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Abstract. The development of techniques in non linear time series analysis has emerged
from its time series background and developed over the last few decades into a range of
techniques which aim to fill a gap in the ability to model and forecast certain types of
data sets such a chaotic determinate systems. These systems are found in many diverse
areas of natural and human spheres. This study outlines the background within which these
techniques developed, the fundamental elements on which they are based and details some
of the predictive techniques. This study aims to provide some insight into their mechanisms
and their potential.

1 Introduction: The Need for Forecasting

No one knows the future, but there is a lot of benefit to be derived from attempting to form a
picture of what the future could be - even if it is imprecise. It is one of the task most decision
makers are expected asked to do - from the hunter-farmers of prehistoric age to the stock analysts
of today.

[1] Almost all managerial decisions are based on forecasts. Every decision becomes operational at
some point in the future, so it should be based on forecasts of future conditions.

A significant amount of research has been carried out using time series techniques in such di-
verse fields as [13] modelling and predicting solar sun spot activity, [5] analysis of Ethernet traffic,
Business cycles, [3] Intelligent analysis of clinical time series in Diabetes Mellitus. Non linear tech-
niques are emerging as powerful tool in the hands of the analyst to leverage patterns of behaviour
underlying hiding dynamical systems - which may elude analysis using other traditional techniques.

[1] A model is an external and explicit representation of a part of reality as it is seen by individuals
who wish to use this model to understand, change, manage and control that part of reality. Analysts
try to model the system or process which is being studied in a variety of ways.

Regression Is the study of relationships among variables, a principle purpose of which is to predict,
estimate the value of one variable from known or assumed values of other variables related to it.
Using one predictor it is called simple linear regression. Using two or more predictors, multiple
regression analysis is employed

A Scatter diagram is a graphical representation of the pairs of data to gain an overall view of
the problem — is there an apparent relationship? Direct, inverse? If the points lie within a band
described by parallel lines we can say there is a linear relationship between the pair of x and y
values. If the rate of change is generally not constant then the relationship is curvilinear.

Linear Models: One would determine if a linear relationship exists between t and y and then
attempt to produce a linear equation stating y as a function of x in the form of y = a + bx + e
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where a is the intercept, b is the slope and e is the error term accounting for variables that affect
y but are not included as predictors, and/or otherwise unpredictable and uncontrollable factors.

Least squares method: To predict the mean y-value for a given x-value, we need a line which passes
through the mean value of both x and y and which minimizes the sum of the distance between
each of the points and the predictive line — the best fit to the sample data. The least squares
method achieves this by calculating the minimum averaged squared deviations between sample y
points and the estimated line.

A procedure is used for finding values of a and b which reduces to the solution of simultaneous
linear equations. Shortcut formula have been developed as an alternative.

Solution methods: Techniques of matrix algebra can be manually employed to solve simultaneous
linear equations especially useful when there are more than two equations and two unknowns. Sev-
eral computer packages using matrix algebra to solve simultaneous equations are widely available
and can be utilised to relieve the computational problems - can solve both linear and polynomial
equations

Variables of interest: To make predictions or estimates we must identify the effective predictors of
the variable of interest which variables are important indicators? And can be measured at the least
cost? Which carry only a little information? Which are redundant?

2 Time Series Analysis

[10] A time series is a set of numbers that measures the status of some activity over time. It is
the historical record of some activity, with measurements taken at equally (not always) spaced
intervals with a consistency in the activity and the method of measurement [1].

Time Series Analysis comprises methods for the quantitative characterization, the manipulation,
and the understanding of time series data and the underlying systems.

Time Series Forecasting Approaches There are two basic approaches to forecasting time series: the
self-projecting time series and the cause-and-effect approach. It is possible that both approaches
still lead to the creation of accurate and useful forecasts. The first is often the more difficult to
implement and validate than the second.

Self-projecting time series: This approach uses only the time series data of the activity to be forecast
to generate forecasts. The basic idea behind self-projecting time series forecasting model is to find
a mathematical formula that will approximately generate the historical patterns in a time series.

Linear correlations in time are the most common and best studied sources of predictability. Linear
statistical methods assume a random nature of the data since the underlying auto-regressive and
moving average models are stochastic. Auto-regressive models and moving average models are
stochastic due to the assumed random nature of the data [10]. The randomness prevents one from
making any precise predictions, even with an absolute knowledge of the present state, but the
strong correlation assures one that the next observation will be given by approximately by a linear
combination of the preceding observations, except for additive noise ie:

sn+1 = a0 +
∑m

j=1 ajsn−m+j

Autoregressive models is one of a group of linear prediction formulae that attempt to predict an
output of a system based on the previous outputs and inputs. Autoregressive processes as their
name implies, regress on themselves. The current value of the series is a linear combination of the
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p most recent past values of itself plus an error term which incorporates everything new in the
series at time t that is not explained by the past values.

An autoregressive model AR is a model which depends only on the previous outputs of the system
is called. A moving average model MA. Is a model which depends only on the inputs to the system.
AN autoregressive-moving-average model ARMA is a model based on both inputs and output.

Deterministic dynamical systems: Pure dynamical systems are described either by discrete time
maps where:

xn+1 = f(xn) (n is a discrete unit of time)

Or by first order ordinary differential equations:
dx(t0)/dt = f(t, x(t)) (t is a real value of time)

Both are descriptions of the fact that all future states of such nonlinear deterministic dynamical
systems are unambiguously determined by specifying its present state at some time n (or t). Thus
there also exists a deterministic forecasting function.

Nonlinear deterministic dynamical systems: Another type of correlation in time is present in non-
linear deterministic dynamical systems. The underlying systems would have a deterministic nature
but display irregularities. Chaos hence is an alternative source for unpredictability and irregularity
in observed data, an alternative with respect to stochastic inputs.

These irregularities in the measurements arise from processes which co-exist with the system under
study or are due to inaccuracies (noise) in the measurement process itself.

Any irregularities in the knowledge of the present state will evolve over time, in in the case of a
chaotic system, will grow exponentially. However the uncertainty is amplified only at a finite rate
and one can still hope to make reasonable short term forecasts.

Nonlinear prediction techniques exploit correlations over time visible only by using non-linear
statistics.

3 Non-Linear Time Series Analysis

[11] The pioneering work by Packard et al. and the seminal paper by F. Takens stimulated, about 20
years ago, a new approach towards complex dynamical phenomena, nowadays called nonlinear time
series analysis. Extensions towards nonlinear stochastic models and towards nonlinear statistical
analysis are manifold and have been considered within various frameworks.

Stationarity: [10] A signal is called stationary if all transition probabilities from one state of the
system to another are independent of time within the observation period. All relevant parameters
have to be kept constant and that phenomena belonging to the dynamics are contained in the time
series sufficiently frequently so that the probabilities or other rule scan be inferred properly.

Unpredictability: [10] of the future is the most striking feature of chaos despite a deterministic
evolution. This unpredicatbiity is a consequence of the inherent instability of the solutions reflected
by what is called sensitive dependence on initial conditions. The tiny deviations between the intial
conditions of all the trajectories are blown up in a few time steps and every unobserved detail of
the state at time zero is important for the precise path of the trajectory in state space.

This lead to two concepts (i) loss of information related to unpredictability; and (ii) nearby tra-
jectories separate fast — exponentially fast over time.
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If separation over time is very slow this is not in itself dramatic — typical of predominantly
periodic systems. If this separation of trajectories over time is fast, exponentially fast — exponential
divergence — we can speak of chaos. This increase of separation over time can be a characteristic
of the underlying system.

Measurement technique and Sampling Rates: [10] A time series (as any other measurement) has
to provide enough information to determine the quantity of interest unambiguously. Algorithms
have some minimal requirements as to how long and how precise the time series must be and how
frequently measurements have to be taken in order to obtain meaningful results. If meaningful
results are not obtained then a smaller sub-phenomenon is to be studied. Sufficient sampling is
required in general not just to particular methods of time series analysis

Example of sufficient sampling: Measurement of temperature changes on roof of house. How many
single measurements are needed? Answer: it depends:

For one day: check one per hour for one week to get a fair average of the temperature profile
For seasonal fluctuations: fixed times, once a day for a year
For year to year: couple of measurements every year
For a complete description of phenomenon: once an hour, every day, for a couple of years

Modelling and Prediction depend on the measurement process, sampling technique and also the
form of representation of the data.

4 Data Representation

One can create different perspectives of the raw data in order to be in a better position to examine
and discover relationships over time. One may also apply techniques, such as — temporal abstrac-
tion, Phase space embedding, Poincare Map to render the data more suitable for prediction prior
to prediction itself.

Scalar measurement/time chart: A dynamical system can be represented by a measurement which
changes value over time e.g. in the shape a periodic function sin(t). The observations in an exper-
iment are usually a time series - a scalar sequence of measurements over time. [10]

Describing dynamical systems in phase space: [10] A dynamical system can be described either by
an m-dimensional map or by an explicit system of m first-order differential equations. Dynamical
systems can be described by equations of motion which are defined in phase space.

It is important to establish a vector space (state space or phase space) for the system. Specifying
a point in phase space specifies the state of the system and vice-versa. In a purely deterministic
system once the present state is fixed, the states at all future points are determined as well.

By studying the dynamics of the corresponding phase space points one can thus study the dynamics
of the system. There can be different choices for what phase space of a system can be.

Non linear prediction techniques, determination of Lyaponuv Exponents, noise filtering and other
related applications use approximations of the dynamical equations to represent the underlying
dynamical system. Such equations are defined in phase space so it is most natural to use a phase
space description for these approximations too.

A trajectory in phase space of the dynamical system is a sequence of points xn or x(t0) solving
the above equations. An interesting exercise is to plot trajectories which start with similar phase
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states (at least the first three phase states) on top of each other and observe the variation as time
progresses. In the case of non-linear prediction, one is interested in those trajectories which stay in
a bounded area forever. Other trajectories may run away to infinity as time proceeds. One is also
interested in the rate at which they separate away from each other as time progresses

When irregularity is present in the signal we can talk of chaos in a deterministic system.

4.1 Phase Space Reconstruction

One plots the phase state of the function at different time points. For a single coordinate pair, the
value of y will be the value of the function at time point n is plotted and the value of x will be the
value of the function at the previous time point n − 1 the x coordinate. All phase states i.e. the
coordinate pairs s(n), s(n− 1) are evaluated for all n.

The resulting chart will be a plot of the state of change of the system at different time points
ie. the phase state map. If stationarity is present in the process, such a map of phase states will
demonstrate this aspect more evidently than a normal time series plot of F (t) vs t.

Phase Space Reconstruction Is at the core of nonlinear time series analysis. In such reconstructed
spaces, the deterministic features of systems can be identified and studied, such as empirical in-
variant measures, attractor dimensions, entropies, Lyapunov exponents, equations of motion, and
short-term forecasts can be made.

4.2 Elements of Phase Space Embedding

[10] The time series is initially a sequence of scalar measurements of some quantity which depends
on the current state of the system taken at multiples of a fixed sampling time:

Sn = s(x(ndt)) + Nn

Some measurement function s and make observations only up to some random fluctuations Nn,
the measurement noise. For a moment we will disregard the effect of noise.

A delay reconstruction in m dimensions is then formed by the vectors sn, given as
Sn = (sn − (m− 1)v, sn − (m− 2)v, . . . , sn−v, sn)

The lag or delay time is the time difference in number of samples v (or in time units vdt) between
adjacent components of the delay vectors.

A number of embedding theorems are concerned with the question under which circumstances
and to what extent the geometrical object formed by the vectors sn, is equivalent to the original
trajectory xn. Under quite general circumstances if the dimension m of the delay coordinate space
is sufficiently large, the attractor formed by sn is equivalent to the attractor in the unknown space
in which the original system is living.

The most important embedding parameter is the product (m x t) — embedding dimensions x delay
time. It is the time span represented by the embedding vector. This can be derived after finding
the two parameters separately.

Finding a good embedding in phase space: [10] In an ideal noise-free data there exists a dimension
m such that the vectors sn are equivalent to phase space vectors Choose too large m — will add
redundancy and degrade performance of many algorithms — predictions, Lyaponuv Exponent.
Choose too small an m and the vector will not represent the system and prediction errors will
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be high. One must carry out analysis increasing the values of m until the typical behavour of
deterministic data appears.

Finding value of smallest m with no False Neighbours: Consider an attractor with an embedding
dimension m0 i.e. it represents the system. If one were to generate a number of predicted values for
the attractor itself using the coordinates of the attractor one on each other - the predicted values
should all be close neighbours of the actual attractor points. If one were to reduce the dimension
of the attractor by one — it could be that the attractor no longer represents the system and the
predicted values will not be close or neighbours of the actual attractor coordinates. This number
of false neighbours are generated by this (m0 − 1) dimension attractor.

Turning this concept into an algorithm one would start with small values of m and calculating
the number of false neighbours generated. Gradually increase the number of dimensions by one
till the number of false neighbours is zero. This means that this number of dimensions is the best
embedding for the system - the one with the least dimensions required to correctly represent the
system.

Finding a good estimate of the lag or time delay: A good estimate for the lag time is more difficult.
Embeddings with different r but same m are the same mathematically and for noise-free data.
However a good choice of t facilitates analysis.

If t is small compared to the internal time scales of the system, successive elements of the delay
vector are strongly correlated. All vectors sn are then clustered around the diagonal in Rm unless
m is very large. If t is very large, successive elements are already almost independent and the points
fill a large cloud in the Rm, where the deterministic structures are confine to the very small scales.

5 Examination of Data

Prior to applying any modelling or predictive techniques, the analyst is to examine the data using
a variety of techniques amongst which is visual inspection of various plots which can be obtained
prior to processing.

Visual examination is still a powerful tool which must not be dismissed. Human visual interpreta-
tion of data and results still lies at the top of the methods to understand systems.

A number of mathematical/computational techniques also exist which assist the analyst in ob-
taining a deeper understanding of the dynamics of the system being studied. Here are two of the
principal ones.

Lyapunov exponent [10] can be a characteristic of the underlying system. It will indicate the change
in distance of trajectories with initially neighbouring points. can be described by the properly aver-
aged exponent of the increase of separation of trajectories over time. A number of these exponents
can be calculated for various dimensions m.

Autocorrelation sum is a measure of how many neighbours each point has in phase space. One
may superficially deduce that the more neighbours the better the predictability. [10] However
autocorrelation of signals from deterministic chaotic systems decay exponentially with increasing
lag. One has to be very cautious about interpreting these values.

6 A Simple Non-Linear Prediction Technique using Delay Vectors

[10] Here a simple prediction technique exploits the deterministic structures in the signal. The data
is assumed to originate from measurement of an underlying dynamical system.
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One needs to predict a future state at a desired time point n + 1 using the last value at time point
n. One scans the list of all states in phase space and tries to find the one closest (according to some
norm) to the phase state value at time point n.

If a time point n0 Is found where the phase state is similar to that at n (this means xn0 it is close
to xn). Then the continuity of the underlying dynamical system and the representation guarantees
that xn0+1 will also be close to xn+1.

However usually it is not the actual states that are measured but one or more quantities which
depend on these states. More often than not the measurement function is as unknown as the
underlying equation of motion.

Thus we have scalar measurements Sn = s(xn), where xn is the actual state at time point n and n
can take the values from 1 to N . One can then make use of a set of such measurements taken at a
particular time point n and (m−1) time points prior to n to represent the original sequence of phase
states. This is called a delay reconstruction and the sequence of phase state values representing is
called the delay vector:

Sn = (sn−(m−1)v, sn−(m−2)v, . . . , sn − v, sn)

This introduces two adjustable parameters into the prediction method (which in principle is pa-
rameter free). The number of dimensions m and the time delay which is the time delay v between
successive measurements. For all measurements s1, . . . , sn available so far, one can construct the
corresponding delay vectors s(m−1)v + 1, . . . , sn.

In order to predict a future measurement sn + dn, one can find the embedding vector closest to sn

and use sno+dn as a predictor. This scheme has been used in tests for determinism by Kennel and
Isabelle (1992). The idea may go back to Pikovsky 1986. The method used by Sugihara and May
(1990) is closely related.

This means that one scans all measurements and for each measurement the whole delay vector of sn

is compared with the delay vectors of each measurement in the phase state data i.e. for points 1 to
n− 1. To compare delay vectors of two points one could check the distance between corresponding
elements of the two delay vectors. If each of the distances between the pairs are all within a desired
distance then the two delay vectors are close.

Finding just the closest delay vector close to the sn is not enough. Any measurement of a continuous
quantity makes sense within a finite boundary or resolution. The size of this limit or resolution
depends on the differences arising from the measurement equipment and the fact that the values are
eventually discretised. This implies that it is probable there would be more than one delay vector
which would come reasonably close the delay vector of sn. Each of these have to be considered
as valid predictors of the future point. They have to be considered as neighbours of sn Every
neighbour of sn will be used to predict a future value. The average of these predicted future values
will be the finally accepted prediction

Thus the neighbourhood distance eps is another is another important parameter which has an
effect on the success of prediction. This determines how many neighbours are found, which in turn
effects the average predicted value.

This method is very inefficient if more than a few predictions are needed, e.g. because prediction
error needs to be determined accurately to find the optimal set of parameters of time delay and
dimension. For each prediction all points in the reconstruction are considered. All points are tested
and most are rejected because they are too far away.
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7 Prediction Technique with Box Assisted Neighbour Search

[10] Here will describe a method that will reduce this problem significantly by proposing a modifi-
cation to the process of the repeated search for neighbours.

Creation of Phase State Map Array : An imaginary map with two axes y representing sn and x
representing sn−1 is drawn and subdivided into a number of boxes of equal sizes forming a grid.
Each box represents a defined area of the phase state and each box is delimited by a unique set of
lower and upper limits for both y and x coordinates. The size of the box will be defined by these
limits may be varied. Every measurement taken is converted to the phase state form. Each phase
state pair is then placed in the box according to the coordinate values.

Eventually all points are mapped into this grid. This grid can be represented in a number of ways.
One of which is a simple array representing a list of pointers to actual data points. With a simple
algorithm it is possible to sequence the array to reflect the boxes in the grid and create another
pointer list to point at the start pointer and end pointer of each box. Another alternative, possible
faster to run, is using a tree structure.

Reduced computation in finding neighbours: According to the prediction technique proposed earlier
one has to scan the whole set of points for neighbours of the selected point. Using this phase state
map of the points one can home in to the box in the grid related to the phase state of the selected
point and determine which of the points in that box are actually neighbours. This would involve
only a small subset of the total data set and would result in a huge reduction in computation cost.

Searching in neighbouring boxes: Some points may be neighbours of a selected point but will fall
in a neighbouring box because they fall just outside the limit values. So one has to include the
neighbouring boxes (8 in all) in the search for neighbours. Although this adds to the computation
cost, overall there is still a significant gain over the previous method.

Defining an appropriate box size and number of boxes: A further condition to this approach is
that the number of boxes has to be defined. If the boxes are too sparsely populated that there
is little gain. If there are too few boxes but densely populated then there is little gain too. One
may attempt to define the box size after examining the distribution of the phase state map. Once
the box size and number of boxes are defined one will find that a number of points may refer to
boxes outside the boundaries of the whole grid. In this case one has to mirror the coordinates of
the ’outlying’ point back into the grid using a suitable mod function. This is why one still has to
check for closeness of each point in the selected boxes because there may be points which actually
belong to a box outlying the grid.

Creating a list of neighbours: Once the array or tree representing the data set in phase state form is
created it is a relatively smaller effort to create a list of neighbours for a selected point. In the case
of a delay vector — each member of that delay vector is compared to the corresponding members
of the potential neighbour point before deciding if the point being compared is a neighbour to the
selected point.

Prediction using the list of neighbours: Once the list of neighbours is found the average predicted
value for the future point or points can be determined. 8 Measuring success of prediction

[10] An important part of the prediction process is the measurement of the difference between the
predicted value and the actual value. One can separate the data set into two parts — the training
set and a hidden set to be used to test the success or not of the predictive technique being used.
Usually a technique is used to predict values for a number of time points in the future. So it is
necessary to first compute the error for each prediction and then carry out some form of summation
to get a single number.
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[21] These are some methods to calculate the degree of success of prediction, each of which con-
tributes in a different manner to the evaluation of the prediction: mean error, mean absolute error,
sum of squared error, root mean square error, percentage error, mean percentage error (MPE),
mean absolute percentage error (MAPE).

Measurement of prediction error is important to improve on the prediction process by helping to
identify the sets of input parameters which gave the best prediction results.

8 Number of Variables Used in Analysis

[10] Univariate time series (measurement of one observable) has been considered so far. Phase space
has been reconstructed using delay vectors based on combinations of these measurements. However
it is possible to form an embedding using a set of different variables obtained at the same time.
One could think of other ways of representing the underlying system.

Multichannel measurements is analysis using multiple sources of simultaneous data — several
measurements of the same type — at the same time — but at different segments of the process —
which may give a more complete representation of the underlying system

Equivalent variables at different positions — In other situations one may find it useful to measure
similar physical quantities simultaneously at different positions in a spatially extended system.

Variables with different physical meanings - One may also want to measure several observables
with different physical meanings simultaneously. E.g. a 9-dimensional space with three different
observables each at three different times.

Distributed systems multivariate time series are very frequent in physiology, economics or clima-
tology, but are generally too complicated for a systematic investigation of the interrelation between
the observables. There are research problems which are still unsolved. Take the example of a bi-
variate time series. There is a problem in deciding which observable to use in order to define the
delay embedding based on one coordinate. Which observable yields more additional information?

9 Methodology

Forecasting methods: A number of methods exist which help the analyst to develop a forecasting
model with a degree of objectivity, in a way which is measurable and reproducible.

These methods usually involve:

– the preparation of the data for analysis — smoothing, identification of cyclic (seasonal) com-
ponents, trends, outliers, noise reduction;

– the application of a selected technique or set of techniques;
– measurement of forecasting error;
– refinement of parameters of model;
– updating of time series data as the current data becomes out of date;
– repeated evaluation of accuracy of model and refinement of model.

Standards and Practices for forecasting: [17] A set of standards is proposed by Scott Armstrong.
From a detailed study in the use of standards a model with 139 points falling under these 16
categories was formulated, covering formulating problems, obtaining information, implementing
methods, evaluating methods and using forecasts.
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