
Service Discovery and Composition: PreDiCtS Approach
Charlie Abela

University of Malta
Department of Computer Science and AI

+356 2590 7295
charlie.abela@um.edu.mt

Matthew Montebello
University of Malta

Department of Computer Science and AI
+356 2340 2132

matthew.montebello@um.edu.mt

ABSTRACT
The proliferation of Web Services is fostering the need for
service-discovery and composition tools to provide more
personalisation during the service retrieval process. In this paper,
we describe the motivating details behind PreDiCtS, a framework
for personalised service-retrieval. In our approach we consider
that similar service composition problems can be tackled in a
similar manner by reusing and adapting past composition best
practices or templates. The proposed retrieval process uses a
mixed- initiative technique based on Conversational Case-Based
Reasoning (CCBR), that provides i) for a clearer identification of
the user’s service requirements and ii) based on these
requirements, finds suitable service templates that satisfy the
user’s goal. We discuss how retrieval can vary through the use of
different CCBR algorithms and how adaptation can be performed
over the retrieved templates thus providing the personalisation
feature in PreDiCtS.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence] Learning

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Web Services, Conversational Case-Based Reasoning, Semantic
Web

1. INTRODUCTION
Reusability and interoperability are at the core of the Web
Services paradigm. This technology promises seamlessly
interoperable and reusable Web components that facilitate rapid
application development and integration. When referring to
composition, this is usually interpreted as the integration of a
number of services into a new workflow or process. A number of
compositional techniques have been researched ranging from
both, manual and semi-automatic solutions through the use of
graphical authoring tools, discussed in [24], [22], to automated
solutions based on techniques such as AI planning, used in [20],
[25] and others.

The problem with most of the composition techniques mentioned
above is three fold (i) such approaches attempt to address service
composition by composing web services from scratch, ignoring
reuse or adaptation of existing compositions or parts of
compositions, (ii) it is assumed that the requester knows exactly
what he wants and how to obtain it and (iii) composing web
services by means of concrete service interfaces leads to tightly-
coupled compositions in which each service involved in the chain
is tied to a Web service instance. Using this approach for service
reuse, may lead to changes in the underlying workflow which

range from slight modifications of the bindings to whole re-
designing of parts of the workflow description. Therefore in our
opinion, services should be interpreted at an abstract level to
facilitate their independent composition. [13] adds, “abstract
workflows capture a layer of process description that abstracts
away from the task and behaviour of concrete workflows”, and
this allows for more generalisation and a higher level of
reusability. A system can start by considering such abstractly
defined workflow knowledge and work towards a concrete
binding with actual services that satisfy the workflow.

The reuse of abstract workflows brings with it a set of other
issues, such as the way that these workflows are generated, stored
and retrieved. Therefore when deciding on which solution to
adopt we considered the following motivating points:

 Reusability of compositions has the advantage of not
starting from scratch whenever a new functionality is
required.

 For effective reusability, a higher level of abstraction has
to be considered, which generalises service concepts and is
not bound to specific service instances.

 Personalisation of compositions can be achieved by first
identifying more clearly the user’s needs and then allowing
for reuse and adaptation of these past compositions based
on these needs.

 Compositions can be bound with actual services thus
making them concrete.

In our approach we wanted to put the user (developer or
otherwise) in a situation whereby he can reuse existing templates.
Infact this approach is similar to that adopted in [21], [25], [11],
and [27] which use pre-stored abstract workflow definitions or
templates in their composition framework.

This kind of reusability has been widely investigated in work
related to Case-Based Reasoning (CBR), which is amenable for
storing, reusing and adapting past experience for current
problems. Nevertheless CBR restricts the user to define a
complete problem definition at the start of the case-retrieval
process. Therefore a mixed-initiative technique such as CCBR [6]
is more appropriate since it allows for a partial definition of the
problem by the user, and makes use of a refinement process to
identify more clearly the user’s problem state.

In this paper we want to present, the motivation behind, and a
prototype of the PreDiCtS framework. Through this framework
we allow for i) the encoding and storing of common practices of
compositions or templates within cases and ii) for the retrieval,
reuse and adaptation of these cases through CCBR.

PreDiCtS’ case definition is based on the CCBROnto ontology.
This ontology is based on OWL and has been discussed in [3] and
[4]. Each case definition is composed of three main components

that capture different knowledge related to a particular service
template. The case-context defines information related to the case
creator and provides a means through which a case-utility history
is maintained. Each case encodes the problem to which it can
provide a solution in the form of a set of question-answer pairs
(qapairs). It is through this set of qapairs that the retrieval process
can present the solution which represents the service workflow
definition. Each solution is defined through an OWL-S [19]
service definition. This includes both service profile and process
descriptions. The latter is important since it defines the actual
service workflow information.

Given a new problem or service template request, the PreDiCtS’
approach allows first to retrieve a ranked list of past, similar
templates which are then ranked and suggested to the requester.
Through a dialogue process the requester can decide when to stop
this iterative-filtering phase, and whether to reuse or adapt a
chosen case.

In a future extension to this work it is envisioned that, given a
suitable case, a mapping is attempted between the features found
in the chosen template, to actual services found in a service
registry. An AI planning component can be used at this stage to
handle this mapping from an abstract to a concrete, executable
workflow.

The rest of this paper is organized as follows. In Section 2 we will
give some brief background information on CCBR and its
application in various domains. In Section 3 we will present the
architecture of PreDiCtS and discuss implementation details
mainly focusing on the case-creator and case-retriever
components, making references to a typical travelling scenario.
We evaluate the prototype in Section 4 and in Section 5 we
discuss future work and extensions. In the final section we
provide some concluding results.

2. CONVERSATIONAL CASE-BASED
REASONING
Case-Based Reasoning is an artificial intelligence technique that
allows for the reuse of past experience to solve new problems.
The CBR process requires the user to provide a well-defined
problem description from the onset of the process, but users
usually cannot define their problem clearly and accurately at this
stage. On the other hand, CCBR allows for the problem state to be
only partially defined at the start of the retrieval process.
Eventually the process allows more detail about the user’s needs
to be captured by presenting a set of discriminative and ranked
questions automatically. Depending on the user’s supplied
answers, cases are filtered out and incrementally the problem state
is refined. With each stage of this problem refinement process, the
system presents the most relevant solutions associated to the
problem. In this way the user is kept in control of the direction
that this problem analysis process is taking while at the same time
she is presented with solutions that could solve the initial
problem. If no exact solution exists, the most suitable one is
presented and the user is allowed to adapt this to fit her new
requirements. Nevertheless, this adaptation process necessitates
considerable domain knowledge as explained in [18], and is best
left for experts.

One issue with CCBR is the number of questions that the system
presents to the user at each stage of the case retrieval process.
This issue was tackled by [14] which defined qapairs in a
taxonomy and by [2] through the use of knowledge-intensive

similarity metrics. In PreDiCtS we took into account the
possibility that the user opts to use different similarity measuring
algorithms for different domains. Infact two approaches are
allowed (with the possibility of adding others). One of these
approaches is based on the similarity measure defined in [6] and
used by [26] to handle workflow reuse. Another similarity
measure is based on the taxonomic theory defined in [14].
Through this similarity technique, the abstract relations between
qapairs and in particular the sub-class relation are considered to
reduce the number of questions that the user is presented in each
retrieval cycle.

2.1 Uses of CCBR
CCBR is mostly associated with customer-support systems,
though its benefits have been tested in various other fields such
as, business process and workflow management, software-
component retrieval and in connection with Recommendation
systems. In what follows we will consider the above scenarios in
more detail.

2.1.1 Business Process and Workflow Management
Weber in her thesis [26] combines CCBR with rules and presents
a solution for business process management. The created
prototype is called CBRFlow and allows for more flexibility and
adaptability in the management of workflows. The adopted hybrid
approach takes the best of rule-based and case-based reasoning,
though the rule-based component is allowed to have some
precedence over the case-based component. Rules are generated
from domain knowledge while case-based reasoning is used when
no rules are available or updates to a rule exist in the form of
cases.

The CCBR component uses the same case-similarity metric as
that described by [6]. This similarity is computed by finding the
difference between the number of the shared and conflicting
observations, and then dividing the result by the total number of
observations in a case. A normalisation function is used to set the
result within the interval [0, 1].

2.1.2 Software Component Retrieval
In [1] the CCBR technology is used to solve the problem of
software component retrieval, especially when the number of
components involved is large. The proposed solution is called
Conversational Component Retrieval Model or CCRM. A case
represents a component and a knowledge-intensive CBR
methodology is used to explore the context-based similarities
between the user’s query and the stored components.

A frame-based knowledge representation and reasoning
system called CREEK [10] is used to unify the component-
specific cases and the general domain knowledge. A knowledge-
intensive similarity calculation is used to determine which
knowledge in the knowledge base is relevant to the retrieval
process and to calculate the similarity between a new case and the
stored cases.

The question-answer interaction during the conversation is
motivated by the fact that qapairs are easily understood and that
the most informative and discriminating ones are presented to the
user during a conversation. For this reason a set of predefined
questions together with possible answers for each slot (i.e. for
each relation between two concepts) are specified and an

information-gain metric algorithm is used to quantitatively
measure the information that each slot can provide.

In our work we intend to resort to such frame structures through
the use of OWL ontologies, in particular CCBROnto. We define
cases whose solutions are service templates. These templates will
be defined through a process definition language, such as OWL-S,
though it is possible to use other languages, such as WS-BPEL.

2.1.3 CCBR and Recommendation Systems
[18] presented a web-based CCBR solution which is able to
recommend solutions to scientist seeking resources (such as codes
and data) related to an Earthquake Simulation Grid provided by
the ServoGrid project [23].

A number of grid related ontologies were developed in RDF and
these are used to represent case descriptions. Thus a case is
considered to be a set of RDF triples. A domain independent CBR
engine based on the Indiana University Case-Based Reasoning
Framework (IUCBRF) [16] is used.

The implemented prototype uses the RDF ontologies to present
questions about the desired resource characteristics and, typically
to the CCBR process, which ranks cases based on the chosen
answers. During each iteration, the system provides
discriminating questions in a ranked order so that the irrelevant
cases are incrementally filtered out.

Each case definition contains the problem and solution
descriptions together with bookkeeping information such as the
time of case creation, the contexts in which the case applies and
also source or provenance information. Both the problem and
solution are represented by a set of predefined features, where
each feature is an RDF triple. During case-base initialisation, all
possible <predicate - predicate value> pairs are extracted from
the ontology and presented as features. The case retrieval
mechanism is based on a threshold method which compares the
set of features present in both user and case-problem definitions.
Cases are ranked based on the number of common features whose
values are consistent. Cases with unknown features or having
inconsistent feature values are eliminated from the process.

The way in which cases are defined through RDF is consistent
with how we envision our own solution. Though in this case, all
generated triples are equally considered as possible qapairs.
Furthermore, it seems that no reasoning was done on the RDF
data, thus no advantage was taken from this when qapairs were
presented to the user. In our solution we want to be able to exploit
as much as possible the logic behind the concepts and relations
within a case description by using an OWL reasoner. For example
given that, a question related to some particular concept has
already been presented to the user, it is superfluous to present
another question whose concept is more generic than the one
associated with the previous question.

2.2 Taxonomic CCBR
Taxonomic CCBR (TCCBR) tries to tackle the pervasive issue of
expressing case contents and features at different levels of
abstraction. The solution is based on the ability to make use of
feature taxonomies.

The motivation behind the use of TCCBR is highlighted by three
sources of abstraction:

 the different levels of domain expertise between users and
developers

 the variations in information availability and the cost of
acquiring it

 the variations in decision-making needs

If abstraction is ignored then problems such as unwanted
correlation between features, redundancy in the number of
questions presented to the user during conversation and
inconsistencies in the case representations when new features are
added are most likely to occur. TCCBR is defined to include:

 A set of questions which are used for indexing the cases.
Each question can be associated with a set of answers.

 A set of taxonomies each one representing a set of qapairs
which are related through either an is-a-type-of or is-a-part-
of relation.

 A set of cases each having a problem definition in the form
of a set of qapairs and a solution.

Furthermore, in TCCBR two important rules have to be applied to
the set of qapairs in a defined case:

i. Only one qapair from a particular taxonomy can be
included in each case

ii. The most specific available and applicable qapair is used to
represent the case

The process of TCCBR as explained by [14] is divided into three
main tasks (the third is optional though):

i. Case retrieval

ii. Conversation

iii. Case Creation

Case retrieval is subdivided into three main steps referred to as
searching, matching, ranking and selecting. During this phase,
cases are retrieved and ranked based on the questions that the user
has chosen to answer. On the other hand the conversation process
involves the identification and ranking of the most appropriate
questions to present to the user after each iteration. If no suitable
solution is found then a new case may be defined by specifying a
new set of questions (or reuse existing questions) and a solution
for this new problem.

The approach taken in TCCBR is very relevant to our research
goal and infact this is one of the retrieval techniques adopted in
PreDiCtS. The main theory behind TCCBR is discussed in detail
in [14] and though we will make reference to this work we will
not explain it here. Nevertheless in what follows we will explain
in detail any deviations that we have taken from this original
theory.

3. PreDiCtS
The PreDiCtS framework allows for the creation and retrieval of
cases (the adaptation process is in the pipeline). The respective
components that perform these two tasks are the CaseCreator and
the CaseRetrieval (See Figure 1). PreDiCtS is written in Java and
is developed in Eclipse. It uses a MySQL database to store the
cases, which are based on CCBROnto, and makes use of both
Jena and the OWL-S APIs.

Rank Questions

Problem Description

Create New Case Case Base

Retrieve
Case

User

Knowledge
Engineer

1. Initiate Dialog

2. Ranked Questions

3. Answer selected
Questions

4. Ranked Cases

New Case

QA Pairs
Base

Domain & Service
Ontologies

Figure 1: CCBR cycle adopted in PreDiCtS

To explain how PreDiCtS can be used to create and retrieve
service templates we will make use of a typical travelling
scenario, described in the next section. We will then explain how
cases, which represent different problems related to this domain
and their respective solutions, are created through the
CaseCreator. Retrieval is handled by the CaseRetrieval
component which allows the user to adopt different CCBR
algorithms to find the cases with the most suitable service
template. Figure 2 represents the main components in our
framework.

3.1 Travelling Scenario
The travelling situation that we want to model here is related to an
academic who wants to go abroad to attend a conference. The
defined cases should represent the problem from an advisor’s
perspective and present a solution based on this knowledge. An
advisor in this situation could have the role of a travelling agent,
who is asking his client questions to identify what the latter
requires so that he can eventually suggest the best solution.

Goal: User is to attend an event on some particular date in some
particular location. A part of a travelling domain ontology is
shown in Figure 3.

 Looking at the ontology it is noticed that the concept Person is
associated with three disjoint branches or taxonomies, Event,
Accommodation and Transport. Thus the questions should be
related to any of these taxonomies.

PreDiCtS

<<subsystem>>
Creator

<<subsystem>>
Retriever

<<subsystem>>
Maintenance

<<subsystem>>
Adaptation

Case
Creator

Case
Retriever

Case
Adaptor

predicts:ccbr

Configurator

Case Base
Maintenance

OWL-S MySQL-Connector

Figure 2: System Component Summary
After having identified the important aspects of the domain, we
start by looking at the ontology to identify which typical
questions might be asked in this situation. Questions should
ideally capture a single aspect of the domain. For example, the
most generic questions that are immediately identified are: Do
you want to attend for an Event?, Do you want to use Transport?
and Do you want to reserve an Accommodation?. Other questions,
such as Do you want to use a Plane? And Do you want to stay in
a Hotel? can be considered as being subsumed by the former set.
The associated answer types for such questions are typically
either a Yes or a No.

StartDate

Accomodation

HostelHotel

City

EndDate Train

Airplane

Transport

Person

Conference

attendsFor

hasEndDate

hasLocation

hasStartDate
reserves

is-a-type-of is-a-type-of

uses

is-a-type-of
is-a-type-ofEvent

is-a-type-of

Coloured nodes represent disjoint sub-roots
has* relations are considered as part-of relations
is-a-type-of are subsumption relations
other relations, link disjoint nodes together

Figure 3: Travelling Domain Ontology
In Table 1 below we have listed some of these questions and have
also associated them with a triple from the ontology. Each qapair
is assigned a unique QID reference for that particular set. The
appropriate link between the set of qapairs and the solution has to
be defined by the creator. We adopt the methodology presented
by [17] in which domain and task-knowledge are linked together.

Table 1: qapairs set for the Travelling Domain

QID Description
Triples Set

<Subject, Predicate, Object>

1 Problem is a Travelling Problem? <TravellingProblem, subClassOf, Problem>

2 Do you want to attend a Conference? <AttendConference, subClassOf, TravellingProblem>

3 Do you need transportation? <Transportation, subClassOf, AttendConference>

4 Do you want to use a plane? <Airplane, subClassOf, Transportation>

5 Do you want to use a train? <Train, subClassOf, Transportation>

6 Do you want accommodation? < Accommodation , subClassOf, AttendConference >

7 Do you want to stay in a hotel? <Hotel, subClassOf, Accommodation>

8 Do you want to stay in a hostel? <Hostel, subClassOf, Accommodation>

9 Is Conference registration required? <Conference, subClassOf, AttendConference>
The domain is used to provide datatype information relevant to
the service inputs and outputs. In our case the task knowledge is
defined through an OWL-S definition. Thus for example the triple
<Hotel, subClassOf, Accommodation> will provide, in the
solution, a generic place holder for a Hotel Reservation service.
Other services that might be useful to include in the solution are
Flight Booking, Train Reservation, Hostel Reservation and
Conference Registration services. Figure 4 represents a UML
Activity Diagram of a particular solution for this domain. The use
of this graphical representation to define a service workflow has
also been adopted by [22] and [8].

Flight
Reservation

Service

Conference
Registration

Service

Train
Ticket-Booking

Service

Hotel
Reservation

Service

Figure 4: UML Activity Diagram for the Service Workflow

3.2 Case Creation
During case creation the expert user can define and add a new
case to the case base. As already explained earlier, in CCBR a
case consists of a case description and a problem and solution
state. In PreDiCtS though, a case ci is defined as a tuple:

c i = (dsc i, cxt i, {q1a3….qiaj}, acti, hsti) where;

dsc i is a textual description for the particular case.

cxti represents a set of context related features, such as Role and
CaseCreator information based on the foaf:RDF ontology
definition.

{q1a3….qiaj} is a representation of the problem state by a set of
qapairs

act i denotes the solution which is represented by service
composition knowledge stored in an abstract template.

hst i, is the usage history associated with each case.

Each case is based on the CCBROnto ontology which is described
in more detail in [4] and can be found at [9]. The CaseCreator UI
(see Figure 5) allows the user to add all the necessary information
which is then translated into a CCBROnto case-representation in a
manner transparent to the user.

Figure 5: CaseCreator UI in PreDiCtS

The context description cxt, is important in an open-world such as
the Web since this will be used as a discriminating feature during
case retrieval. The action or solution definition act, represent the
service compositional knowledge and can be defined through any
composition language. In PreDiCtS we are using parts of an
OWL-S service description, but the framework can be easily
extended to work with other service languages such WS-BPEL.
hsti is an other feature which represents the usage-history of each
case. This history could provide either positive (i.e. case was
found useful) or negative feedback (i.e. implying that aspects of
the case were not found ideal by past users) to the case user. This
history information is used to generate a reputation value during
case retrieval.

Figure 6: Question-Answer Pair Design Tool

An important aspect to consider when creating a new case is the
definition of the problem through a set of qapairs. PreDiCtS’
retrieval component uses two approaches to find suitable cases,
one of which is based on an adapted version of TCCBR. For this
reason a special qapairs-creation tool, shown in Figure 6, is
provided that allows the user to easily associate a new qapair
definition with domain ontology concepts.

Some adaptations have been made to the TCCBR theory to allow
the system to work with ontologies and to be able to handle the
open-world aspects required when defining the service template.

3.2.1 Rule 1
Only one qapair from a taxonomy can be included in a case (i.e.
there is no abstract relation between concepts relating each qapair

in case). This is similar to TCCBR, unless these concepts
associated to these qapairs are specifically defined as disjoint
within the taxonomy.

Example:

<owl:Class rdf:ID="Hotel">
 <rdfs:subClassOf rdf:resource="#Accommodation"/>
 <owl:disjointWith rdf:resource="#Hostel"/>
</owl:Class>
<owl:Class rdf:ID="Hostel">
 <rdfs:subClassOf rdf:resource="#Accommodation"/>
 <owl:disjointWith rdf:resource="#Hotel"/>
</owl:Class>

Given the above situation a case can contain both questions:

Accommodation required is Hostel?

Accommodation required is Hotel ?

In this way the case covers the situation whereby a user might
require staying at both a Hotel and a Hostel which are both
subclasses of Accommodation.

3.2.2 Rule 2
The most specific available and applicable qapair is used to
represent the case. We adapt this rule as is defined in the TCCBR
theory. We look at a taxonomy as a dialogue composed of an
ordered set of nodes (qapairs). We start by looking at both the
domain of discourse and the different services that might be
required (in the solution) to solve a particular issue. We extract
those classes that are relevant to the problem that we want to
model and give them an ordering. This ordering, though abstractly
defined through the subClassOf relation, does not always imply
that one class is in effect a subClassOf another, but rather that the
question associated with that concept will be asked before or after
another one associated with another concept. Therefore given the
questions:

Accommodation required is Hotel? and Do you need
Accommodation?, the former will be preferred over the latter
because it is more specific and thus is considered to be closer to
the solution.

3.2.3 Rule 3
We consider a qapair to be associated with a unique concept in
the taxonomy. Thus for example, the question:

Accommodation required is Hostel? will be associated to the
Hostel concept while Do you need accommodation? is associated
to the Accommodation concept

We make use of reification to generate more knowledge about
each statement. Infact a question will be associated with a reified
statement that threats each component of a triple <subject,
predicate, object>, as a Resource.

Example: For the question Do you need accommodation?

a reified statement with the following subject, predicate and
object resources will be defined:

Subject: Accommodation

Predicate: subClassOf

Object: AttendConference

In this example, Accomodation is defined to be a subClassOf
AttendConference. We envision that this technique will allow us,
in the future, to work with other types of abstract relations such as
those similar to is-a-part-of by considering other properties that
associate classes together.

3.2.4 Service Template Creation
The case creator is provided with a visual-composer tool that
allows him to easily create a workflow with the generic services
that can solve a specific problem. The UML Activity Diagram
representation is used to eventually generate an OWL-S Process
definition. The Process ontology in OWL-S provides for the
definition of a workflow of services and related properties. Since
we wanted this description to be as generic as possible, each
service definition is conceptually linked to an ontology of service-
related concepts. Thus if the user adds a node that represents a
Flight Reservation service, a generic atomic service definition
will be generated whose input and output resources are defined by
some external service-related ontology.

<process:AtomicProcess rdf:ID="FlightReservationService">
 <process:hasInput>
 <process:Input rdf:about="#FlightReservationInput">
 <process:parameterType
 rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"/>
 </process:Input>
 </process:hasInput>
 <process:hasOutput>
 <process:Output rdf:about="#FlightReservationOutput">
 <process:parameterType
 rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"/>
 </process:Output>
 </process:hasOutput>
</process:AtomicProcess>

In this manner when searching for actual services, these generic
placeholders will be bound to actual service inputs and outputs.
The workflow also defines information related to the order of
execution of the services.

3.3 Case Retrieval
The CaseRetriever is responsible for the CCBR retrieval process.
It takes as input the choice of similarity measure and problem
domain and presents questions for the user to answer. The
answered questions will then be used to generate a list of cases
based on the similarity measure component.

It is up to the user to decide whether a case from the retrieved set
of cases is suitable enough to solve his problem. In the situation
where further problem-filtering is required, the user can decide to
answer more questions, with the consequence that the list of
retrieved cases is also filtered down.

The set of questions presented with every step in this filtering
process are generated through a conversation-generation
component which takes care of identifying which questions are
best suited to be presented to the user in the next step. Different
conversation-generation algorithms are available in PreDiCtS,
depending on the type of similarity measure chosen initially by
the user.

3.3.1 CaseRetriever UI
This is divided into three main components (see Figure 7). The
top-most pane consists of two combo boxes; one displays a list of
problem-domain ontologies while the other displays the different
types of similarity methodologies that the retriever is capable of

using. At present this is limited to two, the Default CCBR and the
TCCBR (Taxonomic CCBR) methodologies. We envision the use
of a graph-based retrieval method, GCCBR, based on [7], in the
near future.

Figure 7: CaseRetriever UI

The middle left and right panes show two tables. The table on the
left presents those questions that still require an answer from the
requester. These are generated by the conversation-generation
algorithm. They act as a filtering and refinement mechanism for
the list of retrieved cases. The middle right-hand pane presents a
table of already answered questions. The bottom pane also
contains a table component, but this one shows the cases that have
been retrieved during a CCBR retrieval cycle.

3.3.2 Default CCBR
This similarity measure is based on that presented by [6] and
discussed in Section 2. The following similarity function is used:

sim1(Q,C) =
same(Qqa,Cqa) - diff(Qqa,Cqa)

|Cqa |

where |Cqa| represents the number of qapairs in the case problem
definition. This function is also adapted by [26] but a
normalisation function is also included to keep the similarity
value between [0, 1]. The normalisation function is as follows:

sim2(Q,C) = * (sim1(Q,C) + 1)1
2

The technique used to present and rank new questions during a
conversation is based on their frequency in the considered cases,
though other different techniques could be utilised as defined by
[2], [15] and others.

3.3.3 TCCBR
As discussed earlier in Section 2, retrieval in TCCBR is based on
two processes, the case-retrieval process and the conversation
generation process. We will discuss the steps associated to each
one and any adaptations made in PreDiCtS.

The searching step, of the case-retrieval process in the original
TCCBR starts by getting the user’s textually-defined query and
mapping this with the most similar qapair in the specific domain.
In PreDiCtS though, the system presents the list of the most
generic qapairs for a chosen domain, that is, those that are at the
roots of the specific taxonomies.

The qapairs are not directly taxonomised, as explained earlier, but
each question is associated with a triple <subject, predicate,
object> which is defined in a problem related-ontology. This
implicitly makes a qapair part of a taxonomy.

c1

c2

c3

c4

c5

qp1

qp2

qp3

qp4

oc1

oc3

oc5

oc7

Figure 8: PreDiCtS qapair Taxonomy

Considering the situation in Figure 8 above, we assume that the
set of cases, CQ, and the set of qapairs, QP, are linked to an
Ontology O as follows:

case set CQ = {c1,c2, c3, c4,c5,….,ci}

qapairs in QP = {qp1, qp2, qp3,…., qpj}

ontology O = {oc1,oc3, oc5,oc7,….., ock}

where, qp1 can be seen to be present in two cases, c1 and c3, and is
associated with ontology concept oc1 (this is assumed to be the
subject from the associated triple). Similarly qp3 is associated
with ontology concept oc3 (which is the subject in yet another
triple) and is present in two cases, c2 and c4. In this way qp1
subsumes qp3 based on the relation between the ontology concepts
oc1 and oc3. Therefore during a case retrieval cycle, qp1 will be
asked before qp3 since it is more generic. In a case ci there will
either be qp1 or else qp3, as per Rule 2 above, this provides for a
reduction in the redundant questions being presented to the user
during case retrieval.

The second step in the case-retrieval process is the matching step
and in the original TCCBR this involves matching each qapair
element in QP with the qapairs in each of the candidate cases. A
ranked list of cases is established based on the following
similarity measure sim(qpi,pj):

sim (qpi ,pj) =

1 if pj ⊆ qpi

(n+1-m)/(n+1+m) if qpi ⊆ pj

0 otherwise
where,
qpi is the question-answer pair in the user’s query and
pj is the question-answer pair in a candidate case
n = number of edges between qpi and the root of the taxonomy
m = number of edges between qpi and pj

Having calculated such similarity between qapairs then an
aggregate similarity metric is used to calculate the overall
similarity between the user query QP and a case problem
description, Pk. This aggregate similarity is calculated as follows:

Σ sim(qpi , pj)
i∈ QP , j∈ PkSim (QP, Pk) =

T
where, T in the original taxonomic theory represents the number
of taxonomies, here it represents the number of disjoint branches
in the domain ontology, that are associated with the qapairs.
Cases are then ranked in a descending order based on this
aggregate value.

In PreDiCtS we adopt the same similarity metric except that this
similarity is computed on the qapairs’ associated concepts rather
then on the qapairs themselves. With reference to Figure 8 above,
suppose that in the user’s problem definition there are two
qapairs, qp1 and qp4, while in the problem definition of the
candidate case there are three, qp3, qp2 and qp5.

Based on the associated concepts oc1 and oc3, the qapairs qp1 and
qp3 are related by a parent-child relation, while the qapairs qp4
and qp2, which are associated with the concepts oc7 and oc5, are
bound by a child-parent relation (see Table 2).

Table 2: qapair/Concept relations

User's Query Case
q-a pair concept q-a pair concept

qp1 oc1 qp3 oc3

qp4 oc7 qp2 oc5

qp5 oc2
The user’s query though, does not contain a qapair in the
candidate case that is related with qp5. Using the adapted
similarity metrics defined by TCCBR, we assume the following
values:

sim (qp1,qp3) = sim (oc1,oc3) = 1

sim (qp4,qp2) = sim (oc7,oc5) = 0.5

for which the aggregate similarity will be

Σ sim (oci , ocj) = 3 = 0.51 + 0.5

where the number of taxonomies here is 3 since:

a. the concepts oc1 and oc5 represent 2 disjoint branches
in the ontology and

b. the concept oc2 has to be considered as a separate
disjoint branch.

The last phase of the case-retrieval takes the set of cases that are
retrieved and rank-orders them in descending order based on the
similarity score obtained from the previous step. Both the TCCBR
and the PreDiCtS theories handle this step in a similar manner.

The conversation algorithm in PreDiCtS is the same as that
defined by the TCCBR theory. The goal is to present the user
with a ranked list of questions derived from the retrieved cases
CR. The process starts by considering all qapair taxonomies
applicable to the cases in CR. The score of each qapair in a
taxonomy is based on the similarity scores obtained for the node-
related cases. Each node takes the score of all related cases and
the similarity of each parent node is the accumulation of the
scores of its child nodes. A backward pass algorithm is used to
calculate the score of each node. If the user problem definition

contains a qapair from the taxonomy then the system selects its
child nodes, else the most specific node that subsumes the set of
retrieved cases is selected.
The question score is a tuple that includes <taxonomy score, q-a
pairs score> as in Figure 9.

qp1

qp2

qp3

qp4

qp5

qp6

qp7

qp8

c2

c3

c4

c5

c6

c1

Sim= 0.5

Sim= 0.4

Sim= 0.5

Sim= 0.4

Sim= 0.2

Sim= 0.2

0.4

0.7

1.3

0.5

0.5

0.4

0.9

2.7

c2

Sim= 0.5

Figure 9:Question-Answer pair scoring
Example: s(qp4) = 1.3 = ((Simc6 = 0.2) + (s(qp7) = 0.4) + s(qp8)
= 0.7))

4. EVALUATION
In this section we will present the main results of the tests that
were carried out to evaluate the case retrieval performance in
PreDiCtS (for a more detailed description see [5]). We considered
a number of different requests to find suitable cases relevant to
the travelling domain.

Table 3: Cases for the Travelling Domain

Case_ID Solution Problem
CID1 Conference + Hotel + Train QID 5, QID6, QID9
CID2 Conference + Hotel + Airplane + Train QID3, QID5, QID6, QID9
CID3 Conference + Hotel + Airplane QID3, QID6, QID9
CID4 Conference + Hostel + Train QID5, QID8, QID9
CID5 Conference + Hostel + Airplane + Train QID3, QID5, QID8, QID9
CID6 Conference + Hostel + Airplane QID3, QID8, QID9

CID7 Conference + Hostel + Airplane + Hotel +
Train QID3, QID5, QID6, QID8, QID9

CID8 Conference + Hotel QID6, QID9
CID9 Conference + Hostel QID8, QID9

A list of relevant cases (see Table 3) was developed, where each
case had a unique CID (case ID). The problem definition
consisted of sets of qapairs’ ID references where each QID was
also unique for the particular domain. The solution represented a
set of services that were stored in a service template.

Four problems were identified and the performance of both the
Default CCBR and the TCCBR approaches was considered. The
identified problems were:

i. The person (requester) wants to register for a
conference, travel by train and stay in a hotel.

ii. The person (requester) wants to attend for a conference,
requires accommodation and transportation.

iii. The person (requester) wants to travel by airplane for a
conference and requires accommodation.

iv. The person (requester) wants to attend for a conference,
has to travel by airplane and train and stay at a hotel.

The main differences between the two approaches were in:

1. the number of questions that were presented to the
requester by the conversation-generation algorithm, at
the end of each retrieval cycle.

2. the accuracy of the similarity values.

3. the effect of leading the requester towards the Most
Suitable Case (MSC).

The reason behind the first result is attributed to the fact that
TCCBR considers the abstract relations between qapairs and thus
limits the number of redundant questions to present to the user at
each stage. This though, does not come without an initial effort on
behalf of the case base designer. Infact time has to be dedicated to
create suitable qapairs taxonomies that reflect a particular
problem domain and then to associate these to the appropriate
cases.

The second and third results both depend on the first one. The
former is due to the fact that redundant qapairs are not considered
in the case-similarity computation and this gives a more accurate
figure at the end. The latter is the end result of the taxonomic
aspect when designing the qapairs set. Infact this leading effect to
solution-finding in more pronounced in the TCCBR then in the
Default CCBR. Though again this is highly dependent on the
design aspect of the case base.

5. FUTURE WORK
In this section we will consider how this work can be extended
and improved by the inclusion of an adaptation component and
feedback mechanism.

5.1 Adaptation
The addition of this component to PreDiCtS completes the CCBR
cycle. Adaptation is closely related to the retrieval process, since
it can be considered as the personalisation of a retrieved case to
suit more effectively the requester’s needs.

The main issue that has to be considered is the decomposition of a
case into its basic components and then the ability to adapt each
component separately. An adapted case will then be added to the
case base and tested to ascertain its effect on the case base, after
which it might be re-adapted or retained in the case base.

The adaptation of cases can be considered as a personalisation
process through which the requester or designer can change
aspects of a case to provide a more suitable problem-solution
relation.

The possible changes can include:

 the addition and removal of services from the template
definition (or solution)

 editing of input/output for particular services, including
changes to associated ontological concepts

 changes in the order of execution of services or changes to
the control constructs used

 adding or removing qapairs that make up the problem
definition. Editing qapairs is a more complex process and
will surely have a negative effect on the case base. So great
care has to be taken in this case.

The most important aspect of this adaptation component will be
the UI that provides the visualisation of all subcomponents of the
case requiring adaptation. A mapping from the template definition
back to UML activity diagrams is required. This will provide an
easy way to adapt the solution. This component will be accessed
also from within the retrieval component, where it would be
possible to adapt the MSC to obtain a higher similarity to the
problem at hand.

5.2 Feedback Mechanism
In Section 3 we have mentioned the importance of having a
feedback mechanism included in PreDiCtS. It is a process that
strives to maximise the usefulness of the case base.

We have identified that such a mechanism can help:

 the requesters to identify how a case has been used, by
whom (here we refer to a process which clusters users not
the actual person) and whether it has been reputed useful.

 the designer when importing cases from third-parties,
since, based on the reputation of cases, then he can decide
whether to import or not further cases from this source.

 the designer when performing maintenance on the case
base; those cases that have a negative reputation may be
removed from the case base.

Such reputation mechanism may be based on user feedback such
as that discussed in [27] and in [15]. It is similar to the feedback
mechanism of recommendation systems and considers the overall
feedback given by case users to generate a reputation score. This
score represents the usefulness of a particular case to solve a
specific problem. For this reason we have included in CCBROnto
a way to structure this information as part of the case history. We
have also identified the need to compute a trust value, for the case
creator. This trust value will be based on the global reputations of
the cases provided by that particular case supplier. If the overall
case-reputation is less then a certain threshold then this implies a
lower trust level and that source will not be used any more. In a
way this is similar to how eBay [12] reputes its sellers and buyers,
though PreDiCtS will take action and remove this source from the
list of possible case-suppliers.

6. CONCLUSION
In this paper we presented the motivation behind PreDiCtS. The
use of the underlying CCBR technique as a pre-process to the
service discovery and composition is promising since it provides
for inherent personalisation of the service request and thus as a
consequence also more personalised compositions. The tests that
were performed showed that the design of both the case base and
qapairs affects the retrieval process and to some extend, this also
depended on the similarity measure. The most important
difference between these two similarity measures was infact the
number of relevant questions that the taxonomic similarity
measure presented vis-à-vis the frequency based similarity
measure during the conversation.
It will be interesting to see how PreDiCtS will continue to
develop. Meanwhile we hope that the work presented in this paper
provides an initial step towards the adoption of such mixed-
initiative processes in the personalisation of the discovery and
composition of Web services.

7. REFERENCES
[1] Aamodt, A., Gu, M., Tong, X., Component retrieval using

conversational case-based reasoning. Proceedings of the
ICIIP 2004, International Conference on Intelligent
Information Systems. Beijing, China, October 21 - 23, 2004

[2] Aamodt, A., Gu, M., A Knowledge-Intensive Method for
Conversational CBR, Proc. ICCBR'05, Chicago, August
2005

[3] Abela, C., Montebello, M., PreDiCtS: A Personalised
Service Discovery and Composition Framework, in
proceedings of the Semantic Web Personalisation Workshop,
SWP 06, Budva Montenegro, 11th-14th June 2006

[4] Abela, C., Montebello, M., CCBR Ontology for Reusable
Service Templates, in proceedings of the Demos and Posters
session of the 3rd European Semantic Web Conference
(ESWC 2006), Budva, Montenegro, 11th - 14th June, 2006

[5] Abela, C., Personalised Service Discovery and Composition
Based on Conversational Case-Based Reasoning, MSc thesis,
Department of Computer Science and AI, University of
Malta, September 2006.

[6] Aha, D.W., Breslow, L.A., Muñoz-Avila, H., Conversational
case-based reasoning, Applied Intelligence, 14, 9-32. (2001).

[7] Bernstein, A., Kaufmann, E., Kiefer, C., Bürki, C., SimPack:
A Generic Java Library for Similarity Measures in
Ontologies, University of Zurich, Department of Informatics,
August 2005

[8] Buckle, M., Abela, C., Montebello, M., A BPEL Engine and
Editor for the .NET framework, , accepted at the ECOWS
2005 conference, Växjö Sweden, November 2005

[9] CCBROnto, http://www.semantech.org/ontologies/CCBR-
Onto.owl

[10] Creek, http://creek.idi.ntnu.no/

[11] Deelman, E., Gil, Y., et al, Mapping Abstract Complex
Workflows onto Grid Environments, Journal of Grid
Computing, Vol. 1, No. 1, pp 9--23, 2003

[12] eBay, http://www.ebay.com

[13] Goderis, A., et al, Seven bottlenecks to workflow reuse and
repurposing, 4th Int. Semantic Web Conf., Galway, Ireland,
6-10 Nov. 2005

[14] Gupta, K., Taxonomic Conversational Case-Based
Reasoning, Proceedings of the 4th International Conference
on Case-Based Reasoning, 2001

[15] Hefke, M., A Framework for the successful Introduction of
KM using CBR and the Semantic Web Technologies, I-
Know 2004

[16] IUCBRF, Indiana University Case-Based Reasoning
Framework http://www.cs.indiana.edu/~sbog-aert/CBR/

[17] Kim, J., Gil, Y., Towards Interactive Composition of
Semantic Web Services, In AAAI Spring Symposium on
Semantic Web Services, Palo Alto, California, USA, 2004

[18] Leake, D., Aktas M.S., Pierce M., Fox, G.C., A Web based
Conversational Case-Based Recommender System for
Ontology aided Metadata Discovery. Proceedings of the
Fifth IEEE/ACM International Workshop on Grid
Computing (GRID'04),Pages: 69 - 75

[19] OWL-S, http://www.daml.org/services/owl-s/1.1/

[20] Peer, J., A POP-based Replanning Agent for Automatic Web
Service Composition, Second European Semantic Web
Conference (ESWC'05), 2005

[21] Rajasekaran, P., et al, Enhancing Web services description
and discovery to facilitate composition, First International
Workshop, SWSWPC, July 2004

[22] Scicluna, J., Abela, C., Montebello, M., Visual Modelling of
OWL-S Services, IADIS International Conference
WWW/Internet, Madrid Spain, October 2004

[23] ServoGrid project, http://www.servogrid.org/

[24] Sirin, E., Parsia, B., et al, Filtering and selecting semantic
web services with interactive composition techniques, IEEE
Intelligent Systems, 19(4): 42-49,2004

[25] Sirin, E., et al, Planning for web service composition using
SHOP2, Journal of Web Semantics, 1(4):377-396, 2004

[26] Weber, B., Integration of Workflow Management and Case-
Based Reasoning, Supporting Business Processes through an
Adaptive Workflow Management System, PhD thesis,
University of Innsbruck, 2003

[27] Weber, B., et al, CCBR-Driven Business Process Evolution,
Proc. 6th Int. Conf. on Case-Based Reasoning (ICCBR'05),
Chicago, August 2005

	Charlie Abela, Matthew Montebello

