can represent the lexical item likes as follows (this example is based on Garoufi,
2014, albeit with some simplifications):

(12) likes(u, x, y) action:
preconditions:

• The proposition that x likes y is part of the knowledge base (i.e.
the statement is supported);

• x is animate;

• The current utterance u can be substituted into the derivation S
under construction;

effects:

• u is now part of S

• New np nodes for x in agent position and y in patient position have
been set up (and need to be filled).

As in strips, an operator consists of preconditions and effects. Note that
the preconditions associated with the lexical item require support in the knowl-
edge base (thus making reference to the input kb, which normally would not be
accessible to the realiser), and include semantic information (such as that the
agent needs to be animate). Having inserted likes as the sentence’s main verb,
we have two noun phrases which need to be filled by generating nps for the
arguments x and y. Rather than deferring this task to a separate reg module,
Koller and Stone build referring expressions by associating further pragmatic
preconditions on the linguistic operators (elementary trees) that will be incor-
porated in the referential np. First, the entity must be part of the hearer’s
knowledge state, since an identifying description (say, to x) presupposes that
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the hearer is familiar with it. Second, an effect of adding words to the np (such
as the predicates rabbit or white) is that the phrase excludes distractors, i.e.
entities of which those properties are not true. In a scenario with one human
being and two rabbits, only one of which (the y in our example) is white, the
derivation would proceed by first updating the np corresponding to y with rab-
bit, thereby excluding the human from the distractor set, but leaving the goal
to distinguish y unsatisfied (since y is not the only rabbit). The addition of
another predicate to the np (white) does the trick.

A practical advantage to planning-based approaches is the availability of a
significant number of off-the-shelf planners. Once the nlg task is formulated in
an appropriate plan description language, such as the Planning Domain Defini-
tion Language (pddl; McDermott, 2000), it becomes possible in principle to
use any planner to generate text. However, planners remain beset by problems
of efficiency. In a set of experiments on nlg tasks of differing complexity, Koller
and Petrick (2011) noted that planners tend to spend significant amounts of
time on preprocessing, though solutions could often be found efficiently once
preprocessing was complete.

3.2.2 Stochastic planning under uncertainty using Reinforcement
Learning

The approaches to planning we have discussed so far are largely rule-based and
tend to view the relationship between a planned action and its consequences
(that is, its impact on the context), as fixed (though exceptions exist, as in con-
tingency planning, which generates multiple plans to address different possible
outcomes; Steedman & Petrick, 2007).

As Rieser and Lemon (2009) note, this view is unrealistic. Consider a system
that generates a restaurant recommendation. The consequences of its output
(that is, the new state it gives rise to) are subject to noise arising from several
sources of uncertainty. In part, this is due to trade-offs, for example, between
needing to include the right amount of information while avoiding excessive
prolixity. Another source of uncertainty is the user, whose actions may not be
the ones predicted by the system. An instance of Meteer’s (1991) generation
gap can rear its head, for instance if a stochastic realiser renders the content of
a message in an ambiguous, or excessively lengthy utterance (Rieser & Lemon,
2009), a problem that could be addressed by allowing different sub-tasks to
share knowledge sources and be guided by overlapping constraints (Dethlefs &
Cuayáhuitl, 2015, discussed below).

In short, planning a good solution to reach a communicative goal could be
viewed as a stochastic optimisation problem (a theme we revisit in Section 3.3.3
below). This view is shared by many recent approaches based on Reinforcement
Learning (rl; Lemon, 2008; Rieser & Lemon, 2009, 2011a), especially those that
tackle nlg within a dialogue context. In this framework, generation can be
modelled as a Markov decision process where states are associated with possible
actions and each state-action pair is associated with a probability of moving
from a state at time t to a new state at t + 1 via action a. Crucially for the
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learning algorithm, transitions are associated with a reinforcement signal, via a
reward function that quantifies the optimality of the generated output. Learning
usually involves simulations in which different generation strategies or ‘policies’
– essentially, plans corresponding to possible paths through the state space –
come to be associated with different rewards. The rl framework has been argued
to be better at handling uncertainty in dynamic environments than supervised
learning or classification, since these do not enable adaptation in a changing
context (Rieser & Lemon, 2009). Rieser et al. (2011) showed that this approach
is effective in optimising information presentation when generating restaurant
recommendations. Janarthanam and Lemon (2014) used it to optimise the
choice of information to select in a referring expression, given a user’s knowledge.
The system learns to adapt its user model as the user acquires new knowledge
in the course of a dialogue.

An important contribution of this work has been in exploring joint opti-
misation, where the policy learned satisfies multiple constraints arising from
different sub-tasks of the generation process, by sharing knowledge across the
sub-tasks. Lemon (2011) showed that joint optimisation can learn a policy that
determines when to generate informative utterances or queries to seek more
information from a user. Similarly, Cuayáhuitl and Dethlefs (2011) used hier-
archical rl to jointly optimise the problem of finding and describing a short
route description, while adapting to a user’s prior knowledge, giving rise to a
strategy whereby the user is guided past landmarks that they are familiar with,
while avoiding potentially confusing junctions. Also in a route-finding setting,
Dethlefs and Cuayáhuitl (2015) develop a hierarchical model comprising a set
of learning agents whose tasks range from content selection through realisation.
They show that a joint framework in which agents share knowledge, outper-
forms an isolated learning framework in which each task is modelled separately.
For example, the joint policy learns to give high-level navigation instructions,
but switches to low-level instructions if the user goes off-track. Furthermore,
utterances produced by the joint policy are less verbose and lead to shorter
interactions overall.

In summary, nlg research within the planning paradigm has highlighted the
desirability of developing unified formalisms to represent constraints on the gen-
eration process at multiple levels, whether this is done using ai-based planning
formalisms (Koller & Petrick, 2011), or stochastically via Reinforcement Learn-
ing. Among its contributions, the latter line of work has shed light on the value
of (a) hierarchical relationships among sub-problems; and (b) joint optimisa-
tion of different sub-tasks. Indeed, this work belongs to a much broader range
of research on data-driven nlg, to which we turn our attention immediately
below.

3.3 Data-driven approaches

Although the shift towards data-driven methods in nlg began somewhat later
than in other areas of nlp, there is little doubt that this is now the dominant
trend. In the remainder of this section, we start with an overview of methods
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used to acquire training data for nlg – in particular, pairings of inputs (data)
and outputs (text) – before turning to an overview of techniques and frame-
works. One of the themes that will emerge from this overview is that, as in the
case of planning, statistical methods often take a unified or ‘global’, rather than
a modularised, view of the nlg process.

3.3.1 Acquiring data

As noted in Section 2, some nlg tasks support the transition to a stochastic
approach fairly easily. For example, research on realisation often exploits the
existence of treebanks from which input-output correspondences can be learned.
Similarly, the emergence of corpora of referring expressions representing both
input domains and output descriptions (e.g., Gatt et al., 2007; Viethen & Dale,
2011; Kazemzadeh et al., 2014; Gkatzia et al., 2015) has facilitated the devel-
opment of probabilistic reg algorithms. Shared tasks have also contributed to
the development of both data sources and methods (see Section 7). As we show
in Section 4 below, recent work on image-to-text generation has also benefited
from the availability of large datasets. For statistical, end-to-end generation in
other domains, there is less of an embarrassment of riches. However, this sit-
uation is improving as methods to automatically align input data with output
text are developed. Still, it is worth emphasising that many of these alignment
approaches use data which is semi-structured, rather than the raw, numerical
input (e.g. signals) used by the data-to-text systems that Reiter (2007), among
others, drew attention to.

Currently, there are a number of data-text corpora in specific domains, no-
tably weather forecasting (Reiter et al., 2005; Belz, 2008; Liang et al., 2009)
and sports summaries (Barzilay & Lapata, 2005; Chen & Mooney, 2008). These
usually consist of database records paired with free text. A promising recent
trend is the introduction of statistical techniques that seek to automatically
segment and align such data and text (e.g., Barzilay & Lapata, 2005; Liang
et al., 2009; Konstas & Lapata, 2013). In an influential paper, Liang et al.
(2009) described this framework in terms of a generative model that defines a
distribution p(w‖s), for sequences of words w and input states s, with latent
variables specifying the correspondence between w and s in terms of three main
components: (i) the likelihood of database records being selected, given s; (ii)
the likelihood of certain fields being chosen for some record; (iii) the likelihood
that a string of a certain length is generated given the records, fields and states.
The parameters of the model can be found using the Expectation Maximization
(em) algorithm. An example alignment is shown in Figure 4.

These models perform alignment by identifying regular co-occurrences of
segments of data and text. Koncel-Kedziorski and Hajishirzi (2014) go beyond
this by proposing a model that exploits linguistic structure to align at varying
resolutions. For example, (13) below is related to two observations in a soccer
game log (an aerial pass and a miss), but can be further analysed into two sub-
parts (indicated by indices 1 and 2 in our example), which individually map to
these two sub-events.

30



Figure 4: Database records aligned with text using minimal supervision. After
Liang et al. (2009).

(13) (Chamakh rises highest)1 and (aims a header towards goal which is
narrowly wide)2.

A different approach to data acquisition is described by Mairesse and Young
(2014), who use crowd-sourcing techniques to elicit realisations for semantic/pragmatic
inputs describing dialogue acts in the restaurant domain (see Novikova & Rieser,
2016b, for another recent approach to crowd-sourcing in a different domain).
The key to the success of this technique is the development of a semantics
that is sufficiently transparent for use with non-specialists. In an earlier pa-
per, Mairesse et al. (2010) describe a method to cut down on the amount of
training data required for generation by using uncertainty sampling (Lewis &
Catlett, 1994), whereby a system can be trained on a relatively small amount of
input data; subsequently, the learned model is applied to new data, from which
the system samples the cases of which it is least certain, forwarding these to a
(possibly human) oracle for feedback, which potentially leads to a new training
cycle.

While many of the stochastic end-to-end systems we discuss below rely on
well-defined formalisms and typically need fairly precise alignments between
inputs and portions of the output, more recent deep learning models (Section
3.3.5) have been based on partially aligned data (e.g. Wen et al., 2015; Lebret
et al., 2016; Mei et al., 2016).

3.3.2 NLG based on language models

Given an alignment between data and text, one way of modelling the nlg pro-
cess is to remain faithful to the division between strategic and tactical choices,
using the statistical alignment to inform content selection, while deploying nlp
techniques to acquire rules, templates or schemas (á laMcKeown, 1985) to drive
sentence planning and realisation.

Recall that the generative model of Liang et al. (2009) pairs data to text
based on a sequential, Markov process, combining strategic choices (of db
records and fields) with tactical choices (of word sequences) into a single prob-
abilistic model. In fact, Markov-based language modelling approaches continue
to feature prominently in data-driven nlg. One of the earliest examples is Oh
and Rudnicky (2002) in the context of a dialogue system in the travel domain,
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where the input takes the form of a dialogue act (e.g. a query that the system
needs to make to obtain information about the user’s travel plans) with the
attributes to include (e.g. the departure city). Oh and Rudnicky’s approach en-
compasses both content planning and realisation. It relies on dialogue corpora
annotated with utterance classes, that is, the type of dialogue act that each
utterance is intended to fulfil. On this basis, they construct separate n-gram
language models for each utterance class, as well as for word-classes that can
appear in the input (for example, words corresponding to departure city).
Content planning is handled by a model that predicts which attributes should
be included in an utterance on the basis of recent dialogue history. Realisa-
tion is handled using a combination of templates and n-gram models. Thus,
generation is conceived as a two-step (planning followed by realisation) process.

The reliance on standard language models has one potential drawback, in
that such models are founded on a local history assumption, limiting the ex-
tent to which prior selections can influence current choices. An alternative,
discriminative model (known to the nlp community at least since Ratnaparkhi,
1996) is logistic regression (Maximum Entropy). The foundations for this ap-
proach in nlg can be found in Ratnaparkhi (2000), who focussed primarily on
realisation (albeit combined with elements of sentence planning). He compared
two stochastic nlg systems based on a maximum entropy learning framework,
to a baseline nlg system. The first of these (nlg2 in Ratnaparkhi’s paper)
uses a conditional language model that generates sentences in an incremental,
left-to-right fashion, by predicting the best word given both the preceding his-
tory (as in standard n-gram models) and the semantic attributes that remain
to be expressed. The second (nlg3) augments the model with syntactic de-
pendency relations, performing generation by recursively predicting the left and
right children of a given constituent. In an evaluation based on judgements of
correctness, Ratnaparkhi found that the system augmented with dependencies
was generally preferred.

In later work, Angeli et al. (2010) describe an approach to end-to-end nlg
that maintains a separation between content selection, sentence planning and
realisation, modelling each process as a sequence of decisions in a log-linear
framework, where choices can be conditioned on arbitrarily long histories of
previous decisions. This enables them to handle long-range dependencies, such
as coherence relations, more flexibly (e.g., a model can incorporate the infor-
mation that a weather report which describes wind speed should do so after
mentioning wind direction; see Barzilay & Lapata, 2005, for similar insights
based on global optimisation). The separation of tasks is maintained insofar
as a different set of features can be used to inform decisions at each stage of
the process. Sentence planning and realisation decisions are based on templates
acquired from corpus texts: a template is selected based on its likelihood given
the database fields selected during content selection.

Mairesse and Young (2014) describe a different approach, which also relies
on alignments between database records and text, and seeks a global solution
to generation, without a crisp distinction between strategic and tactical com-
ponents. In this case, the basic representational framework is a tree of the sort
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Figure 5: Tree structure for a dialogue act, after Mairesse and Young (2014).
Leaves correspond to word sequences. Non-terminal nodes are semantic at-
tributes, shown at the bottom as semantic stacks. Stacks in bold represent
mandatory content.

shown in Figure 5. The root indicates a dialogue act type (in the example,
the dialogue act seeks to inform). Leaves in the tree correspond to words or
word sequences, while nonterminals are semantic stacks, that is, the pieces of
input to which the words correspond. In this framework, content selection and
realisation can be solved jointly by searching for the optimal stack sequence
for a given dialogue act, and the optimal word sequence corresponding to that
stack sequence. Mairesse and Young use a a factored language model (flm),
which extends n-gram models by conditioning probabilities on different utter-
ance contexts, rather than simply on word histories. Given an input dialogue
act, generation works by applying a Viterbi search through the flm at each
of the following stages: (a) mandatory semantic stacks are identified for the
dialogue act; (b) these are enriched with possible non-mandatory stacks (those
which are not in boldface in Figure 5), usually corresponding to function words;
(c) realisations are found for the stack sequence. The approach is also extended
to deal with n−best realisations, as well as to handle variation, in the form of
paraphrases for the same input.

3.3.3 NLG as classification and optimisation

An alternative way to think about nlg decisions at different levels is in terms
of classification, already encountered in the context of specific tasks, such as
content determination (e.g., Duboue & McKeown, 2003) and realisation (e.g.,
Filippova & Strube, 2007). Since generation is ultimately about choice-making
at multiple levels, one way to model the process is by using a cascade of clas-
sifiers, where the output is constructed incrementally, so that any classifier Ci

uses as (part of) its input the output of a previous classifier Ci−i. Within this
framework, it is still possible to conceive of nlg in terms of a pipeline. As
Marciniak and Strube (2005) note, an alternative way of thinking about it is
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in terms of a weighted, multi-layered lattice, where generation amounts to a
best-first traversal: at any stage i, classifier Ci produces the most likely out-
put, which leads to the next stage Ci+1 along the most probable path. This
generalisation is conceptually related to the view of nlg in terms of policies in
the Reinforcement Learning framework (see Section 3.2.2 above), which define
a traversal through sequences of states which may be hierarchically organised
(as in the work of Dethlefs & Cuayáhuitl, 2015, for example).

Marciniak and Strube (2004) start from a small corpus of manually anno-
tated texts of route descriptions, dividing generation into a series of eight clas-
sification problems, from determining the linear precedence of discourse units,
to determining the lexical form of verbs and the type of their arguments. Gen-
eration decisions are taken using the instance-based KStar algorithm, which is
shown to outperform a majority baseline on all classification decisions.5

A similar framework was recently adopted by Zarrieß and Kuhn (2013), once
again taking as their starting point textual data annotated with a dependency
representation, as shown in (3.3.3) below, where referents are marked v and p
and the implicit head of the dependency is underlined.

(14) Junge
Young

Familiev:0
family

auf
on

dem Heimwegposs:v
the way home

ausgeraubtag:p
robbed

‘A young family was robbed on their way home.’

These authors use a sequence of classifiers to perform referring expression
generation and realisation. They use a ranking model based on Support Vector
Machines which, given an input dependency representation extracted from an-
notated text such as (3.3.3), performs two tasks in either order: (a) mapping the
input to a shallow syntactic tree for linearisation; and (b) inserting referring ex-
pressions. Interestingly, Zarrieß and Kuhn (2013) observe that the performance
of either task is order-dependent, in that both classification tasks perform worse
when they are second in the sequence. They observe a marginal improvement
when the tasks are performed in parallel, but achieve the best performance in
a revision-based architecture, where syntactic mapping is followed by referring
expression insertion, followed by a revision of the syntax.

Classification cascades for nlg maintain a clean separation between tasks,
but research in this area has echoed earlier concerns about pipelines in general
(see Section 3.1), the main problem being error propagation. Infelicitous choices
will of course impact classification further downstream, a situation analogous to
the problem of the generation gap. The conclusion by Zarrieß and Kuhn (2013)
in favour of a revision-based architecture, brings our account full circle, in that
a well-known solution is shown to yield improvements in a new framework.

Our discussion so far has repeatedly highlighted the fact that a sequential
organisation of nlg tasks is susceptible to error propagation, whether this takes
the form of classifier errors, or decisions in a rule-based module that have a

5Instance-based approaches to nlg are also discussed by Varges and Mellish (2010), albeit
in an overgenerate-and-rank approach where rules overgenerate candidates, which are then
ranked by comparison to the instance base.
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negative impact on downstream components. A potential solution is to view
generation as an optimisation problem, where the best combination of decisions
is sought in an exponentially large space of possible combinations. We have en-
countered the use of optimisation techniques, such as Integer Linear Program-
ming (ilp) in the context of aggregation and content determination (Section
2.3). For example, Barzilay and Lapata (2006) group content units based on
their pairwise similarity, with an optimisation step to identify a set of pairs that
are maximally similar. ilp has also been exploited by Marciniak and Strube
(2005), as a means to counteract the error propagation problem in their original
classification-based approach (Marciniak & Strube, 2004). Conceptually, the
optimisation framework is simple:

1. Each nlg task is once again modelled as classification or label-assignment,
but this time, labels are modelled as binary choices (either a label is
assigned or not), associated with a cost function, defined in terms of the
probability of a label in the training data;

2. Pairs of tasks which are strongly inter-dependent (for example, syntactic
choices and reg realisations, in the example from Zarrieß & Kuhn, 2013)
have a cost based on the joint probability of their labels;

3. An ilp model seeks the global labelling solution that minimises the overall
cost, with the added constraint that if one of a pair of correlated labels
〈li, lj〉 is selected, the other must be too.

This optimisation solution has been shown to outperform different versions
of the classification pipeline originally proposed by Marciniak and Strube (2004),
much as the results of Dethlefs and Cuayáhuitl (2015), discussed above, showed
that reinforcement learning of a joint policy produces better dialogue interac-
tions than learning isolated policies for separate nlg tasks. Another advantage
of this framework is that for planning-based approaches, it relies on a formalism
for which off-the-shelf tools are available. As with planning, however, efficiency
may be a challenge, given the large space of possibilities for an optimisation
problem.

3.3.4 NLG as ‘parsing’

In recent years, there has been a resurgence of interest in viewing generation
in terms of probabilistic context-free grammar (sc cfg) formalisms, or even as
the ‘inverse’ of semantic parsing. For example, Belz (2008) formalises the nlg
problem entirely in terms of cfgs: a base generator expands inputs (bits of
weather data in this case) by applying cfg rules; corpus-derived probabilities
are then used to control the choice of which rules to expand at each stage of the
process. The base generator in this work is hand-crafted. However, it is possible
to extract rules or templates from corpora, as has been done for aggregation
rules (Stent & Molina, 2009; White & Howcroft, 2015, and Section 2.3), and
also for more general statistical approaches to sentence planning and realisation
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in a text-to-text framework (e.g., Kondadadi et al., 2013). Similarly, approaches
to nlg from structured knowledge bases, expressed in formalisms such as rdf,
have described techniques to extract lexicalised grammars or templates from
such inputs paired with textual descriptions (Ell & Harth, 2014; Duma & Klein,
2013; Gyawali & Gardent, 2014).

The work of Mooney and colleagues (Wong & Mooney, 2007; Chen & Mooney,
2008; Kim & Mooney, 2010) has compared a number of different generation
strategies inspired by the wasp semantic parser (Wong & Mooney, 2007), which
uses probabilistic synchronous cfg rules learned from pairs of utterances and
their semantic representations using statistical machine translation techniques.
Chen and Mooney (2008) use this framework for generation both by adapt-
ing wasp in a generation framework, and by further adapting it to produce a
new system, wasper-gen. While wasp seeks to maximise the probability of a
meaning representation (mr) given a sentence, wasper-gen does the opposite,
seeking the maximally probable sentence given an input mr, as it were, learn-
ing a translation model from meaning to text. When trained on a dataset of
sportscasts (the robocup dataset), wasper-gen outperforms wasp on corpus-
based evaluation metrics, and is shown to achieve a level of fluency and se-
mantic correctness which approaches that of human text, based on subjective
judgements by experimental participants. Note, however, that this framework
focusses mainly on tactical generation. Content determination is performed sep-
arately, using a variant of the em-algorithm to converge on a probabilistic model
that predicts which events or predicates should be mentioned.

By contrast, the work of Konstas and Lapata (Konstas & Lapata, 2012,
2013), which also relies on cfgs, uses a unified framework throughout. The
starting point is an alignment of text with database records, extending the
proposal by Liang et al. (2009). The process of converting input data to output
text is modelled in terms of rules which implicitly incorporate different types
of decisions. For example, given a database of weather records, the rules might
take the simplified form shown below,

(15) R(windSpeed)→ FS(temperature), R(rain)

(16) FS(windSpeed,min)→ FS(windSpeed,max)FS(windSpeed,max)

(17) FS(windSpeed,min)→W (windSpeed,min)

where R stands for a database record, FS is a set of fields, W is a word
sequence, and all rules have associated probabilities that condition the rhs on
the lhs, akin to the pcfgs used in parsing. These rules specify that a description
of windSpeed (15) should be followed in the text by a temperature and a rain
report. According to rule (16), minimum windspeed should be followed by
maximum windspeed with a certain probability, while rule (17) expands the
minimum windspeed rule to a sequence of words according to a bigram language
model (Konstas & Lapata, 2012). Konstas and Lapata (2012) pack the set of
rules acquired from the alignment stage into a hypergraph, and treat generation
as decoding to find the maximally likely word sequence.
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Under this view, generation is akin to inverted parsing. Decoding proceeds
using an adaptation of the cyk algorithm. Since the model defining the mapping
from input to output does not incorporate fluency heuristics, the decoder is
interleaved with two further sources of linguistic knowledge by Konstas and
Lapata (2013): (a) a weighted finite-state automaton (representing an n-gram
language model); and (b) a dependency model (cf. Ratnaparkhi, 2000, , also
discussed above).

3.3.5 Deep learning methods

We conclude our discussion of statistical methods with an overview of applica-
tions of deep neural network (nn) architectures to generation and related tasks.
The decision to dedicate a separate section is warranted by the recent, renewed
interest in these models, as well as the comparatively small number of studies
that have adopted this framework in nlg to date (with the exception of cap-
tion generation from images, which we review in Section 4) . However, this is
undoubtedly one of the biggest growth areas in current nlg research, as in nlp
more generally (see Goldberg, 2016, for an nlp-focussed overview).

The recent resurgence of interest in nns is in part due to advances in hard-
ware that can support resource-intensive learning problems (Goodfellow et al.,
2016). More importantly, nns are designed to learn representations at increas-
ing levels of abstraction by exploiting backpropagation (LeCun et al., 2015;
Goodfellow et al., 2016). Such representations are dense, low-dimensional, and
distributed, making them especially well-suited to capturing grammatical and
semantic generalisations (see Mikolov et al., 2013; Luong et al., 2013; Penning-
ton et al., 2014, inter alia). nns have also scored notable successes in sequential
modelling using feedforward networks (Bengio et al., 2003; Schwenk & Gauvain,
2005), log-bilinear models (Mnih & Hinton, 2007) and recurrent neural networks
(rnns Mikolov et al., 2010), including rnns with long short-term memory units
(Zaremba et al., 2015). Their main advantage over standard n−gram models
is that they represent sequences of varying lengths, while avoiding both data
sparseness and an explosion in the number of parameters through the projec-
tion of histories into a low-dimensional space, so that similar histories have joint
representations.

Long short-term memory architectures (lstm) are a further development of
rnns equipped with memory cells and multiplicative gates that control how in-
formation is retained or forgotten. This also enables them to handle long-range
dependencies. Ultimately, the goal of such models is to learn a conditional
probability p(Y |T ) between an output sequence Y and an input sequence T
whose length may differ from that of Y (Sutskever et al., 2014; LeCun et al.,
2015). Their ability to map from variable-length inputs to fixed-dimensional
vector representations, conditioning the probability of the next element in an
output sequence on the fixed-dimensional vector and the previously emitted
tokens of the sequence, make them well-suited to tasks such as Machine Trans-
lation (mt; e.g. Kalchbrenner & Blunsom, 2013; Bahdanau et al., 2015), which
can be viewed as instances of more general sequence-to-sequence (aka seq2seq)
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tasks. Sutskever et al. (2014) showed that lstm architectures can be adapted to
different seq2seq problems by decoupling them into an initial lstm encoder for
the input and a subsequent decoder. This has given impetus to research on mul-
titask learning, where different tasks share parts of a network architecture and
the corresponding representations (Dong et al., 2015; Luong et al., 2016). For
example, Luong et al. (2016) showed that improvements can be obtained in mt
with a seq2seq architecture whose encoder is co-trained on a parsing dataset;
similarly, decoding improved when the decoder (for the target language English)
was shared with a caption generator.

As a matter of fact, applications of nns in nlg hark back at least to Kukich
(1987), though her work was tentative and restricted to small-scale examples.
Since the early 1990s, when interest in neural approaches waned in the nlp
and ai communities, cognitive science research has continued to explore their
application to syntax and language production (e.g., Elman, 1990, 1993; Chang
et al., 2006).

In the past few years, research on neural models for generation has begun
to take off. A starting point can be found in the work of Sutskever et al.
(2011), who showed that a character-level lstm rnn could be used to generate
grammatical English sentences. Since then, a number of nlg applications have
appeared. For instance, Zhang and Lapata (2014a) focus on poetry generation in
Chinese using rnns, where verses are generated by predicting characters based
on (a) the previous verses in the poem, represented by a convolutional sentence
model (Kalchbrenner & Blunsom, 2013); and (b) the previous characters in the
current verse. In dialogue, both Wen et al. (2015) and Serban et al. (2016) use
rnns to predict the next utterance in a dialogue context, while (Goyal et al.,
2016) show that the generation of dialogue acts improves when modelled using
a character-based, rather than a word-based rnn.

There has also been some work applying nns to data-to-text generation (Mei
et al., 2016; Lebret et al., 2016). The lstm-based architecture proposed by Mei
et al. (2016) is based on the encoder-decoder framework, with a design that
broadly reflects a division into content selection and realisation. The application
domain is weathergov data (Angeli et al., 2010). The starting point is a
bidirectional lstm rnn encoder which maps input records to a hidden state,
followed by an aligner which models content selection. The aligner, inspired by
the mt work of Bahdanau et al. (2015) and the attention-based image captioning
work of Xu et al. (2015), determines which records to mention as a function of
their prior probability and the likelihood of their alignment with words in the
vocabulary; a further refinement step weights the outcomes of the alignment
with the priors, making it more likely that more important records will be
verbalised. Finally, a decoder rnn outputs a word-by-word sequence, at each
time step computing a probability distribution over words given the previously
generated context and the records. lstms enable the handling of long-range
dependencies between records and descriptors, which the log-linear model of
Angeli et al. (2010) factored in explicitly (see Section 3.3.2 above).

The work of Lebret et al. (2016), by contrast, restricts generation to the
initial sentence of wikipedia biographies from the corresponding wiki fact table
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and models content selection and realisation jointly in a feedforward nn (Bengio
et al., 2003), conditioning output word probabilities on both local context and
global features obtained from the input table. This biases the model towards full
coverage of the contents of a field. For example, a field in the table containing
a person’s name typically consists of more than one word and the model should
concatenate the words making up the entire name. This simpler model can
therefore also be characterised as incorporating an attentional mechanism.

3.4 Discussion

An important theme that has emerged from recent work is the blurring of bound-
aries between tasks that are encapsulated in traditional architectures. This is
evident in planning-based approaches, but perhaps the most radical break from
this perspective arises in stochastic data-to-text systems which capitalise on
alignments between input data and output text, combining content-oriented
and linguistic choices within a unified framework. Among the open questions
raised by research on stochastic nlg is the extent to which sub-tasks need to be
jointly optimised and, if so, which knowledge sources should be shared among
them.

An outstanding issue is the balancing act between achieving adequate textual
output versus doing so efficiently and robustly. Early approaches that departed
from a pipeline architecture tended to sacrifice the latter in favour of the former;
this was the case in revision-based and blackboard architectures. The same is to
some extent true of planning-based approaches which are rooted in paradigms
with a long history in ai: As recent empirical work has shown (Koller & Petrick,
2011), these too are susceptible to considerable computational cost, though this
comes with the advantage of a unified view of language generation that is also
compatible with well-understood linguistic formalisms, such as ltag. Stochastic
approaches present a different problem, namely, that of acquiring the right data
to construct the necessary statistical models. While such data is or can be
made available, for tasks such as recommendations, brief weather reports, or
sports summaries, it remains to be seen whether existing techniques for data-text
alignment can be scaled up to domains where large volumes of heterogeneous
data (numbers, symbols etc) are the norm, and where longer texts need to be
generated.

In any case, one important outcome of much recent data-driven research in
nlg is the emphasis on unified formalisms – from cfgs to markov processes
– that underlie the text generation process at every level. Another interest-
ing development is the use of crowd-sourcing techniques to produce data that
aligns non-linguistic input representations with text (Mairesse & Young, 2014;
Novikova & Rieser, 2016b).

As deep learning approaches become more popular – and, as we shall see in
the next section, they are now the dominant approach in certain tasks, such as
generating image captions – the need for precise alignment could become less
acute, as looser input-output couplings can constitute adequate training data
(e.g. Wen et al., 2015). As these techniques become better understood, they
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are likely to feature more heavily in a broader range of nlg tasks, as well as
end-to-end nlg systems. As a recent opinion piece put it (Manning, 2015),
perhaps their attraction for nlp, apart from the advantages of using distributed
representations, lies in that they encourage the practitioner to focus on design,
that is, on how an architecture can handle the different sub-parts of a complex
problem, perhaps along the lines detailed in Section 2 above. Might this entail a
renewed emphasis on modular, multi-levelled approaches to nlg, with complex
architectures whose components deal with different tasks? On the other hand,
research on multi-task learning in the seq2seq paradigm may also open up new
possibilities for learning how to solve multiple nlg sub-tasks within a single
framework, as many approaches discussed in the previous sub-sections seek to
do.

In the following sections, we turn our attention away from standard tasks
and the way they are organised, focussing on three broad topics – image-to-
text generation, stylistic variation and computational creativity – in which nlg
research has also intersected with research in other areas.

4 The vision-language interface: Image caption-
ing and beyond

Over the past few years, there has been an explosion of interest in the task of
automatically generating captions for images, as part of a broader endeavour to
investigate the interface between vision and language (Barnard, 2016). Image
captioning is arguably a paradigm case of data-to-text generation, where the
input comes in the form of an image. The task has become a research focus not
only in the nlg community but also in the computer vision community, raising
the possibility of more effective synergies between the two groups of researchers.
Apart from its practical applications, the grounding of language in perceptual
data has long been a matter of scientific interest in ai (see Winograd, 1972;
Harnad, 1990; Roy & Reiter, 2005, for a variety of theoretical views on the
computational challenges of the perception-language interface).

Figure 6 shows some examples of caption generation, sampled from publi-
cations spanning approximately 6 years. Current caption generation research
focusses mainly on what Hodosh et al. (2013) refer to as concrete conceptual
image descriptions of elements directly depicted in a scene. As Donahue et al.
(2015) put it, image captioning is a task whose input is static and non-sequential
(an image, rather than, say, a video), whereas the output is sequential (a multi-
word text), in contrast to non-sequential outputs such as object labels (e.g.
Duygulu et al., 2002; Ordonez et al., 2016, among others).

Our discussion will be brief, since image captioning has recently been the
subject of an extensive review by Bernardi et al. (2016), and has also been
discussed against the background of broader issues in research on the vision-
language interface by Barnard (2016). While the present section draws upon
these sources, it is organised in a somewhat different manner, also bringing out
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(a) The man at bat read-
ies to swing at the pitch
while the umpire looks
on (Human-authored cap-
tion from the ms-coco
dataset Lin et al., 2014)

(b) This picture shows
one person, one grass,
one chair, and one potted
plant. The person is near
the green grass, and in the
chair. The green grass
is by the chair, and near
the potted plant (Kulka-
rni et al., 2011)

(c) A person is playing
a saxophone (Elliott &
De Vries, 2015)

(d) A bus by the road
with a clear blue sky
(Mitchell et al., 2012)

(e) A bus is driving down
the street in front of
a building (Mao et al.,
2015a)

(f) A gecko is standing on
a branch of a tree (Hen-
dricks et al., 2016b)

Figure 6: Some caption generation examples

the connections with nlg more explicitly.

4.1 Data

A detailed overview of datasets is provided by Bernardi et al. (2016), while
Ferraro et al. (2015) offer a systematic comparison of datasets for both cap-
tion generation and visual question answering with an accompanying online
resource6.

Datasets typically consist of images paired with one or more human-authored
captions (mostly in English) and vary from artificially created scenes (Zitnick
et al., 2013) to real photographs. Among the latter, the most widely used are
Flickr8k (Hodosh et al., 2013), Flickr30k (Young et al., 2014) and ms-coco (Lin

6http://visionandlanguage.net
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et al., 2014). Datasets such as the sbu1m Captioned Photo Dataset (Ordonez
et al., 2011) include naturally-occurring captions of user-shared photographs on
sites such as Flickr; hence the captions included therein are not restricted to
the concrete conceptual. There are also a number of specialised, domain-specific
datasets, such as the Caltech ucsd Birds datast (cub; Wah et al., 2011).

There have also been a number of shared tasks in this area, including the
coco (‘Common Objects in Context’) Captioning Challenge7, organised as part
of the Large-Scale Scene Understanding Challenge (lsun)8 and the Multimodal
Machine Translation Task (Elliott et al., 2016). We defer discussion of evalua-
tion of image captioning systems to Section 7 of this paper, where it is discussed
in the context of nlg evaluation as a whole.

4.2 The core tasks

There are two logically distinguishable sub-tasks in an image captioning system,
namely, image analysis and text generation. This is not to say that they need
to be organised separately or sequentially. However, prior to discussing archi-
tectures as such, it is worth briefly giving an overview of the methods used to
deal with these two tasks.

4.2.1 Image analysis

There are three main groups of approaches to treating visual information for
captioning purposes.

Detection Some systems rely on computer vision methods for the detection
and labelling of objects, attributes, ‘stuff’ (typically mapped to mass nouns,
such as grass), spatial relations, and possibly also action and pose information.
This is usually followed by a step mapping these outputs to linguistic structures
(‘sentence plans’ of the sort discussed in Section 2 and 3), such as trees or tem-
plates (e.g. Kulkarni et al., 2011; Yang et al., 2011; Mitchell et al., 2012; Elliott
& De Vries, 2015; Yatskar et al., 2014; Kuznetsova et al., 2014). Since perfor-
mance depends on the coverage and accuracy of detectors (Kuznetsova et al.,
2014; Bernardi et al., 2016), some work has also explored generation from gold
standard image annotations (Elliott & Keller, 2013; Wang & Gaizauskas, 2015;
Muscat & Belz, 2015) or artificially created scenes in which the components are
known in advance (Ortiz et al., 2015).

Holistic scene analysis Here, a more holistic characterisation of a scene is
used, relying on features that do not typically identify objects, attributes and the
like. Such features include rgb histograms, scale-invariant feature transforms
(sift; Lowe, 2004), or low-dimensional representations of spatial structure (as
in gist; Oliva & Torralba, 2001), among others. This kind of image processing

7http://mscoco.org/dataset/#captions-challenge2015
8http://lsun.cs.princeton.edu/2016/
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is often used by systems that frame the task in terms of retrieval, rather than
caption generation proper. Such systems either use a unimodal space to compare
a query image to training images before caption retrieval (e.g. Ordonez et al.,
2011; Gupta et al., 2012), or exploit a multimodal space representing proximity
between images and captions (e.g. Hodosh et al., 2013; Socher et al., 2014).

Dense image feature vectors Given the success of convolutional neural
networks (cnn) for computer vision tasks (cf. e.g., LeCun et al., 2015), many
deep learning approaches use features from a pre-trained cnn such as AlexNet
(Krizhevsky et al., 2012), vgg (Simonyan & Zisserman, 2015) or Caffe (Jia
et al., 2014). Most commonly, caption generators use an activation layer from
the pre-trained network as their input features (e.g. Kiros et al., 2014; Karpathy
et al., 2014; Karpathy & Fei-Fei, 2015; Vinyals et al., 2015; Mao et al., 2015a;
Xu et al., 2015; Yagcioglu et al., 2015; Hendricks et al., 2016b).

4.2.2 Text generation or retrieval

Depending on the type of image analysis technique, captions can be generated
using a variety of different methods, of which the following are well-established.

Using templates or trees Systems relying on detectors can map the out-
put to linguistic structures in a sentence planning stage. For example, objects
can be mapped to nouns, spatial relations to prepositions, and so on. Yao et al.
(2010) use semi-supervised methods to parse images into graphs and then gener-
ate text via a simple grammar. Other approaches rely on sequence classification
algorithms, such as Hidden Markov Models (Yang et al., 2011) and conditional
random fields (Kulkarni et al., 2011, 2013). Kulkarni et al. (2013, see the ex-
ample in Figure 6b) experiment with both templates and web-derived n−gram
language models, finding that the former are more fluent, but suffer from lack
of variation, an issue we also addressed earlier, in connection with realisation
(Section 2.6).

In the Midge system (Mitchell et al., 2012, see Figure 6d for an example
caption), input images are represented as triples consisting of object/stuff de-
tections, action/pose detections and spatial relations. These are subsequently
mapped to 〈noun, verb, preposition〉 triples and realised using a tree substitu-
tion grammar. This is further enhanced with the ability to ‘hallucinate’ likely
words using a probabilistic model, that is, insert words which are not directly
grounded in the detections performed on the image itself, but have a high prob-
ability of occurring, based on corpus data. In a human evaluation, Midge was
shown to outperform both the system by (Kulkarni et al., 2011) and (Yang
et al., 2011) on a number of criteria, including humanlikeness and correctness.

Elliott and Keller (2013) use visual dependency representations (vdr), a de-
pendency grammar-like formalism to describe spatial relations between objects
based on physical features such as proximity and relative position. Detections
from an image are mapped to their corresponding vdr relations prior to gener-
ation (see also Elliott & De Vries, 2015, and the example in Figure 6c). Ortiz
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et al. (2015) use ilp to identify pairs of objects in abstract scenes (Zitnick &
Parikh, 2013) before mapping them to a vdr. Realisation is framed as a ma-
chine translation task over vdr-text pairs. A similar concern with identifying
spatial relations is found in the work of Lin and Kong (2015), who use scene
graphs as input to a grammar-based realiser. Muscat and Belz (2015) propose a
naive Bayes model to predict spatial prepositions based on image features such
as object proximity and overlap.

Using language models Using language models has the potential advantage
of facilitating joint training from image-language pairs. It may also yield more
expressive or creative captions if it is used to overcome the limitations of gram-
mars or templates (as shown by the example of Midge; Mitchell et al., 2012).
In some cases, n-gram models are trained on out-of-domain data, the approach
taken by (Li et al., 2011, using web-scale n−grams) and Fang et al. (2015, using
a maximum entropy language model). Most deep learning architectures use lan-
guage models in the form of vanilla rnns or long short-term memory networks
(e.g. Kiros et al., 2014; Vinyals et al., 2015; Donahue et al., 2015; Karpathy
& Fei-Fei, 2015; Xu et al., 2015; Hendricks et al., 2016b, 2016a; Mao et al.,
2016). These architectures model caption generation as a process of predicting
the next word in a sequence. Predictions are biased both by the caption history
generated so far (or the start symbol for initial words) and by the image features
which, as noted above, are typically features extracted from a cnn trained on
the object detection task.

Caption retrieval and recombination Rather than generate captions, some
systems retrieve them based on training data. The advantage of this is that it
guarantees fluency, especially if retrieval is of whole, rather than partial, cap-
tions. Hodosh et al. (2013) used a multimodal space to represent training images
and captions, framing retrieval as a process of identifying the nearest caption
to a query image. The idea of ‘wholesale’ caption retrieval has a number of
precedents. For example Farhadi et al. (2010) use Markov random fields to
parse images into 〈object,action, scene〉 triples, paired with parsed captions. A
caption for a query image is retrieved by comparing it to the parsed images in
the training data, finding the most similar based on WordNet. Similarly, the
Im2Text (Ordonez et al., 2011) system ranks candidate captions for a query
image. Devlin et al. (2015b) use a k nearest neighbours approach, with caption
similarity quantified using bleu (Papineni et al., 2002) and cider (Vedantam
et al., 2015). A different view of retrieval is proposed by Feng and Lapata
(2010), who use extractive summarisation techniques to retrieve descriptions of
images and associated narrative fragments from their surrounding text in news
articles.

A potential drawback of wholesale retrieval is that captions in the training
data may not be well-matched to a query image. For instance, Devlin et al.
(2015b) note that the less similar a query is to training images, the more generic
the caption returned by the system. A possible solution is to use partial matches,
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retrieving and recombining caption fragments. Kuznetsova et al. (2014) use
detectors to match query images to training instances, retrieving captions in the
form of parse tree fragments which are then recombined. Mason and Charniak
(2014) use a domain-specific dataset to extract descriptions and adapt them to
a query image using a joint visual and textual bag-of-words model. In the deep
learning paradigm, both Socher et al. (2014) and Karpathy et al. (2014) use word
embeddings derived from dependency parses, which are projected, together with
cnn image features, into a multimodal space. Subsequent work by Karpathy
and Fei-Fei (2015) showed that this fine-grained pairing works equally well with
word sequences, eschewing the need for dependency parsing.

Recently, Devlin et al. (2015a) compared nearest-neighbour retrieval ap-
proaches to different types of language models for caption generation, specifi-
cally, the Maximium Entropy approach of Fang et al. (2015), an lstm-based
approach and rnns which are coupled with a cnn for image analysis (e.g. Vinyals
et al., 2015; Donahue et al., 2015; Karpathy & Fei-Fei, 2015). A comparison of
the linguistic quality of captions suggested that there was a significant tendency
for all models to reproduce captions observed in the training set, repeating them
for different images in the test set. This could be due to a lack of diversity in the
data, which might also explain why the nearest neighbour approach compares
favourably with language model-based approaches.

4.3 How is language grounded in visual data?

As the foregoing discussion suggests, views on the relationship between visual
and linguistic data depend on how each of the two sub-tasks is dealt with. Thus,
systems which rely on detections tend to make a fairly clear-cut distinction
between input processing and content selection on the one hand, and sentence
planning and realisation on the other (e.g. Kulkarni et al., 2011; Mitchell et al.,
2012; Elliott & Keller, 2013). The link between linguistic expressions and visual
features is mediated by the outcomes of the detectors. For example, Midge
(Mitchell et al., 2012) uses the object detections to determine which nouns to
mention, before fleshing out the caption with attributes (mapped to adjectives)
and verbs. Similarly, Elliott and Keller (2013) uses vdrs to determine spatial
expressions.

Retrieval-based systems relying on unimodal or multimodal similarity spaces
represent the link between linguistic expressions and image features more indi-
rectly. Here, similarity plays the dominant role. In a unimodal space (Ordonez
et al., 2011; Gupta et al., 2012; Mason & Charniak, 2014; Kuznetsova et al.,
2012, 2014), it is images which are compared, with (partial) captions retrieved
based on image similarity. A number of deep learning approaches also broadly
conform to this scheme. For example, both Yagcioglu et al. (2015) and (Devlin
et al., 2015b) retrieve and rank captions for a query image, using a cnn for the
representation of the visual space. By contrast, multimodal spaces involve a
direct mapping between visual and linguistic features (e.g. Hodosh et al., 2013;
Socher et al., 2014; Karpathy et al., 2014), enabling systems to map from images
to ‘similar’ – that is, related or relevant – captions.
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Much interesting work on vision-language integration is being carried out
with deep learning models. Kiros et al. (2014) introduced multimodal neural
language models (mrnn), experimenting with two main architectures. Their
Modality-Biased Log-Bilinear Model (mlbl-b) uses an additive bias to predict
the next word in a sequence based on both the linguistic context and cnn
image features. The Factored 3-way Log-Bilinear Model (mlbl-f) also gates
the representation matrix for a word with image features. In a related vein,
Donahue et al. (2015) propose a combined cnn + lstm architecture (also used
by Venugopalan et al., 2015b, 2015a, for video captioning) where the next word
is predicted as a function of both previous words and image features. In one
version of the architecture, they inject cnn features into the lstm at each time-
step. In a second version, they use two stacked lstms, the first of which takes
cnn features and produces an output which constitutes the input to the next
lstm to predict the word. Finally, Mao et al. (2015a) experiment with various
mrnn configurations, obtaining their best results with an architecture in which
there are two word embedding layers preceding the recurrent layer, which is in
turn projected into a multimodal layer where linguistic features are combined
with cnn features. An example caption is shown in Figure 6e above.

These neural network models shed light on the consequences of combining
the two modalities at different stages, reflecting the point made by Manning
(2015, cf. Section 3.3.5) that this paradigm encourages a focus on architectures
and design. In particular, image features can be used to bias the recurrent,
language generation layer – at the start, or at each time-step of the rnn – as
in the wrk of Donahue et al. (2015). Alternatively, the image features can be
combined with linguistic features at a stage following the rnn, as in the work
of Mao et al. (2015a).

4.4 Vision and language: Current and future directions
for NLG

Image to text generation is one area of nlg where there is a clear dominance of
deep learning methods. Current work focusses on a number of themes:

1. Generalising beyond training data is still a challenge, as shown by the
work of Devlin et al. (2015a). More generally, dealing with novel images
remains difficult, though experiments have been performed on using out-
of-domain training data to expand vocabulary (Ordonez et al., 2013), learn
novel concepts (Mao et al., 2015b) or transfer features from image regions
containing known labels, to similar, but previously unattested ones (Hen-
dricks et al., 2016b, from which an example caption is shown in Figure
6f). Progress in zero-shot learning, where the aim is to identify or cate-
gorise images for which little or no training data is available, is likely to
contribute to the resolution of data sparseness problems (e.g. Antol et al.,
2014; Elhoseiny et al., 2017).

2. Attention is also being paid to what Barnard (2016) refers to as localisa-
tion, that is, the association of linguistic expressions with parts of images,
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and the ability to generate descriptions of specific image regions. Recent
work includes that of Karpathy and Fei-Fei (2015), Johnson et al. (2016)
and (Mao et al., 2016), who focus on unambiguous descriptions of specific
image regions and/or objects in images (see Section 2.5 above for some
related work). Attention-based models are a further development on this
front. These have been exploited in various seq2seq tasks, notably for
machine translation (Bahdanau et al., 2015). In the case of image caption-
ing, the idea is to allocate variable weights to portions of captions in the
training data, depending on the current context, to reflect the ‘relevance’
of a word given previous words and an image region (Xu et al., 2015).

3. Recent work has also begun to explore generation from images that goes
beyond the concrete conceptual, for instance, producing explanatory de-
scriptions (Hendricks et al., 2016a). A further development is work on
Visual Question Answering, where rather than descriptive captions, the
aim is to produce responses to specific questions about images (Geman
et al., 2015; Barnard, 2016; Antol et al., 2015; Malinowski et al., 2016).
Recently, a new dataset was proposed providing both concrete conceptual
and ‘narrative’ texts coupled with images (Huang et al., 2016), a promising
new direction for this branch of nlg.

4. There is a growing body of work that generalises the task from static
inputs to sequential ones, especially videos (e.g. Kojima et al., 2002; Reg-
neri et al., 2013; Venugopalan et al., 2015b, 2015a). Here, the challenges
include handling temporal dependencies between scenes, but also dealing
with redundancy.

5 Variation: Generating text with style, person-
ality and affect

Based on the preceding sections, the reader could be excused for thinking that
nlg is mostly concerned with delivering factual information, whether this is in
the form of a summary of weather data, or a description of an image. This bias
was also flagged in the Introduction, where we gave a brief overview of some
domains of application, and noted that informing was often, though not always,
the goal in nlg.

Over the past decade or so, however, there has been a growing trend in
the nlg literature to also focus on aspects of textual information delivery that
are arguably non-propositional, that is, features of text that are not strictly
speaking grounded in the input data, but are related to the manner of delivery.
In this section, we focus on these trends, starting with the broad concept of
‘stylistic variation’, before turning to generation of affective text and politeness.
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5.1 Generating with style: textual variation and person-
ality

What does the term ‘linguistic style’ refer to? Most work on what we shall
refer to as ‘stylistic nlg’ shies away from a rigorous definition, preferring to
operationalise the notion in the terms most relevant to the problem at hand.

‘Style’ is usually understood to refer to features of lexis, grammar and se-
mantics that collectively contribute to the identifiability of an instance of lan-
guage use as pertaining to a specific author, or to a specific situation (thus,
one distinguishes between levels of stylistic formality, or speaks of the distinc-
tive characteristics of the style of William Faulkner). This implies that any
investigation of style must concern itself, at least in part, with variation among
the features that mark such authorial or situational variables. In line with this
usage, this section reviews developments in nlg in which variation is the key
concern, usually at the tactical, rather than the strategic, level, the idea being
that a given piece of information can be imparted in linguistically distinct, ways
(cf. van der Sluis & Mellish, 2010). This strategy was, for example, explicitly
adopted by Power et al. (2003).

Given its emphasis on linguistic features, controlling style (however it is de-
fined) is a problem of great interest for nlg since it directly addresses issues of
choice, which are arguably the hallmark of any nlg system (c.f. Reiter, 2010).
Early contributions in this area defined stylistic features using rules to vary gen-
eration according to pragmatic goals. For example, McDonald and Pustejovsky
(1985) argued that ‘prose style Is a consequence of what decisions are made dur-
ing the transition from the conceptual representation level to the linguistic level’
(p. 61), thereby placing the problem within the domain of sentence planning
and realisation. This stance was also adopted by DiMarco and Hirst (1993),
who focus on syntactic variation, proposing a stylistic grammar for English and
French.

More recently, a similar perspective was adopted by Walker et al. (2002), in
their description of how the spot sentence planner was adapted to learn strate-
gies for different communicative goals, as reflected in the rhetorical and syntactic
structures of the sentence plans. The planner was trained using a boosting tech-
nique to learn correlations between features of sentence plans and human ratings
of the adequacy of a sample of outputs for different communicative goals.

Like Walker et al. (2002), contemporary approaches to stylistic variation
have tended to eschew rules in favour of data-driven methods to identify rel-
evant features and dimensions of variation from corpora, in what might be
thought of as an inductive view of style, where variation is characterised by the
distribution of whatever linguistic features are considered relevant. An impor-
tant precedent for this view is Biber’s corpus-based multidimensional approach
to style and register variation (Biber, 1988), roughly a contemporary of the
grammar-inspired approach of DiMarco and Hirst (1993).

Biber’s model was at the heart of work by Paiva and Evans (2005), which ex-
hibits some characteristics in common with the ‘global’ statistical approaches to
nlg discussed in Section 3.3, insofar as it exploits statistics to inform decision-
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making at the relevant choice points, rather than to filter the outputs of an
overgeneration module. Paiva and Evans (2005) used a corpus of patient infor-
mation leaflets, conducting factor analysis on their linguistic features to identify
two stylistic dimensions. They then allowed their system to generate a large
number of texts, varying its decisions at a number of choice points (e.g. choos-
ing a pronoun versus a full np) and maintaining a trace. Texts were then scored
on the two stylistic dimensions, and a linear regression model was developed
to predict the score on a dimension based on the choices made by the system.
This model was used during testing to predict the best choice at each choice
point, given a desired style. Style, however, is a global feature of a text, though
it supervenes on local decisions. These authors solved the problem by using a
best-first search algorithm to identify the series of local decisions as scored by
the linear models, that was most likely to maximise the desired stylistic effect,
yielding variations such as the following (examples from Paiva & Evans, 2005,
p. 61):

(18) The dose of the patient’s medicine is taken twice a day. It is two grams.

(19) The two-gram dose of the patient’s medicine is taken twice a day.

(20) The patient takes the two-gram dose of the patient’s medicine twice a
day.

Some authors (e.g., Mairesse & Walker, 2011, , on which more below) have
noted that certain features, once selected, may ‘cancel’ or obscure the stylistic
effect of other features. This raises the question whether style can in fact be
modelled as a linear, additive phenomenon, in which each feature contributes
to an overall perception of style independently of others (modulo its weight in
the regression equation).

A second question is whether stylistic variation could be modelled in a more
specific fashion, for example, by tailoring style to a specific author, rather than
to generic dimensions related to ‘formality’, ‘involvement’ and so on. For in-
stance a corpus-based analysis of human-written weather forecasts by Reiter
et al. (2005) found that lexical choice varies in part based on the author. One
line of work has investigated this using corpora of referring expressions, such
as the tuna Corpus (van Deemter et al., 2012a), in which multiple referring
expressions by different authors are available for a given input domain. For
instance, Bohnet (2008) and Di Fabbrizio et al. (2008) explore statistical meth-
ods to learn individual preferences for particular attributes, a strategy also used
by Viethen and Dale (2010). Hervás et al. (2013) use case-based reasoning to
inform lexical choice when realising a set of semantic attributes for a referring
expression, where the case base differentiates between authors in the corpus to
take individual lexicalisation preferences into account (see also Hervás et al.,
2016).

A more ambitious view of individual variation is present in the work of
Mairesse and Walker (2010, 2011), in the context of nlg for dialogue systems.
Here, the aim is to vary the output of a generator so as to project different
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personality traits. Similar to the model of Biber (1988), personality is here
given a multidimensional definition, via the classic ‘Big 5’ model (e.g., John
& Srivastava, 1999), where personality is a combination of five major traits
(e.g. introversion/extraversion). However, while stylistic variation is usually
defined as a linguistic phenomenon, the linguistic features of personality are
only indirectly reflected in speaking or writing (a hypothesis underlying much
work on detection of personality and other features in text, including Oberlander
& Nowson, 2006; Argamon et al., 2007; Schwartz et al., 2013; Youyou et al.,
2015).

Mairesse and Walker’s personage system, which was developed in the
restaurant domain, takes as input a pragmatic goal and, like the system of
Paiva and Evans (2005), a list of real-valued style parameters, this time repre-
senting scores on the five personality traits. The system estimates generation
parameters for stylistic features based on the input traits, using machine-learned
models acquired from a dataset pairing sample utterances with human personal-
ity judgements. For example, an utterance reflecting high extraversion might be
more verbose and involve more use of expletives (see example 21), compared to a
more introverted style, which might demonstrate more uncertainty, for example
through the use of stammering and hedging (example 22).

(21) Kin Khao and Tossed are bloody outstanding. Kin Khao just has rude
staff. Tossed features sort of unmannered waiters, even if the food is
somewhat quite adequate.

(22) Err... I am not really sure. Tossed offers kind of decent food. Mmhm...
However, Kin Khao, which has quite ad-ad-adequate food, is a thai
place. You would probably enjoy these restaurants.

An interesting outcome of the evaluation with human subjects reported by
Mairesse and Walker (2011) is that readers vary significantly in their judgements
of what personality is actually reflected by a given text. This suggests that the
relationship between such psychological features and their linguistic effects is
far from straightforward. The same could probably be said of stylistic more
generally. Clearly, this is an area that is ripe for further research.

5.2 Generating with feeling: affect and politeness

Personality is usually thought of in terms of traits, which are relatively stable
across time. However, language use may vary not only across individuals, as a
function of their stable characteristics, but also within individuals across time,
as a function of their more transient affective states. ‘Affective nlg’ (a term due
to De Rosis & Grasso, 2000) is concerned with variation that reflects emotional
states which, unlike personality traits, are relatively transient. In this case, the
goals can be twofold: i) to induce an emotional state in the receiver; or (ii) to
reflect the emotional state of the producer.

As in the case of personality, the relationship between emotion and language
is far from clear, as noted by Belz (2003). For one thing, it isn’t clear whether
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only surface linguistic choices need be affected. Some authors have argued
that a text’s affective impact impinges on content selection; this stance has
been adopted, for example, in some applications in e-health where reporting
of health-related issues should be sensitive to their potential emotional impact
(DiMarco et al., 2007; Mahamood & Reiter, 2011).

Most work on affective nlg has however focussed on tactical choices (e.g.
Hovy, 1988; Fleischman & Hovy, 2002; Strong et al., 2007; van Deemter et al.,
2008). Various linguistic features that can have emotional impact have been
identified, from the increased use of redundancy to enhance understanding of
emotionally laden messages (Walker, 1992; De Rosis & Grasso, 2000), to the
increased use of first-person pronouns and adverbs, as well as sentence ordering
to achieve emphasis or reduce adverse emotional impact (De Rosis & Grasso,
2000).

This research on affective nlg relies on models of emotion of various degrees
of complexity and cognitive plausibility. The common trend underlying all these
approaches however is that emotional states should impact lexical, syntactic and
other linguistic choices. The question then is to what extent such choices are
actually perceived by readers or users of a system.

In an empirical study, van der Sluis and Mellish (2010) reported on two
experiments investigating the effect of various tactical decisions on the emotional
impact of text on readers. In one experiment, texts gave a (fake) report to
participants on their performance on an aptitude test, with manually induced
variations, such as these:

(23) Positive slant: On top of this you also outperformed most people in your
age group with your exceptional scores for Imagination and Creativity
(7.9 vs 7.2) and Logical- Mathematical Intelligence (7.1 vs. 6.5).

(24) Neutral/factual slant: You did better than most people in your age group
with your scores for Imagination and Creativity (7.9 vs 7.2) and
Logical-Mathematical Intelligence (7.1 vs. 6.5).

Evaluation of these texts showed that the extent to which affective tactical
decisions influence hearer’s emotional states is dependent on a host of other
factors, including the degree to which the reader is directly implicated in what
the text says (in the case of an aptitude test, the reader would be assumed to
feel the outcomes have personal relevance). An important question raised by
this study is how affect should be measured: van der Sluis and Mellish (2010)
used a standardised self-rating questionnaire to estimate changes in affect before
and after reading a text, but the best way to measure emotion remains an open
question.

The emotional slant in the language used by an author or speaker may have
implications for the degree to which the listener or reader may feel ‘impinged
upon’. This becomes particularly relevant in interactive systems, where nlg
components are generating language in the context of dialogue. Consider, for
example, the difference between these requests:
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(25) Direct strategy: Chop the tomatoes!

(26) Approval strategy: Would it be possible for you to chop the tomatoes?

(27) Autonomy strategy: Could you possibly chop the tomatoes?

(28) Indirect strategy: The tomatoes aren’t chopped yet.

The four strategies exemplified above come across as having varying degrees
of politeness which, according to one influential account (Brown & Levinson,
1987), depends on face. Positive face reflects the speaker’s desire that some of
her goals be shared with her interlocutors; negative face refers to the speaker’s
desire not to have her goals impinged upon by others. The connection with
affect that we suggested above hinges on these distinctions: different degrees of
politeness reflect different degrees of ‘threat’ to the listener; hence, generating
language based on the right face strategy could be seen as a branch of affective
nlg.

In an early, influential proposal, Walker et al. (1997) proposed an interpre-
tation of (Brown & Levinson, 1987) in terms of the four dialogue strategies,
exemplified in (25 – 28) above. Subsequently, Moore et al. (2004) used this
framework in the generation of tutorial feedback, where a discourse planner
used a Bayesian network to inform linguistic choices compatible with the target
politeness/affect value in a given context (see Johnson et al., 2004, for a related
approach).

Gupta et al. (2007) also used the four dialogue strategies identified by Walker
et al. (1997) in the polly system, which used strips-based planning to generate
a plan distributed among two agents in a collaborative task (see also Gupta
et al., 2008). An interesting finding in their evaluation is that perception of face-
threat depends on the speech act; for example, requests can be more threatening.
Gupta et al. (2007) also note possible cultural differences in perception of face
threat (in this case, between uk and Indian participants).

5.3 Style and affect: concluding remarks

In summary, work on variation in nlg, mostly focussing on tactical decisions,
or surface-level linguistic features, has sought to model differences of register or
style as well as individual differences due to personality and affective state.

This area of nlg research is still in a rather fledgling state, with several open
questions of both theoretical and computational import. Among these is the
question of how best to model complex, multi-dimensional constructs such as
personality or emotion; this question speaks both to the cognitive plausibility of
the models informing linguistic choices, and to the practical viability of different
machine learning strategies that could be leveraged for the task (for example,
linear, additive models versus more ‘global’ models of personality or style).
Also important here is the kind of data used to inform generation strategies:
as we have seen above, a lot of affective nlg work relies on ratings by human
judges. However, some recent work in affective computing has questioned the

52



use of ratings, comparing them to ranking-based and physiological methods (e.g.
Martinez et al., 2014; Yannakakis & Mart́ınez, 2015). This and similar research
is probably of high relevance to nlg researchers.

A second important question is which linguistic choices truly convey the
intended variation to the reader or listener. While current systems use a range
of devices, from aggregation strategies to lexical choice, it is not clear which
ones are actually perceived as having the desired effect.

A third important research avenue, which is especially relevant to interactive
systems, is adaptivity, that is, the way speakers (or systems) alter their lingiuis-
tic choices as a result of their interlocutors’ utterances (Clark, 1996; Niederhoffer
& Pennebaker, 2002; Pickering & Garrod, 2004), a theme that has also begun
to be explored in nlg

6 Generating creative and entertaining text

‘Good’ writers not only present their ideas in coherent and well-structured prose.
They also succeed in keeping the attention of the reader through narrative
techniques, and in occasionally surprising the reader, for example, by creative
language use such as small jokes or well-placed metaphors (see e.g., among many
others, Flower & Hayes, 1981; Nauman et al., 2011; Veale & Li, 2015). The nlg
techniques and applications that we discussed so far in this survey, arguably, do
not simulate good writers in this sense, and as a result automatically generated
texts can be perceived as somewhat boring and repetitive.

This lack of attention to creative aspects of language production within nlg
is not due to a general lack of scholarly interest in these phenomena. Indeed,
computational research into creativity has a long tradition, with roots that go
back to the early days of ai (as Gervás, 2013, notes, the first story generation
algorithm on record, Novel Writer, was developed by Sheldon Klein in 1973).
However, it is fair to say that, so far, there has been little interaction between re-
searchers from the computational creativity and nlg communities respectively,
even though both groups in our opinion could learn a lot from each other. In
particular, nlg researchers stand to benefit from insights into what constitutes
creative language production, as well as structural features of narrative that
have the potential to improve nlg output even in data-to-text systems (see
Reiter et al., 2008, for an argument to this effect in relation to a medical text
generation system). At the same time, researchers in computational creativity
could also benefit from the insights provided by the nlg community where the
generation of fluent language is concerned since, as we shall see, a lot of the focus
in this research, especially where narrative is concerned, is on the generation of
plans and on content determination.

In what follows, we give an overview of automatic approaches to creative
language production, starting from relatively simple jokes and metaphors to
more advanced forms, such as narratives.
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6.1 Generating puns and jokes

Consider:

(29) What’s the difference between money and a bottom?
One you spare and bank, the other you bare and spank.

(30) What do you call a weird market?
A bizarre bazaar.

These two (pretty good!) punning riddles were automatically generated
by the jape system developed by Binsted and Ritchie (1994, 1997). Punning
riddles form a specific joke genre and have received considerable attention in
the context of computational humor, presumably because they are relatively
straightforward to define, often relying on spelling or word sense ambiguities.
Many good, human-produced examples have been collected in joke books and
sites and may thus act as a source of inspiration.

Simplifying somewhat, jape (Joke Analysis and Production Engine) relies
on a template-based nlg system, combining fixed text (What’s the difference
between X and Y? or What do you call X?) with slots, which are the source
of the riddle. Various standard lexical resources are used for joke production,
including a British pronunciation dictionary (to find different words with a simi-
lar pronunciation, such as ‘bizarre’ and ‘bazaar’) and WordNet (Miller, 1995, to
find words with a similar meaning, such as bazaar and market). jape uses var-
ious techniques to create the punning riddles, such as juxtaposition, in which
related words are simply placed next to each other and treated as a normal
construction, while making sure that the combination is novel (i.e., not in the
jape database already). It is interesting to observe that in this way jape may
automatically come up with existing jokes (a quick Google search reveals that
many bizarre bazaars, as well as bazaar bizarres, exist).

nlg evaluation is difficult, in general (as we will discuss in more detail in
Section 7 below) and evaluation of humorous nlg is arguably even harder.
Nevertheless, Binsted et al. (1997) showed that it can be done, in an elegant
manner. They presented 120 8-11 year old children with a number of punning
riddles, some automatically generated by jape and some selected from joke
books. They also included a number of non-joke controls, such as:

(31) What do you get when you cross a horse and a donkey?
A mule

For each stimulus that they were exposed to, children were asked to indicate
whether they thought it was a joke, and how funny they considered it. The
results revealed that computer generated riddles were recognised as jokes, and
considered funnier than non-jokes. Interestingly, the joke children rated highest
was automatically generated by jape (we urge the reader to inspect the original
paper), although in general, human-produced jokes were considered funnier by
children than automatically generated ones.

54



Following the seminal work of Binsted and Ritchie, various other systems
have been developed which can automatically generate jokes, including for ex-
ample the hahacronym system of Stock and Strapparava (2005), which produces
humorous acronyms, and the system of Binsted et al. (2003), which focusses on
the generation of referential jokes (“It was so cold, I saw a lawyer with his hands
in his own pockets.”).

Petrovic and Matthews (2013) offer an interesting, unsupervised alternative
to this earlier work, which does not require labelled examples or hard-coded rules
. Like their predecessors, Petrovic and Matthews also start from a template –
in their case I like my X like I like my Y, Z – where X and Y are nouns (e.g.,
coffee and war) and Z is an attribute (e.g., cold). Clearly, linguistic realisation
is not an issue, but content selection – finding ‘funny’ triples X, Y and Z – is a
challenge. Interestingly, the authors postulate a number of guiding principles for
‘good’ triples. In particular, they hypothesize that (a) the joke is funnier if the
attribute Z can be used to describe both nouns X and Y ; (b) the joke is funnier
if attribute Z is both common and ambiguous;and (c) the joke is funnier the
more dissimilar X and Y are. These three statements can be quantified relying
on standard resources such as Wordnet and the Google n-gram corpus (Brants
& Franz, 2006), and using these measures their system outputs, for example:

(32) I like my relationships like I like my source, open.

Again, evaluation is tricky – but interesting. The authors harvested human-
written jokes from Twitter, conforming to the same I like my X . . . template,
after which their different models are used to generate new jokes, not found
anywhere on line, with the same X but different Y and Z. Human judges then
blindly rated both the human and the model-generated jokes. Results showed
that the jokes of the best model were rated as funny in 16% of the cases. This
may not seem like much, but it should be taken into account that whether you
think something is funny or not is presumably very personal; indeed only 33%
of the human jokes were considered funny.

It is probably fair to say that computational joke generation research to date
has mostly focussed on laying bare the basic structure of certain relatively simple
puns and exploiting these to good effect (e.g., Ritchie, 2009). However, many
other kinds of jokes exist, often requiring sophisticated, hypothetical reasoning.
Presumably, many of the central problems within ai need to be solved first
before generation systems will be capable of producing these kinds of advanced
jokes.

6.2 Generating metaphors and similes

Whether you think something is funny or not may be subjective, but in any
case insights from joke generation can be useful as a stepping stone towards a
better understanding of creative language use, including metaphor, simile and
analogy. In all of these, a mapping is made between two conceptual domains, in
such a way that terminology from the source domain is used to say something
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about the target domain, typically in a nonliteral fashion, which can be helpful
in computer-generated texts to illustrate complex information. For example,
Hervás et al. (2006) study analogies in narrative contexts, such as Luke Sky-
walker was the King Arthur of the Jedi Knights, which immediately clarifies an
important aspect of Luke Skywalker for those not in the know. In a simile, the
two domains are compared (A ‘is like’ B); in a metaphor they are equated. Jokes
and metaphors/similes are related: the automatically generated jokes of Petro-
vic and Matthews are comparable to similes, while Kiddon and Brun (2011),
for example, frame the problem of identifying double entendre jokes as a type
of metaphor identification. Nevertheless, one could argue that generating jokes
is more complex because of the extra funniness constraint.

Like computational humor, the automatic recognition and interpretation of
metaphorical, non-literal language has received considerable attention since the
early days of ai (see Shutova et al., 2012, for an overview). Martin (1990,
1994), for example, focussed on the recognition of metaphor in the context of
Unix Support, as in the following examples:

(33) How can I kill a process?

(34) How can I enter lisp?

The first one, for example, makes a mapping between ‘life’ (source) and
‘processes’ (target), and is by now so common that is almost a dead metaphor,
but this was not the case in the early days of Unix. Clearly, understanding of the
metaphors is a prerequisite for automatically answering these questions. Early
research on the computational interpretation of metaphor already recognised
that metaphors rely on semantic conventions that are exploited (‘broken’) to
express new meanings. A system for metaphor understanding, as well as one for
metaphor generation, therefore requires knowledge about what literal meanings
are, and how these can be stretched or translated into metaphoric meanings
(e.g., Wilks, 1978; Fass, 1991).

Recent work by Veale and Hao (Veale & Hao, 2007, 2008) has shown that this
kind of knowledge can be acquired from the web, and used for the generation
of new metaphors and similes (comparisons). Their system, called Sardonicus,
is capable of generating metaphors for user-provided targets (t), such as the
following, expressing that Paris Hilton (‘the person, not the hotel, though the
distinction is lost on Sardonicus’ Veale & Hao, 2007, p.1474) is skinny:

(35) Paris Hilton is a stick

Sardonicus searches the web for nouns (n) that are associated with skinni-
ness, which are included in a case-base and range from pole, pencil, and stick to
snake and stick insect. Inappropriate ones (like cadaver) are ruled out, based
on the theory of category-inclusion of Glucksberg (2001). This list of potential
similes is then used to create Google queries, inspired by the work of Hearst
(1992), of the form n-like t (e.g., stick insect-like Paris Hilton, which actually
occurs on the web), giving a ranking of the potential similes to be generated.
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A comparable technique is used by Veale (2013) to generate metaphors with
an affective component, as in ‘Steve Jobs was a great leader, but he could be
such a tyrant’. The Google n-gram corpus is used to find stereotypes suitable
for simile generation (e.g., ‘lonesome as a cowboy’), a strategy reminiscent of the
use of web-scale n−gram data to smooth the output of image-to-text systems
(see Section4). Next, an affective dimension is added, based on the assumption
that properties occurring in a conjunction (‘as lush and green as a jungle’) are
more likely to have the same affect than properties that do not. Using positive
(e.g., ‘happy’, ‘wonderful’) and negative (e.g., ‘sad’, ‘evil’) seeds, coordination
queries (e.g., ‘happy and X’) are used to collect positive and negative labels for
stereotypes, indicating, for instance, that babies are positively associated with
qualities such as ‘smiling’ and ‘cute’, and negatively associated with ‘crying’ and
‘sniveling’. This enables the automatic generation of positive (‘cute as a baby’)
and negative (‘crying like a baby’) similes. Veale (2013) even points out that
by collecting, for example, a number of negative metaphors for Microsoft being
a monopoly, and using these in a set of predefined tropes, it becomes possible
to automatically generate a poem such as the following:

No Monopoly Is More Ruthless
Intimidate me with your imposing hegemony
No crime family is more badly organized, or controls more ruthlessly
Haunt me with your centralized organization
Let your privileged security support me
O Microsoft, you oppress me with your corrupt reign

In fact, automatic generation of poetry is an emerging area at the crossroads
of computational creativity and natural language generation (see for example
Lutz, 1959; Gervás, 2001; Wong et al., 2008; Netzer et al., 2009; Greene et al.,
2010; Colton et al., 2012; Manurung et al., 2012; Zhang & Lapata, 2014b, for
variations on this theme).

6.3 Generating narratives

Computational narratology is concerned with computational models for the gen-
eration and interpretation of narrative texts (e.g., Gervás, 2009; Mani, 2010,
2013). The starting point for many approaches to narrative generation is a view
of narrative coming from classical narratology, a branch of literary studies with
roots in the Formalist and Structuralist traditions (e.g., Propp, 1968; Genette,
1980; Bal, 2009). This field has been concerned with analysing both the defining
characteristics of narrative, such as plot or character, and more subtle features,
such as the handling of time and temporal shifts, focalisation (that is, the ability
to convey to the reader that a story is being recounted from a specific point of
view), and the interaction of multiple narrative threads, in the form of sub-plots,
parallel narratives, etc. An important recent development is the interest, on the
part of narratologists, in bringing to bear insights from Cognitive Science and
ai on their literary work, making this field ripe for multi-disciplinary interaction

57



(see especially Herman, 1997, 2007; Meister, 2003, for programmatic statements
to this effect, as well as theoretical contributions).

Classical narratology makes a fundamental distinction between the ‘story
world’ and the text that narrates the story. In line with the formalist and
structuralist roots of this tradition, the distinction is usually articulated as
a dichotomy between fabula (or story) and suzjet (or discourse). There is a
parallel between this distinction and that between a text plan in nlg, versus
the actual text which articulates that plan. However, the crucial difference is
that in producing a plan for a narrative, a story generation system typically does
not use input data of the sort required by most of the nlg systems reviewed
thus far, since the story is usually fictional. On the other hand, narratological
tools have also been successfully applied to real-world narratives, including oral
narratives of personal experience (e.g., Herman, 2001; Labov, 2010).

The focus of most work on narrative generation has been on the pre-linguistic
stage, that is, on generating plans within a story world for fictional narratives,
usually within a specific genre whose structural properties are well-understood,
for example, fairy tales or Arthurian legends (see Gervás, 2013, for a review).
There are however links between the techniques used for such stories and those
we have discussed above in relation to nlg (see especially Section 3.2). Promi-
nent among these are planning and reasoning techniques to model the creative
process as a problem-solving task. For example, minstrel (Turner, 1992) uses
reasoning to model creativity from the author’s perspective, producing narra-
tive plans based on authorial goals, such as the goal of introducing drama into
a narrative, while ensuring thematic consistency.

More recently, brutus (Bringsjord & Ferrucci, 1999) used a knowledge base
of story schemas, from which one is selected and elaborated using planning
techniques to link causes and effects (see also Young, 2008; Riedl & Young,
2010, among others, for recent examples of the use of planning techniques to
model the creative process in narrative generation).

As Gervás (2010) notes, the focus on planning story worlds and modelling
creativity has often implied a sidelining of linguistic issues, so that rendering a
story plan into text has often been viewed as a secondary consideration. For
example Figure 7a shows an excerpt of a story produced by the talespin system
(Meehan, 1977): here, the emphasis is on using problem-solving techniques to
produce a narrative in which events follow from each other in a coherent fashion,
rather than on telling it in a fluent way. An important exception to this trend
is the work of Callaway and Lester (2002), who explicitly addressed the gap
between computational narratology and nlg. Their system took a narrative
plan as a starting point, but focussed on the process of rendering the narrative
in fluent English, handling time shifts, aggregation, anaphoric nps and many
other linguistic phenomena, as the excerpt in Figure 7b shows.9 In addition,
there have been a number of contributions from the generation community on
more specific issues related to narrative, such as how to convey the temporal

9It is worth noting that this system has since been re-used in the context of generating
interactive text for a portable museum guide by Stock et al. (2007).
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John Bear is somewhat hungry.
John Bear wants to get some
berries. John Bear wants to
get near the blueberries. John
Bear walks from a cave entrance
to the bush by going through a
pass through a valley through a
meadow. John Bear takes the
blueberries. John Bear eats the
blueberries. The blueberries are
gone. John Bear is not very hun-
gry.

(a) Excerpt from TaleSpin (Meehan,
1977)

Once upon a time a woodman and
his wife lived in a pretty cottage
on the borders of a great forest.
They had one little daughter, a
sweet child, who was a favorite
with every one. She was the joy
of her mother’s heart. To please
her, the good woman made her a
little scarlet cloak and hood. She
looked so pretty in it that every-
body called her Little Red Riding
Hood.

(b) Excerpt from storybook (Callaway &
Lester, 2002)

Figure 7: Examples of automatically generated narratives. The left panel shows
an excerpt from a story produced by TaleSpin (Meehan, 1977); the right panel
is an excerpt from the Little Red Riding Hood fairy-tale, generated by the sto-
rybook system (Callaway & Lester, 2002).

flow of narrative discourse (Oberlander & Lascarides, 1992; Dorr & Gaasterland,
1995; Elson & McKeown, 2010). This is a problem that deserves more attention
in nlg, since texts with a complex narrative structure often narrate events
in a different order from which they occurred. For example, events may be
planned in order of importance, rather than temporally, even when they are
grounded in real-world data (e.g. Portet et al., 2009). This makes the use of the
right choices for tense, aspect and temporal adverbials crucial to ensure clarity
for the reader. This type of complexity in narrative structure also emerges in
interactive narrative fiction (for example, in games; cf., Montfort, 2007).

Beyond the focus on specific linguistic issues, there has also been some work
that leverages data-driven techniques to generate stories. For example, McIn-
tyre and Lapata (2009) propose a story generation system whose input is a
database of entities and their interactions, extracted from a corpus of stories
by parsing them, retrieving grammatical dependencies, and building chains of
events in which specific entities play a role. The outcome is a graph encoding a
partial order of events, with edges weighted by mutual information to reflect the
degree of association between nodes. Sentence planning then takes place using
template-like grammar rules specifying verbs with subcategorisation informa-
tion, followed by realisation using realpro (Lavoie & Rambow, 1997). One
of the most interesting features of this work is the coupling of the generation
model with an interest model to predict which stories would actually be rated as
interesting by readers. This was achieved by training a kernel-based classifier on
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shallow lexical and syntactic features of stories, a novel take on an old problem
in narratology, namely, what makes a story ‘tellable’, thereby distinguishing it
from a mere report (e.g., Herman, 1997; Norrick, 2005; Bruner, 2011).

Most story generation work is restricted to (very) short stories. It is cer-
tainly true that planning a book-length narrative along the lines sketched above
is extremely challenging, but researchers have recently started exploring the
possibilities, for instance in the context of NaNoGenMon (National Novel Gen-
eration Month), in which participants write a computer program capable of
generating a ’novel’. Perhaps the best known example is World Clock (Mont-
fort, 2013) which describes 1440 (24 × 60) events taking place around the world,
one randomly selected minute at a time. These are the first two:

It is now exactly 05:00 in Samarkand. In some ramshackle dwelling a
person who is called Gang, who is on the small side, reads an entirely
made-up word on a box of breakfast cereal. He turns entirely around.

It is now right about 18:01 in Matamoros. In some dim yet decent
structure a man named Tao, who is no larger or smaller than one
would expect, reads a tiny numeric code from a recipe clipping. He
smiles a tiny smile.

The book was fully generated by 165 lines of Python code, written by the
author in a few hours, and later published (together with the software) by
Harvard Book Store press. There is even a Polish translation (by Piotr Marecki),
created by translating the Python algorithm.

Turning to evaluation of narrative generators, this is an area where the con-
sensus in the field is that much further research effort is required (see Zhu, 2012,
for a recent argument to this effect). To some extent, the problems faced in eval-
uating story generators mirror those in classical nlg. For example, evaluating
content determination while factoring out the impact of sentence planning and
realisation is far from trivial (see Mellish & Dale, 1998, and the discussion of
evaluation in Section 7). However, in the case of fictional narrative, the problem
is exacerbated by the fact that there is usually no ‘objective’ input against which
to compare a story plan; indeed, the main focus of evaluation here is the suc-
cess with which a system models the creative process, constructing stories that
have such qualities as novelty (e.g., Pérez et al., 2011) or believability of char-
acters (e.g., Riedl & Young, 2005). Where the focus is on narrative language,
evaluation is more clearly oriented towards linguistic issues such as coherence
and fluency, as shown by the exhaustive evaluation conducted by Callaway and
Lester (2002) for the storybook system.

The problem for those systems in which linguistic quality is secondary is
that it is difficult to evaluate a story while factoring out effects which are due
to the way it is recounted. Recent proposals, for example by Rowe et al. (2009),
have emphasised the need to deploy multiple evaluation methods to evaluate
narratives at different levels, from plot structure to cognitive-affective impact
on readers. As we shall see in Section 7, the use of multiple methods is probably
desirable even for classical nlg tasks.
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6.4 Generating creative language: Concluding remarks

In this section we have highlighted recent developments in the broad area of
creative language generation, a topic which is rather understudied in nlg. Nev-
ertheless, we would like to argue that nlg researchers can improve the quality
of their output by taking insights from computational creativity on board.

Work that exploits corpora and other lexical resources for the automatic
generation of jokes, puns, metaphors and similes has revealed different ways in
which words are related and can be juxtaposed to form unexpected and possibly
even ‘funny’ or ‘poetic’ combinations. Given that, for example, metaphor is
pervasive in everyday language (as argued, for example, by Lakoff & Johnson,
1980), not just in overtly creative uses, nlg researchers interested in enhancing
the readability – and especially the variability – of the text-generating capability
of their models would benefit from a closer look at work in poetry, joke and
metaphor generation.

In a similar vein, work on narratology is rich in insights on the interaction
of multiple threads in a single narrative, and how the choice of events and their
ordering can give rise to interesting stories (e.g., Gervás, 2012). These insights
are valuable, for example, in the development of more elaborate text planners
in domains where time and causality play a role. Similarly, narratological work
on character and focalisation can also help in the development of better nlg
techniques to vary output according to specific points of view, an area that we
touched on in Section 5,

We have seen that evaluation of these systems remains something of a bot-
tleneck. In part, this is because it is not always easy to determine the ‘right’
question to ask in an evaluation. For instance, as we saw in the case of joke
and poetry generators, demonstrating genre compatibility and recognition (‘Is
this a joke?’) is arguably already an achievement, insofar as it suggests that a
system is producing artefacts that conform to normative expectations. At the
same time, the emphasis on creativity, especially in story generation systems,
suggests that conformity to genre conventions is not the only question at stake.
The problem is that evaluation is difficult to carry out without ensuring qual-
ity at all levels of the generation process, from planning to realisation. This is
probably an area in which nlg has much to offer to computational creativity
researchers, in the form of a set of techniques to ensure coherence and fluency.

7 Evaluation

Though we have touched on the subject of evaluation at various points, it de-
serves a full discussion as a topic which has become a central methodological
concern in nlg. A factor that contributed to this development was the estab-
lishment of a number of nlg shared tasks, launched in the wake of an nsf-
funded workshop held in Virginia in 2007 (Dale & White, 2007). These tasks
have focussed on referring expression generation (Belz et al., 2010; Gatt & Belz,
2010); surface realisation (Belz et al., 2011); generation of instructions in virtual
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environments (Striegnitz et al., 2011; Janarthanam & Lemon, 2011); content
determination (Bouayad-Agha et al., 2013; Banik et al., 2013); and question
generation (Rus et al., 2011). Recent proposals for new challenges extend these
to narrative generation (Concepción et al., 2016), generation from structured
web data (Colin et al., 2016) and from unaligned pairs of meaning representa-
tions and text (Novikova & Rieser, 2016a). In image captioning, shared tasks
have helped the development of large-scale datasets and evaluation servers such
as ms-coco10 (cf. Section 4.1). In general, however, nlg evaluation is marked
by a great deal of variety and it is difficult to compare systems directly. There
are at least two reasons why this is the case.

Variable input There is no single, agreed-upon input format for nlg sys-
tems (McDonald, 1993; Mellish & Dale, 1998; Evans et al., 2002). Typically,
one can only compare systems against a common benchmark if the input is
similar. Examples are the image-captioning systems described in Section 4,
or systems submitted to one of the shared tasks mentioned above. Even in
case a common ‘standard’ dataset is available for evaluation, comparison may
not be straightforward due to input variation, or due to implicit biases in the
input data. For example, Rajkumar and White (2014) observe that, despite
many realisers being evaluated against the Penn Treebank, they make different
assumptions about the input format, including how detailed the pre-syntactic
input representation is, a problem also observed in the first Surface Realisation
shared task (Belz et al., 2011). As Rajkumar and White (2014) note, a com-
parison of realisers on the basis of scores on the Penn Treebank shows that the
highest-ranking is the fuf/surge realiser (which is second in terms of cover-
age), based on experiments by Callaway (2005). However, these experiments
required painstaking effort to extract the input representations at the level of
detail needed by fuf/surge; other realisers support more underspecified input.
In a related vein, image captioning evaluation studies have shown that many
datasets contain a higher proportion of nouns than verbs, and few abstract
concepts (Ferraro et al., 2015), making systems that generate descriptions em-
phasising objects more likely to score better. The relevance of this observation
is shown by Elliott and De Vries (2015), who note that the ranking of their
image captioning system based on visual dependency grammar depends in part
on the data it is evaluated on, with better performance on data containing more
images depicting actions (we return to this study below).

Multiple possible outputs Even for a single piece of input and a single sys-
tem, the range of possible outputs is open-ended, a problem that arguably holds
for any nlp task involving textual output, including machine translation and
summarisation. Corpora often display a substantial range of variation and it is
often unclear, without an independent assessment, which outputs are to be pre-
ferred (Reiter & Sripada, 2002). In the image captioning literature, authors who
have framed the problem in terms of retrieval have motivated the choice in part

10http://mscoco.org/dataset/#captions-upload
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based on this problem, arguing that ‘since there is no consensus on what consti-
tutes a good image description, independently obtained human assessments of
different caption generation systems should not be compared directly’ (Hodosh
et al., 2013, p. 580). While capturing variation may itself be a goal (e.g., Belz,
2008; Viethen & Dale, 2010; Hervás et al., 2013; Ferreira et al., 2016), as we
also saw in our discussion of style in Section 5, this is not always the case. Thus,
in a user-oriented evaluation, the SumTime-mousam system weather forecasts
were preferred by readers over those written by forecasters because the latter’s
lexicalisation decisions were susceptible to apparently arbitrary variation (Re-
iter et al., 2005); similar outcomes were more recently reported for statistical
nlg systems trained on the SumTime corpus (Belz, 2008; Angeli et al., 2010).

Rather than give an exhaustive review of nlg evaluation – hardly a realistic
prospect given the diversity we have pointed out – the rest of this section will
highlight some topical issues in current work. By way of an overview of these
issues, consider the hypothetical scenario sketched in Figure 8, which is loosely
inspired by work on various weather-reporting systems developed in the field.
This nlg system is embedded in the environment of an offshore oil-rig; the rel-
evant features of the setup (in the sense of Sparck Jones & Galliers, 1996) are
the system itself and its users, here a group of engineers. While the task of the
system is to generate weather reports from numerical weather prediction data,
its ultimate purpose is to facilitate users’ planning of drilling and maintenance
operations. Figure 8 highlights some of the common questions addressed in nlg
evaluation, together with a broad typology of the methods used to address them,
in particular, whether they are objective – that is measurable against an exter-
nal criterion, such as corpus similarity or experimentally obtained behavioural
data – or subjective, requiring human judgements.

A fundamental methodological distinction, due to Sparck Jones and Galliers
(1996), is between intrinsic and extrinsic evaluation methods. In the case of
nlg, an intrinsic evaluation measures the performance of a system without
reference to other aspects of the setup, such as the system’s effectiveness in
relation to its users. In our example scenario, questions related to text quality,
correctness of output and readability qualify as intrinsic, whereas the question
of whether the system actually achieves its goal in supporting adequate decision-
making on the offshore platform is extrinsic.

7.1 Intrinsic methods

Intrinsic evaluation in nlg is dominated by two methodologies, one relying on
human judgements (and hence subjective), the other on corpora.

7.1.1 Subjective (human) judgements

Human judgements are typically elicited by exposing naive or expert subjects
to system outputs and getting them to rate them on some criteria. Common
criteria include:
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Figure 8: Hypothetical evaluation scenario: a weather report generation system
embedded in an offshore oil platform environment. Possible evaluation methods,
focussing on different questions, are highlighted at the bottom, together with
the typical methodological orientation (subjective/objective) adopted to address
them.

• Fluency or readability, that is, the linguistic quality of the text (e.g., Call-
away & Lester, 2002; Mitchell et al., 2012; Stent et al., 2005; Lapata, 2006;
Cahill, 2009; Espinosa et al., 2010, inter alia);

• Accuracy, adequacy, relevance or correctness relative to the input, reflect-
ing the system’s rendition of the content (e.g. Lester & Porter, 1997; Sri-
pada et al., 2005; Hunter et al., 2012), a criterion often used in subjective
evaluations of image-captioning systems as well (e.g. Kulkarni et al., 2011;
Mitchell et al., 2012; Kuznetsova et al., 2012; Elliott & Keller, 2013).

Though they are the most common, these two sets of criteria do not exhaust
the possibilities. For example, subjective ratings have also been elicited for
argument effectiveness in a system designed to generate persuasive text for
prospective house buyers (Carenini & Moore, 2006). In image captioning, at
least one system was evaluated by asking users to judge the creativity of the
generated caption, with a view to assessing the contribution of web-scale n-
gram language models to the captioning quality (Li et al., 2011). Below, we
also discuss judgements of genre compatibility (Section 7.1.3).

The use of scales to elicit judgements raises a number of questions. One
has to do with the nature of the scale itself. While discrete, ordinal scales are
the dominant method, a continuous scale – for example, one involving a visually
presented slider (Gatt & Belz, 2010; Belz & Kow, 2011) – might give subjects the
possibility of giving more nuanced judgements. For example, a text generated
by our hypothetical weather report system might be judged so disfluent as to
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be given the lowest rating on an ordinal scale; if the following text is judged as
being worse, a subject would have no way of indicating this. A related question
is whether subjects find it easier to compare items rather than judge each one
in its own right. This question has begun to be addressed in the nlp evaluation
literature, usually with binary comparisons, for example between the outputs
of two mt systems (see Dras, 2015, for discussion). In a recent study evaluating
causal connectives produced by an nlg system, Siddharthan and Katsos (2012)
used Magnitude Estimation, whereby subjects are not given a predefined scale,
but are asked to choose their own and proceed to make comparisons of each item
to a ‘modulus’, which serves as a comparison point throughout the experiment
(see Bard et al., 1996).11 Belz and Kow (2010) compared a preference-based
paradigm to a standard rating scale to evaluate systems from two different
domains (weather reporting and reg), and found that the former was more
sensitive to differences between systems, and less susceptible to variance between
subjects.

An additional concern with subjective evaluations is inter-rater reliability.
Multiple judgements by different evaluators may exhibit high variance, a prob-
lem that was encountered in the case of Question Generation (Rus et al., 2011).
Recently, Godwin and Piwek (2016) suggested that such variance can be re-
duced by an iterative method whereby training of judges is followed by a period
of discussion, leading to the updating of evaluation guidelines. This, however,
is more costly in terms of time and resources.

It is probably fair to state that, these days, subjective, human evaluations
are often carried out via online platforms such as Amazon Mechanical Turk12

and CrowdFlower13, though this is probably more feasible for widely-spoken lan-
guages such as English. A seldom-discussed issue with such platforms concerns
their ethical implications (for example, they involve large groups of poorly paid
individuals; see Fort et al., 2011) as well as the reliability of the data collected,
though measures can be put in place to ensure, for instance, that contributors
are fluent in the target language (see e.g., Goodman et al., 2013; Mason & Suri,
2012).

7.1.2 Objective humanlikeness measures using corpora

Intrinsic methods that rely on corpora can generally be said to be addressing
the question of ‘humanlikeness’, that is, the extent to which the system’s output
matches human output under comparable conditions. From the developer’s
perspective, the selling point of such methods is their cheapness, since they
are usually based on automatically computed metrics. A variety of corpus-
based metrics, often used earlier in related fields such as Machine Translation

11The modulus is an item – a text, or a sentence – which is selected in advance and which
subjects are asked to rate first. All subsequent ratings or judgements are performed in compar-
ison to this modus item. Though subjects are able to use any scale they choose, this method
allows all judgements to be normalised by the judgement given for the modulus. Typically,
normalised judgements are analysed on a logarithmic scale.

12https://www.mturk.com/mturk/welcome
13https://www.crowdflower.com
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Metric Description Origins

N
-g

ra
m

ov
er

la
p

bleu Precision score over variable-length n-grams, with a length
penalty (Papineni et al., 2002) and, optionally, smoothing (Lin
& Och, 2004).

mt

nist A version of bleu with higher weighting for less frequent
n−grams and a different length penalty (Doddington, 2002).

mt

rouge Recall-oriented score, with options for comparing non-
contiguous n−grams and longest common subsequences (Lin &
Hovy, 2003).

as

meteor Harmonic mean of unigram precision and recall, with options
for handling (near-synonymy) and stemming (Lavie & Agarwal,
2007).

mt

gtm General Text Matcher. F-Score based on precision and recall,
with greater weight for contiguous matching spans (Turian et al.,
2003)

mt

cider Cosine-based n-gram similarity score, with n-gram weighting us-
ing tf-idf (Vedantam et al., 2015).

ic

S
tr

in
g

d
is

ta
n
ce

Edit distance Number of insertions, deletions, substitutions and, possibly,
transposition required to transform the candidate into the ref-
erence string (Levenshtein, 1966).

n/a

ter Translation edit rate, a version of edit distance (Snover et al.,
2006).

mt

terp Version of ter handling phrasal substitution, stemming and syn-
onymy (Snover et al., 2006).

mt

terpa Version of ter optimised for correlations with adequacy judge-
ments (Snover et al., 2006).

mt

C
o
n
te

n
t

ov
er

la
p

Dice/Jaccard Set-theoretic measures of overlap between two unordered sets
(e.g. of predicates or other content units)

n/a

masi Measure of agreement between set-valued items, a weighted ver-
sion of Jaccard (Passonneau, 2006)

as

spice Measure of overlap between candidate and reference texts based
on propositional content obtained by parsing the text into
graphs representing objects and relations, by first parsing cap-
tions into scene graphs representing objects and relations (An-
derson et al., 2016)

ic

Table 1: Intrinsic, corpus-based metrics based on string overlap, string distance,
or content overlap. The last column indicates the nlp sub-discipline in which a
metric originated, where applicable. Legend: mt = Machine translation; as =
automatic summarisation; ic = image captioning.

or Summarisation, have been used in nlg evaluation. Some of the main ones
are summarised in Table 1, which groups them according to their principal
characteristics, and for each adds a key reference.

Measures of n-gram overlap or string edit distance, usually originating in
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Machine Translation or Summarisation (with the exception of cider, Vedantam
et al., 2015) are frequently used for evaluating surface realisation (e.g., White
et al., 2007; Cahill & Josef, 2006; Espinosa et al., 2010; Belz et al., 2011) and
occasionally also to evaluate short texts characteristic of data-driven systems in
domains such as weather reporting (e.g. Reiter & Belz, 2009; Konstas & Lapata,
2013) and image captioning (see Bernardi et al., 2016). Edit distance metrics
have been exploited for realisation (Espinosa et al., 2010), but also for reg
(Gatt & Belz, 2010).

The focus of these metrics is on the text, rather than its fidelity to the
input. In a limited number of cases, surface-oriented metrics have been used
to evaluate the adequacy with which output text reflects content (Banik et al.,
2013; Reiter & Belz, 2009). However, if content determination is the focus,
a measure of surface overlap is at best a proxy, relying on an assumption of
a straightforward correspondence between input and output. This assumption
may be tenable if texts are brief and relatively predictable. In some cases,
it has been possible to use metrics to measure content determination directly,
based on semantically annotated corpora. For instance, reg algorithms have
been evaluated in this fashion using set overlap metrics (Viethen & Dale, 2007;
van Deemter et al., 2012a). Direct measurements of content overlap between
generated and candidate outputs will likely increase, as automatic data-text
alignment techniques make such ‘semantically transparent’ corpora more readily
available for end-to-end nlg (see e.g., Chen & Mooney, 2008; Liang et al., 2009,
and the discussion in Section 3.3).

7.1.3 Evaluating genre compatibility

A slightly different question that has occasionally been posed in evaluation stud-
ies asks whether the linguistic artefact produced by a system is a recognisable
instance of a particular genre or style. We have seen examples of this in our
discussion of creative language generation in Section 6. For example, one of the
questions asked by Binsted et al. (1997) was whether the output of jape was
recognisably a joke. Hardcastle and Scott (2008) describe an evaluation of a
generation system for cryptic crossward clues based on a Turing test in which
the objective was to determine whether the system’s outputs were recognisably
different from human-authored clues.

While such questions clearly have an intrinsic orientation, they also have
a bearing on extrinsic factors, since the ability to recognise an artefact as an
instance of a genre or as exhibiting a certain style or personality is arguably one
of the sources of its impact, especially in the case of creative language use.

Of course, the intention behind variation in style, personality or affect may
well be to ultimately increase effectiveness in achieving some ulterior goal. In-
deed, any nlg system intended to be embedded in a specific environment will
need to address stylistic and genre-based issues. For example, our hypothetical
weather report generator might use a very brief, technical style given its profes-
sional pool of target users (as was the case with SumTime Reiter et al., 2005);
in contrast, weather reports intended for public consumption, such as those in
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the WeatherGov corpus, would probably be longer and less technical (Angeli
et al., 2010).

However, there is a difference between evaluating whether genre constraints
or stylistic variation help contribute to a goal, and evaluating whether the text
actually exhibits the desired variation. For example, Mairesse and Walker (2011)
evaluated the personage system (see Section 5) by asking users to judge per-
sonality traits as reflected in generated dialogue fragments (rather than, say,
measuring whether users were more likely to eat at a restaurant if this was rec-
ommended by a configuration of the system with a high degree of extraversion).
This is similar in spirit to the question about jokehood asked by Binsted et al.
(1997), in contrast to the more explicitly extrinsic evaluation of the standup
joke generator by Waller et al. (2009), which asked whether the system actually
helped users improve their interactions with peers.

7.2 Extrinsic evaluation methods

In contrast to intrinsic methods, extrinsic evaluations measuring effectiveness in
achieving a desired goal. In the example scenario of Figure 8, such an evaluation
might address the impact on planning by the engineers who are the target users
of the system. Clearly, ‘effectiveness’ is dependent on the application domain
and purpose of a system. Examples include:

• persuasion and behaviour change, for example, through exposure to per-
sonalised smoking cessation letters (Reiter et al., 2003);

• purchasing decision after presentation of arguments for and against options
on the housing market based on a user model (Carenini & Moore, 2006);

• engagement with ecological issues after reading blogs about migrating
birds (Siddharthan et al., 2013);

• decision support in a medical setting following the generation of patient
reports (Portet et al., 2009; Hunter et al., 2012);

• enhancing linguistic interaction among users with complex communication
needs via the generation of personal narratives (Tintarev et al., 2016);

• enhancing learning efficacy in tutorial dialogue (Di Eugenio et al., 2005;
Fossati et al., 2015; Boyer et al., 2011; Lipschultz et al., 2011; Chi et al.,
2014)

While questionnaire-based or self-report studies can be used to address ex-
trinsic criteria (e.g., Hunter et al., 2012; Siddharthan et al., 2013; Carenini &
Moore, 2006), in many cases evaluation relies on some objective measure of
performance or achievement. This can be done with the target users in situ,
enhancing the ecological validity of the study, but can also take the form of a
task that models the scenarios for which the nlg system has been designed.
Thus, in the give Challenge (Striegnitz et al., 2011), in which nlg systems
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generated instructions for a user to navigate through a virtual world, a large-
scale task-based evaluation was carried out by having users play the give game
online, while various indices of success were logged, including the time it took
a user to complete the game. reg algorithms whose goal was to generate iden-
tifying descriptions of objects in visual domains, were evaluated in part based
on the time it took readers to identify a referent based on a generated descrip-
tion, as well as their error rate(Gatt & Belz, 2010). skillsum, a system to
generate feedback reports from literacy assessments, was evaluated by measur-
ing how user’s self-assessment of their own literacy skills improved after reading
generated feedback, compared to control texts (Williams & Reiter, 2008).

A potential drawback of extrinsic studies, in addition to time and expense,
is a reliance on an adequate user base (which can be difficult to obtain when
users have to be sampled from a specific population, such as the engineers in our
hypothetical scenario in Figure 8) and the possibility of carrying out the study in
a realistic setting. Such studies also raise significant design challenges, due to the
need to control for intervening and confounding variables, comparing multiple
versions of a system (e.g. in an ablative design; see Section 7.3 below), or
comparing a system against a gold standard or baseline. For example, Carenini
and Moore (2006) note that evaluating the effectiveness of arguments presented
in text needs to take into account aspects of a user’s personality which may
impact how receptive they are to arguments in the first place.

An example of the trade-off between design and control issues and ecological
validity is provided by the BabyTalk family of systems. A pilot system called
bt-45 (Portet et al., 2009), which generated patient summaries from 45-minute
spans of historical patient data, was evaluated in a task involving nurses and
doctors, whose chose from among a set of clinical actions to take based on the
information given. These were then compared to ‘ground truth’ decisions by se-
nior neonatal experts. This evaluation was carried out off-ward; hence, subjects
took clinical decisions in an artificial environment without direct access to the
patient. On the other hand, in the evaluation of bt-nurse, a successor to bt-
45 which summarised patient data collected over a twelve-hour shift (Hunter
et al., 2012), the system was evaluated on-ward using live patient data, but
ethical considerations precluded a task-based evaluation. For the same reasons,
comparison to ‘gold standard’ human texts was also impossible. Hence, the eval-
uation elicited judgements, both on intrinsic criteria such as understandability
and accuracy and on extrinsic criteria such as perceived clinical utility (see Sid-
dharthan et al., 2013, for a similarly indirect extrinsic measure of impact, this
time in an ecological setting).

7.3 Black box vs glass box evaluation

With the exception of evaluations of specific modules or algorithms, as in the
case of reg or surface realisers, most of the evaluation studies discussed so far
would be classified as ‘black box’ evaluations of ‘end-to-end’, or complete, nlg
systems. In a ‘glass box’ evaluation, on the other hand, it is the contribution of
individual components that is under scrutiny, ideally in a setup where versions of
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a system with and without a component are evaluated in the same manner. Note
that the distinction between black box and glass box evaluation is orthogonal
to the question of which methods are used.

An excellent example of a glass-box evaluation is Callaway and Lester (2002),
who used an ablative design, eliciting judgements of the quality of the output of
their narrative generation system based on different configurations that omit-
ted or included key components. In a related vein, Elliott and Keller (2013)
compared image-to-text models that included fine-grained dependency repre-
sentations of spatial as well as linguistic dependencies, to models with a coarser-
grained image representation, finding an advantage for the former.

However, exhaustive component-wise comparisons are sometimes difficult
to make and may result in a combinatorial explosion of configurations, with
a concomitant reduction in data points collected per configuration (assuming
subjects are limited and need to be divided among different conditions) and
a reduction in statistical power. Alternatives do exist in the literature. Reiter
et al. (2003) elicited judgements on weather forecasts using human and machine-
generated texts, together with a ‘hybrid’ version where the content was selected
by forecasters, but the language was automatically generated. This enabled
a comparison of human and automatic content selection. Angeli et al. (2010)
used corpus-based and subjective measures to assess linguistic quality, coupled
with precision and recall-based measures to assess content determination of their
statistical system against human-annotated texts. In bt-nurse (Hunter et al.,
2012), nurses were prompted for free text comments (in addition to answering a
questionnaire targeting extrinsic dimensions), which were then manually anno-
tated and analysed to determine which elements of the system were potentially
problematic.

7.4 On the relationship between evaluation methods

To what extent are the plethora of methods surveyed – from extrinsic, task-
oriented to intrinsic ones relying on automatic metrics or human judgements
– actually related? It turns out that multiple evaluation methods seldom give
converging verdicts on a system, or on the relative ranking of a set of systems
under comparison.

7.4.1 Metrics versus human judgements

Although corpus-based metrics used in mt and summarisation are typically val-
idated by demonstrating their correlation with human ratings, meta-evaluation
studies in these fields have suggested that the correspondence is somewhat weak
(e.g., Dorr et al., 2004; Callison-Burch et al., 2006; Caporaso et al., 2008). Sim-
ilarly, shared task evaluations on referring expression generation showed that
corpus-based, judgement-based and experimental or task-based methods fre-
quently do not correlate Gatt and Belz (2010). In their recent review Bernardi
et al. (2016) note a similar issue in image captioning system evaluation. Thus,
Kulkarni et al. (2013) found that their image description system did not out-
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perform two earlier methods (Farhadi et al., 2010; Yang et al., 2011) on bleu
scores; however, human judgements indicated the opposite trend, with readers
preferring their system (similar observations are made by Kiros et al., 2014).
Hodosh et al. (2013) compared the agreement (measured by Cohen’s κ) be-
tween human judgements and bleu or rouge scores for retrieved captions,
finding that outputs were not ranked similarly by humans and metrics, unless
the retrieved captions were identical to the reference captions.

On occasion, the correlation between a metric and human judgements ap-
pears to differ across studies, suggesting that metric-based results are highly
susceptible to variation due to generation algorithms and datasets. For in-
stance, Konstas and Lapata (2013) (discussed in Section 3.3.4 above) find that
on corpus-based metrics, the best-performing version of their model does not
outperform that of Kim and Mooney (2010) on the robocup domain, or that of
Angeli et al. (2010) on their weather corpus (weathergov), though it performs
better than Angeli et al. (2010) on the noisier atis travel dataset. However,
an evaluation of fluency and semantic correctness, based on human judgements,
showed that the system outperformed, by a small margin, both Kim and Mooney
(2010) and Angeli et al. (2010) on both measures in all domains with the ex-
ception of weathergov, where Angeli et al.’s system did marginally better.

In a related vein, Elliott and De Vries (2015) compare their image cap-
tioning system, based on visual dependency relations, to the Bidirectional rnn
developed by Karpathy and Fei-Fei (2015), on two different datasets. The two
systems were close to each other on the vlt2k dataset, but not on Pascal1k, a
result that the authors claim is due to vlt2k containing more pictures involving
actions. As for the relationship between metrics and human judgements, Elliott
and Keller (2013) concluded that meteor correlates better than bleu (see El-
liott & Keller, 2014, for a systematic comparison of automatic metrics in this
domain), a finding also confirmed in their later work (Elliott & De Vries, 2015),
as well as in the ms-coco Evaluation Challenge, which found that meteor
was more robust. However, work by Kuznetsova et al. (2014) showed variable
results; their highest-scoring method as judged by humans, involving tree com-
position, was ranked higher by bleu than by meteor. In the ms-coco Evalua-
tion Challenge, some systems outperformed a human-human upper bound when
compared to reference texts using automatic metrics, but no system reached this
level in an evaluation based on human judgements (see Bernardi et al., 2016,
for further discussion).

Some studies have explicitly addressed the relationship between methods as a
research question in its own right. An important contribution in this direction is
the study by (Reiter & Belz, 2009), which addressed the validity of corpus-based
metrics in relation to human judgements, within the domain of weather forecast
generation (a similar study has recently been conducted on image captioning
by Elliott & Keller, 2014). In a first experiment, focussing on linguistic quality,
the authors found a high correlation between expert and non-expert readers’
judgements, but the correlation between human judgements and the automatic
metrics varied considerably (from 0.3 to 0.87), depending on the version of the
metric used and whether the reference texts were included in the comparison
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by human judges. The second experiment evaluated both linguistic quality, by
asking human judges to rate clarity/readability; and content determination, by
eliciting judgements of accuracy/appropriateness (by comparing texts to the
raw data). The automatic metrics correlated significantly with judgements of
clarity, but far less with accuracy, suggesting that they were better at predicting
the linguistic quality than correctness.

Other studies have yielded similarly inconsistent results. In a study on para-
phrase generation, Stent et al. (2005) found that automatic metrics correlated
highly with judgements of adequacy (roughly akin to accuracy), but not fluency.
By contrast, Espinosa et al. (2010) found that automatic metrics such as nist,
meteor and gtm correlate moderately well with human fluency and adequacy
judgements of English surface realisation quality, while Cahill (2009) reported
only a weak correlation for German surface realisation. Wubben et al. (2012),
comparing text simplification strategies, found low, but significant correlations
between bleu and fluency judgements, and a very low, negative correlation
between bleu and adequacy. These contrasting findings suggest that the rela-
tionship between metrics may depend on purpose and genre of the text under
consideration; for example, Reiter and Belz (2009) used weather reports, while
Wubben et al. (2012) used Wikipedia articles.

Various factors can be adduced to explain the inconsistency of these meta-
evaluation studies:

1. Metrics such as bleu are sensitive to the length of the texts under com-
parison. With shorter texts, n-gram based metrics are likely to result in
lower scores.

2. The type of overlap matters: for example, many evaluations in image
captioning rely on bleu-1 (the work of Elliott & Keller, 2013, 2014, was
among the first to experiment with longer n-grams), but longer n-grams
are harder to match, though they capture more syntactic information and
are arguably better indicators of fluency.

3. Semantic variability is an important issue. Generated texts may be similar
to reference texts, but differ on some near-synonyms, or subtle word order
variations. As shown in Table 1, some metrics are designed to partially
address these issues.

4. Many intrinsic corpus-based metrics are designed to compare against mul-
tiple reference texts, but this is not always possible in nlg. For example,
while image captioning datasets typically contain multiple captions per
image (typically, around 5), this is not the case in other domains, like
weather reporting or restaurant recommendations.

The upshot is that nlg evaluations increasingly rely on multiple methods, a
trend that is equally visible in other areas of nlp , such as mt (Callison-Burch
et al., 2007, 2008).
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7.4.2 Using controlled experiments

A few studies have validated evaluation measures against experimental data.
For example, Siddharthan and Katsos (2012) compared the outcomes of their
magnitude estimation judgement study (see Section 7.1 above) to the results
from a sentence recall task, finding that the results from the latter are largely
consistent with judgements and concluding that they can substitute for task-
based evaluations to shed light on breakdowns in comprehension at sentence
level. A handful of studies have also used behavioral experiments and compared
‘online’ processing measures, such as reading time of referring expressions, to
corpus-based metrics (e.g. Belz et al., 2010). Correlations with automatic met-
rics are usually poor. A somewhat different use of reading times was made by
Lapata (2006), who used them as an objective measure against which to validate
Kendall’s τ as a metric for assessing information ordering in text (an aspect of
text stucturing). In a recent study, Zarrießet al. (2015) compared generated
texts to human-authored and ‘filler’ texts (which were manually manipulated
to compromise their coherence). They found that reading-time measures were
more useful to distinguish these classes of texts than offline measures based on
elicited judgements of fluency and clarity.

7.5 Evaluation: Concluding remarks

Against the background of this section, three main conclusions can be drawn:

1. There is a widespread acceptance of the necessity of using multiple evalua-
tion methods in nlg. While these are not always consistent among them-
selves, they are useful in shedding light on different aspects of quality,
from fluency and clarity of output, to adequacy of semantic content and
effectiveness in achieving communicative intentions. The choice of method
has a direct impact on the way in which results can be interpreted.

2. Meta-evaluation studies have yielded conflicting results on the relation-
ship between human judgements, behavioural measures and automatically
computed metrics. The correlation among them varies depending on task
and application domain. This is a subject of ongoing research, with plenty
of studies focussing on the reliabilty of metrics and their relationship to
other measures, especially human judgements.

3. A question that remains under-explored concerns the dimensions of quality
that are themselves the object of inquiry. (In this connection, it is worth
noting that some kindred disciplines have sought to de-emphasise their role
on the grounds that they are inconsistent; see Callison-Burch et al. (2008),
for example). For example, what are people judging when they judge flu-
ency or adequacy and how consistently do they do so? It is far from
obvious whether these judgements should really be expected to correlate
with other measures, given that the latter are producer-oriented, focussing
on output, while judgements are themselves often receiver-oriented, fo-
cussing on how the output is read or processed (for a related argument,
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see Oberlander, 1998). Furthermore, while meta-linguistic judgements can
be expected to reflect the impact of a text on its readers, there is neverthe-
less the possibility that behavioural, online methods designed to directly
investigate aspects of processing would yield a different picture, a result
that has been obtained in some psycholinguistic studies (e.g. Engelhardt
et al., 2006).

In conclusion, our principal recommendation to nlg practitioners, where
evaluation is concerned, is to err in favour of diversity, by using multiple meth-
ods, as far as possible, and reporting not only their results, but also the cor-
relation between them. Weak correlations need not imply that the results of a
particular method are invalid. Rather, they may indicate that measures focus
on different aspects of a system or its output.

8 Discussion and future directions

Over the past two decades, the field of nlg has advanced considerably, and
many of these recent advances have not been covered in a comprehensive survey
yet. This paper has sought to address this gap, with the following goals:

1. to give an update of the core tasks and architectures in the field, with an
emphasis on recent data-driven techniques;

2. to briefly highlight recent developments in relatively new areas, incuding
vision-to-text generation and the generation of stylistically varied, engag-
ing or creative texts; and

3. to extensively discuss the problems and prospects of evaluating nlg ap-
plications.

Throughout this survey, various general, related themes have emerged. Prob-
ably the central theme has been the gradual shift away from traditional, rule-
based approaches to statistical, data-driven ones, which, of course, has been
taking place in ai in general. In nlg, this has had substantial impact on how
individual tasks are approached (e.g., moving away from domain-dependent to
more general, domain-independent approaches, relying on available data in-
stead) as well as on how tasks are combined in different architectures (e.g.,
moving away from modular towards more integrated approaches). The trade-off
between output quality of the generated text and the efficiency and robustness
of an approach is becoming a central issue: data-driven approaches are arguably
more efficient than rule-based approaches, but the output quality may be com-
promised, for reasons we have discussed. Another important theme has been
the increased interplay between core nlg research and other disciplines, such
as computer vision (in the case of vision-to-text) and computational creativity
research (in the case of creative language use).

At the conclusion of this comprehensive survey of the state of the art in
nlg, and given the fast pace at which developments occur both in industry and
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academia, we feel it is useful to point to some potential future directions, as
well as to raise a number of questions which recent research has brought to the
fore.

8.1 Why (and how) should NLG be used?

More than a decade ago, towards the beginning of their influential survey on
nlg, Reiter and Dale (2000) recommended to the developer that she pose this
question before embarking on the design and implementation of a system. Can
nlg really help in the target domain? Does a cheaper, more standard solution
exist and would it work just as well? From the perspective of an engineer or
a company, these are obviously relevant questions. As recent industry-based
applications of nlg show, this technology is typically valuable whenever infor-
mation that needs to be presented to users is relatively voluminous, and comes
in a form which is not easily consumed and does not afford a straightforward
mapping to a more user-friendly modality without considerable transformation.
This is arguably where nlg comes into its own, offering a battery of techniques
to select, structure and present the information.

However, the question whether nlg is worth using in a specific setting should
also be accompanied by the question of how it should be used. Our survey
has focussed on techniques for the generation of text, but text is not always
presented in isolation. Other important dimensions include document structure
and layout, an under-studied problem (but see Power et al., 2003). They also
include the role of graphics in text, an area where there is the potential for
further interaction between the nlg and visualisation communities, addressing
such questions as which information should be rendered textually and which
can be made more accessible in a graphical modality. These questions are of
great relevance in some domains, especially those where accurate information
delivery is a precursor to decision-making in fault-critical situations (for some
examples, see Elting et al., 1999; Law et al., 2005).

8.2 NLG isn’t about text-to-text. . . or is it?

In our introductory section, we distinguished text-to-text generation from data-
to-text generation; this survey has focussed primarily on the latter. The two
areas have distinguishing characteristics, not least the fact that nlg inputs
tend to vary widely, as do the goals of nlg systems as a function of the domain
under consideration. In contrast, the input in text-to-text generation, especially
Automatic Summarsation, is comparatively homogeneous, and while its goals
can vary widely, the field has also been successful at defining tasks and datasets
(for instance, through the duc shared tasks), which have set the standard for
subsequent research.

Yet, a closer look at the two types of generation will show more scope for
convergence than the above characterisation suggests. To begin with, if nlg
is concerned with going from data to text, then surely textual input should
be considered as one out of broad variety of forms in which input data might
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be presented. Some recent work, such as Kondadadi et al. (2013) (discussed
in Section 3.3) and McIntyre and Lapata (2009) (discussed in Section 6) has
explicitly focussed on leveraging such data to generate coherent text. Other
approaches to nlg, including some systems that conform to a standard, modu-
lar, data-to-text architecture (e.g., Hunter et al., 2012), have had to deal with
text as one out of a variety of input types, albeit using very simple techniques.
Generation from heterogeneous inputs which include text as one type of data
is a promising research direction, especially in view of the large quantities of
textual data available, often accompanied by numbers or images.

8.3 Theories and models in search of applications?

In their overview of the status of evaluation in nlg in the late 1990s, Mellish
and Dale (1998) discussed, among the possible ways of evaluating a system,
its theoretical underpinnings and in particular whether the theoretical model
underlying an nlg system or one of its components is adequate to the task
and can generalise to new domains. Rather than evaluating an nlg system as
such, this question targets the theory itself, and suggests that we view nlg as
a potential testbed for such theories or models. But what are the theories that
underlie nlg?

The prominence of theoretical models in nlg tends to depend on the task
under consideration. For instance, many approaches to realisation discussed in
Section 2.6 are based on a specific theory of syntactic structure; research on reg
has often been based on based on insights from pragmatic theory, especially the
Gricean maxims (Grice, 1975); and much research on text structuring has been
inspired by Rhetorical Structure Theory (Mann & Thompson, 1988). Relatively
novel takes on various sentence planning tasks – especially those concerned with
style, affect and personality – tend to have a theoretical inspiration, in the form
of a model of personality (John & Srivastava, 1999) or a theory of politenes
(Brown & Levinson, 1987), for example.

More often than not, such theories are leveraged in the process of formalising
a particular problem to achieve a tractable solution. Treating their implemen-
tation in an nlg system as an explicit test of the theory, as Mellish and Dale
(1998) seem to suggest, happens far less often. This is perhaps a reflection of a
division between ‘engineering-oriented’ and ‘theoretically-oriented’ perspectives
in the field: the former perspective emphasises workable solutions, robustness
and output quality; the latter emphasises theoretical soundness, cognitive plau-
sibility and so forth. However, the theory/engineering dichotomy is arguably a
false one. While the goal of nlg research is often different from, say, that of cog-
nitive modelling (for example, few nlg systems seek to model production errors
explicitly), it is also true that theory-driven implementations are themselves
worthy contributions to theoretical work.

Recently, some authors have argued that nlg practitioners should pay closer
attention to theoretical and cognitive models. The reasons marshalled in favour
of this argument are twofold. First, psycholinguistic results and theoretical
models can actually help to improve implemented systems, as Rajkumar and
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White (2014) show for the case of realisation. Second, as argued for example
by van Deemter et al. (2012b), theoretical models can benefit from the formal
precision that is the bread-and-butter of computational linguistic research; a
concrete case in point in nlp is provided by Poesio et al. (2004), whose imple-
mentation of Centering Theory (Grosz et al., 1995) shed light on a number of
underspecified parameters in the original model and subsequent modifications of
it. Our argument here is that nlg has provided a wealth of theoretical insights
which should not be lost to the broader research community; similarly, nlg re-
searchers would undoubtedly benefit from an awareness of recent developments
in theoretical and experimental work.

8.4 Where do we go from here?

Finally, we conclude with some speculations on some further directions for future
research for which the time seems ripe.

Within the field of Natural Language Processing as a whole, a remarkable
recent developments is the explosion of interest in social media, including online
blogs, micro-blogs such as Twitter feeds, and social platforms such as Facebook.
In one respect, interest in social media could be seen as a natural extension of
long-standing topics in nlp, including the desire to deal with language ‘in the
wild’. However, social media data has given more impetus to the exploration of
non-canonical language (e.g. Eisenstein, 2013); the impact of social and demo-
graphic factors on language use (e.g. Hovy & Søgaard, 2015; Johannsen et al.,
2015); the prevalence of paralinguistic features such as affect, irony and humour
(Pang & Lee, 2008; Lukin & Walker, 2013); and other variables such as per-
sonality (e.g. Oberlander & Nowson, 2006; Farnadi et al., 2013; Schwartz et al.,
2013). Social media feeds are also important data streams for the identification
of topical and trending events (see Atefeh & Khreich, 2015, for a recent review).
There is as yet little work on generating textual or multimedia summaries of
such data (but see, for example, Wang et al., 2014) or generating text in so-
cial media contexts (exceptions include Ritter et al., 2011; Cagan et al., 2014).
Since much of social media text is subjective and opinionated, an increased in-
terest in social media on the part of nlg researchers may also give new impetus
to research on the impact of style, personality and affect on textual variation
(discussed in Section 5), and on non-literal language (including some of the
phenomena discussed in Section 6).

A second potential growth area for nlg is situated language generation.
The term situated is usually taken to refer to language use in physical or virtual
environments where production choices explicitly take into account perceptual
and physical properties. Research on situated language processing has advanced
significantly in the past several years, with frameworks for language production
and understanding in virtual contexts (e.g., Kelleher et al., 2005), as well as a
number of contributions within nlg, especially for the generation of language
in interactive environments (Kelleher & Kruijff, 2006; Stoia & Shockley, 2006;
Garoufi & Koller, 2013; Dethlefs & Cuayáhuitl, 2015). The popular give Chal-
lenge added further impetus to this research (Striegnitz et al., 2011). Clearly,
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this work is also linked to the enterprise of grounding generated language in the
perceptual world, of which the research discussed in Section 4 constitutes one
of the current trends. However, there are many fields where situatedness is key,
in which nlg can still make novel contributions. One of these is gaming. With
the exception of a few endeavours to enhance the variety of linguistic expres-
sions used in virtual environments (e.g., Orkin & Roy, 2007), nlg technology
is relatively unrepresented in research on games, despite significant progress on
dynamic content generation in game environments (e.g., Togelius et al., 2011).
This may be due to the perception that linguistic interaction in games is pre-
dictable and can rely on ‘canned’ text. However, with the growing influence of
gamification as a strategy for enhancing a variety of activities beyond entertain-
ment, such as pedagogy, as well as the development of sophisticated planning
techniques for varying the way in which game worlds unfold on the fly, the as-
sumption of predictability where language use is concerned may well be up for
revision.

Third, there is a growing interest in applying nlg techniques to generation
from structured knowledge bases and ontologies (e.g. Ell & Harth, 2014; Duma
& Klein, 2013; Gyawali & Gardent, 2014; Mrabet et al., 2016; Sleimi & Gardent,
2016, some of which were briefly discussed in Section 3.3.4). The availability
of knowledge bases such as dbpedia, or folksonomies such as Freebase, not only
constitute input sources in their own right, but also open up the possibility of
exploring alignments between structured inputs and text in a broader variety of
domains than has hitherto been the case.

Finally, while there has been a significant shift in the past few years towards
data-driven techniques in nlg, many of these have not been tested in commercial
or real-world applications, despite the growth in commercialisation of bespoke
text generation services noted in the introductory section. Typically, the argu-
ments for rule-based systems in commercial scenarios, or in cases where input is
high-volume and heterogeneous, are that (1) their output is easier to control for
bespoke systems; or (2) that data is in any case unavailable in a given domain,
rendering the use of statistical techniques moot; or (3) data-driven systems have
not been shown to be able to scale up beyond experimental scenarios (some of
these arguments are made, for instance, by Harris, 2008). A respnse to the
first point depends on the availability of techniques which enable the developer
to ‘look under the hood’ and understand the statistical relationships learned
by a model. Such techniques are, for example, being developed to investigate
or visualise the representations learned by deep neural networks. The second
point calls for more investment in research on data acquisition and data-text
alignment. Techniques for generation which rely on less precise alignments be-
tween data and text are also a promising future direction. Finally, scalability
remains an open challenge. Many of the systems we have discussed have been
developed within research environments, where the aim is of course to push the
frontiers of nlg and demonstrate feasibility or correctness of novel approaches.
While in some cases, research on data-to-text has addressed large-scale problems
– notably in some of the systems that summarise numerical data – a greater
concern with scalability would also focus researchers’ attention on issues such
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as the time and resources required to collect data and train a system and the
efficiency of the algorithms being deployed. Clearly, developments in hardware
will alleviate these problems, as has happened with some statistical methods
that have recently become more feasible.

9 Conclusion

Recent years have seen a marked increase in interest in automatic text gener-
ation. Companies now offer nlg technology for a range of applications in do-
mains such as journalism, weather, and finance. The huge increase in available
data and computing power, as well as rapid developments in machine-learning,
have created many new possibilities and motivated nlg researchers to explore a
number of new applications, related to, for instance, image-to-text generation,
while applications related to social media seem to be just around the corner,
as witness, for instance, the emergence of nlg-related techniques for automatic
content-creation as well as nlg for twitter and chatbots (e.g., Dale, 2016). With
developments occurring at a steady pace, and the technology also finding its way
into industrial applications, the future of the field seems bright. In our view,
research in nlg should be further strengthened by more collaboration with kin-
dred disciplines. It is our hope that this survey will serve to highlight some of
the potential avenues for such multi-disciplinary work.
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