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ABSTRACT 
The proliferation of Web Services is fostering the need for 
service-discovery and composition tools to provide more 
personalisation during the service retrieval process. In this paper, 
we describe the motivating details behind PreDiCtS, a framework 
for personalised service-retrieval. In our approach we consider 
that similar service composition problems can be tackled in a 
similar manner by reusing and adapting past composition best 
practices or templates. The proposed retrieval process uses a 
mixed- initiative technique based on Conversational Case-Based 
Reasoning (CCBR), that provides i) for a clearer identification of 
the user’s service requirements and ii) based on these 
requirements, finds suitable service templates that satisfy the 
user’s goal. We discuss how retrieval can vary through the use of 
different CCBR algorithms and how adaptation can be performed 
over the retrieved templates thus providing the personalisation 
feature in PreDiCtS.  

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence] Learning 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Web Services, Conversational Case-Based Reasoning, Semantic 
Web 

1. INTRODUCTION 
Reusability and interoperability are at the core of the Web 
Services paradigm. This technology promises seamlessly 
interoperable and reusable Web components that facilitate rapid 
application development and integration. When referring to 
composition, this is usually interpreted as the integration of a 
number of services into a new workflow or process. A number of 
compositional techniques have been researched ranging from 
both, manual and semi-automatic solutions through the use of 
graphical authoring tools, discussed in [24], [22], to automated 
solutions based on techniques such as AI planning, used in [20], 
[25] and others.  

The problem with most of the composition techniques mentioned 
above is three fold (i) such approaches attempt to address service 
composition by composing web services from scratch, ignoring 
reuse or adaptation of existing compositions or parts of 
compositions, (ii) it is assumed that the requester knows exactly 
what he wants and how to obtain it and (iii) composing web 
services by means of concrete service interfaces leads to tightly-
coupled compositions in which each service involved in the chain 
is tied to a Web service instance. Using this approach for service 
reuse, may lead to changes in the underlying workflow which 

range from slight modifications of the bindings to whole re-
designing of parts of the workflow description. Therefore in our 
opinion, services should be interpreted at an abstract level to 
facilitate their independent composition. [13] adds, “abstract 
workflows capture a layer of process description that abstracts 
away from the task and behaviour of concrete workflows”, and 
this allows for more generalisation and a higher level of 
reusability. A system can start by considering such abstractly 
defined workflow knowledge and work towards a concrete 
binding with actual services that satisfy the workflow.  

The reuse of abstract workflows brings with it a set of other 
issues, such as the way that these workflows are generated, stored 
and retrieved. Therefore when deciding on which solution to 
adopt we considered the following motivating points: 

 Reusability of compositions has the advantage of not 
starting from scratch whenever a new functionality is 
required. 

 For effective reusability, a higher level of abstraction has 
to be considered, which generalises service concepts and is 
not bound to specific service instances. 

 Personalisation of compositions can be achieved by first 
identifying more clearly the user’s needs and then allowing 
for reuse and adaptation of these past compositions based 
on these needs. 

 Compositions can be bound with actual services thus 
making them concrete. 

In our approach we wanted to put the user (developer or 
otherwise) in a situation whereby he can reuse existing templates. 
Infact this approach is similar to that adopted in [21], [25], [11], 
and [27] which use pre-stored abstract workflow definitions or 
templates in their composition framework.  

This kind of reusability has been widely investigated in work 
related to Case-Based Reasoning (CBR), which is amenable for 
storing, reusing and adapting past experience for current 
problems. Nevertheless CBR restricts the user to define a 
complete problem definition at the start of the case-retrieval 
process. Therefore a mixed-initiative technique such as CCBR [6] 
is more appropriate since it allows for a partial definition of the 
problem by the user, and makes use of a refinement process to 
identify more clearly the user’s problem state.  

In this paper we want to present, the motivation behind, and a 
prototype of the PreDiCtS framework. Through this framework 
we allow for i) the encoding and storing of common practices of 
compositions or templates within cases and ii) for the retrieval, 
reuse and adaptation of these cases through CCBR. 

PreDiCtS’ case definition is based on the CCBROnto ontology. 
This ontology is based on OWL and has been discussed in [3] and 
[4]. Each case definition is composed of three main components 



that capture different knowledge related to a particular service 
template. The case-context defines information related to the case 
creator and provides a means through which a case-utility history 
is maintained. Each case encodes the problem to which it can 
provide a solution in the form of a set of question-answer pairs 
(qapairs). It is through this set of qapairs that the retrieval process 
can present the solution which represents the service workflow 
definition. Each solution is defined through an OWL-S [19] 
service definition. This includes both service profile and process 
descriptions. The latter is important since it defines the actual 
service workflow information.  

Given a new problem or service template request, the PreDiCtS’ 
approach allows first to retrieve a ranked list of past, similar 
templates which are then ranked and suggested to the requester. 
Through a dialogue process the requester can decide when to stop 
this iterative-filtering phase, and whether to reuse or adapt a 
chosen case.  

In a future extension to this work it is envisioned that, given a 
suitable case, a mapping is attempted between the features found 
in the chosen template, to actual services found in a service 
registry. An AI planning component can be used at this stage to 
handle this mapping from an abstract to a concrete, executable 
workflow.  

The rest of this paper is organized as follows. In Section 2 we will 
give some brief background information on CCBR and its 
application in various domains. In Section 3 we will present the 
architecture of PreDiCtS and discuss implementation details 
mainly focusing on the case-creator and case-retriever 
components, making references to a typical travelling scenario. 
We evaluate the prototype in Section 4 and in Section 5 we 
discuss future work and extensions. In the final section we 
provide some concluding results. 

2. CONVERSATIONAL CASE-BASED 
REASONING 
Case-Based Reasoning is an artificial intelligence technique that 
allows for the reuse of past experience to solve new problems. 
The CBR process requires the user to provide a well-defined 
problem description from the onset of the process, but users 
usually cannot define their problem clearly and accurately at this 
stage. On the other hand, CCBR allows for the problem state to be 
only partially defined at the start of the retrieval process. 
Eventually the process allows more detail about the user’s needs 
to be captured by presenting a set of discriminative and ranked 
questions automatically. Depending on the user’s supplied 
answers, cases are filtered out and incrementally the problem state 
is refined. With each stage of this problem refinement process, the 
system presents the most relevant solutions associated to the 
problem. In this way the user is kept in control of the direction 
that this problem analysis process is taking while at the same time 
she is presented with solutions that could solve the initial 
problem. If no exact solution exists, the most suitable one is 
presented and the user is allowed to adapt this to fit her new 
requirements. Nevertheless, this adaptation process necessitates 
considerable domain knowledge as explained in [18], and is best 
left for experts. 

One issue with CCBR is the number of questions that the system 
presents to the user at each stage of the case retrieval process. 
This issue was tackled by [14] which defined qapairs in a 
taxonomy and by [2] through the use of knowledge-intensive 

similarity metrics. In PreDiCtS we took into account the 
possibility that the user opts to use different similarity measuring 
algorithms for different domains. Infact two approaches are 
allowed (with the possibility of adding others). One of these 
approaches is based on the similarity measure defined in [6] and 
used by [26] to handle workflow reuse. Another similarity 
measure is based on the taxonomic theory defined in [14]. 
Through this similarity technique, the abstract relations between 
qapairs and in particular the sub-class relation are considered to 
reduce the number of questions that the user is presented in each 
retrieval cycle.  

2.1 Uses of CCBR 
CCBR is mostly associated with customer-support systems, 
though its benefits have been tested in various other fields such 
as, business process and workflow management, software-
component retrieval and in connection with Recommendation 
systems. In what follows we will consider the above scenarios in 
more detail. 

2.1.1 Business Process and Workflow Management 
Weber in her thesis [26] combines CCBR with rules and presents 
a solution for business process management. The created 
prototype is called CBRFlow and allows for more flexibility and 
adaptability in the management of workflows. The adopted hybrid 
approach takes the best of rule-based and case-based reasoning, 
though the rule-based component is allowed to have some 
precedence over the case-based component. Rules are generated 
from domain knowledge while case-based reasoning is used when 
no rules are available or updates to a rule exist in the form of 
cases.  

The CCBR component uses the same case-similarity metric as 
that described by [6]. This similarity is computed by finding the 
difference between the number of the shared and conflicting 
observations, and then dividing the result by the total number of 
observations in a case. A normalisation function is used to set the 
result within the interval [0, 1].  

2.1.2 Software Component Retrieval 
In [1] the CCBR technology is used to solve the problem of 
software component retrieval, especially when the number of 
components involved is large. The proposed solution is called 
Conversational Component Retrieval Model or CCRM. A case 
represents a component and a knowledge-intensive CBR 
methodology is used to explore the context-based similarities 
between the user’s query and the stored components.  

A frame-based knowledge representation and reasoning 
system called CREEK [10] is used to unify the component-
specific cases and the general domain knowledge. A knowledge-
intensive similarity calculation is used to determine which 
knowledge in the knowledge base is relevant to the retrieval 
process and to calculate the similarity between a new case and the 
stored cases.  

The question-answer interaction during the conversation is 
motivated by the fact that qapairs are easily understood and that 
the most informative and discriminating ones are presented to the 
user during a conversation. For this reason a set of predefined 
questions together with possible answers for each slot (i.e. for 
each relation between two concepts) are specified and an 



information-gain metric algorithm is used to quantitatively 
measure the information that each slot can provide. 

In our work we intend to resort to such frame structures through 
the use of OWL ontologies, in particular CCBROnto. We define 
cases whose solutions are service templates. These templates will 
be defined through a process definition language, such as OWL-S, 
though it is possible to use other languages, such as WS-BPEL. 

2.1.3 CCBR and Recommendation Systems 
[18] presented a web-based CCBR solution which is able to 
recommend solutions to scientist seeking resources (such as codes 
and data) related to an Earthquake Simulation Grid provided by 
the ServoGrid project [23]. 

A number of grid related ontologies were developed in RDF and 
these are used to represent case descriptions. Thus a case is 
considered to be a set of RDF triples. A domain independent CBR 
engine based on the Indiana University Case-Based Reasoning 
Framework (IUCBRF) [16] is used. 

The implemented prototype uses the RDF ontologies to present 
questions about the desired resource characteristics and, typically 
to the CCBR process, which ranks cases based on the chosen 
answers. During each iteration, the system provides 
discriminating questions in a ranked order so that the irrelevant 
cases are incrementally filtered out. 

Each case definition contains the problem and solution 
descriptions together with bookkeeping information such as the 
time of case creation, the contexts in which the case applies and 
also source or provenance information. Both the problem and 
solution are represented by a set of predefined features, where 
each feature is an RDF triple. During case-base initialisation, all 
possible <predicate - predicate value> pairs are extracted from 
the ontology and presented as features. The case retrieval 
mechanism is based on a threshold method which compares the 
set of features present in both user and case-problem definitions. 
Cases are ranked based on the number of common features whose 
values are consistent. Cases with unknown features or having 
inconsistent feature values are eliminated from the process. 

The way in which cases are defined through RDF is consistent 
with how we envision our own solution. Though in this case, all 
generated triples are equally considered as possible qapairs. 
Furthermore, it seems that no reasoning was done on the RDF 
data, thus no advantage was taken from this when qapairs were 
presented to the user. In our solution we want to be able to exploit 
as much as possible the logic behind the concepts and relations 
within a case description by using an OWL reasoner. For example 
given that, a question related to some particular concept has 
already been presented to the user, it is superfluous to present 
another question whose concept is more generic than the one 
associated with the previous question.  

2.2 Taxonomic CCBR 
Taxonomic CCBR (TCCBR) tries to tackle the pervasive issue of 
expressing case contents and features at different levels of 
abstraction. The solution is based on the ability to make use of 
feature taxonomies.  

The motivation behind the use of TCCBR is highlighted by three 
sources of abstraction: 

 the different levels of domain expertise between users and 
developers 

 the variations in information availability and the cost of 
acquiring it 

 the variations in decision-making needs 

If abstraction is ignored then problems such as unwanted 
correlation between features, redundancy in the number of 
questions presented to the user during conversation and 
inconsistencies in the case representations when new features are 
added are most likely to occur. TCCBR is defined to include: 

 A set of questions which are used for indexing the cases. 
Each question can be associated with a set of answers. 

 A set of taxonomies each one representing a set of qapairs 
which are related through either an is-a-type-of or is-a-part-
of relation. 

 A set of cases each having a problem definition in the form 
of a set of qapairs and a solution. 

Furthermore, in TCCBR two important rules have to be applied to 
the set of qapairs in a defined case: 

i. Only one qapair from a particular taxonomy can be 
included in each case 

ii. The most specific available and applicable qapair is used to 
represent the case 

The process of TCCBR as explained by [14] is divided into three 
main tasks (the third is optional though): 

i. Case retrieval 

ii. Conversation 

iii. Case Creation 

Case retrieval is subdivided into three main steps referred to as 
searching, matching, ranking and selecting. During this phase, 
cases are retrieved and ranked based on the questions that the user 
has chosen to answer. On the other hand the conversation process 
involves the identification and ranking of the most appropriate 
questions to present to the user after each iteration. If no suitable 
solution is found then a new case may be defined by specifying a 
new set of questions (or reuse existing questions) and a solution 
for this new problem. 

The approach taken in TCCBR is very relevant to our research 
goal and infact this is one of the retrieval techniques adopted in 
PreDiCtS. The main theory behind TCCBR is discussed in detail 
in [14] and though we will make reference to this work we will 
not explain it here. Nevertheless in what follows we will explain 
in detail any deviations that we have taken from this original 
theory.  

3. PreDiCtS 
The PreDiCtS framework allows for the creation and retrieval of 
cases (the adaptation process is in the pipeline). The respective 
components that perform these two tasks are the CaseCreator and 
the CaseRetrieval (See Figure 1). PreDiCtS is written in Java and 
is developed in Eclipse. It uses a MySQL database to store the 
cases, which are based on CCBROnto, and makes use of both 
Jena and the OWL-S APIs.  
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Figure 1: CCBR cycle adopted in PreDiCtS 

To explain how PreDiCtS can be used to create and retrieve 
service templates we will make use of a typical travelling 
scenario, described in the next section. We will then explain how 
cases, which represent different problems related to this domain 
and their respective solutions, are created through the 
CaseCreator. Retrieval is handled by the CaseRetrieval 
component which allows the user to adopt different CCBR 
algorithms to find the cases with the most suitable service 
template. Figure 2 represents the main components in our 
framework. 

3.1 Travelling Scenario 
The travelling situation that we want to model here is related to an 
academic who wants to go abroad to attend a conference. The 
defined cases should represent the problem from an advisor’s 
perspective and present a solution based on this knowledge. An 
advisor in this situation could have the role of a travelling agent, 
who is asking his client questions to identify what the latter 
requires so that he can eventually suggest the best solution.  

Goal: User is to attend an event on some particular date in some 
particular location. A part of a travelling domain ontology is 
shown in Figure 3. 

 Looking at the ontology it is noticed that the concept Person is 
associated with three disjoint branches or taxonomies, Event, 
Accommodation and Transport. Thus the questions should be 
related to any of these taxonomies.  
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Figure 2: System Component Summary 
After having identified the important aspects of the domain, we 
start by looking at the ontology to identify which typical 
questions might be asked in this situation. Questions should 
ideally capture a single aspect of the domain. For example, the 
most generic questions that are immediately identified are: Do 
you want to attend for an Event?, Do you want to use Transport? 
and Do you want to reserve an Accommodation?. Other questions, 
such as Do you want to use a Plane? And Do you want to stay in 
a Hotel? can be considered as being subsumed by the former set. 
The associated answer types for such questions are typically 
either a Yes or a No.   

StartDate

Accomodation

HostelHotel

City

EndDate Train

Airplane

Transport

Person

Conference

attendsFor

hasEndDate

hasLocation

hasStartDate
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is-a-type-of is-a-type-of
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is-a-type-ofEvent
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Coloured nodes represent disjoint sub-roots
has* relations are considered as part-of relations
is-a-type-of are subsumption relations
other relations, link disjoint nodes together  

Figure 3: Travelling Domain Ontology 
In Table 1 below we have listed some of these questions and have 
also associated them with a triple from the ontology. Each qapair 
is assigned a unique QID reference for that particular set. The 
appropriate link between the set of qapairs and the solution has to 
be defined by the creator. We adopt the methodology presented 
by [17] in which domain and task-knowledge are linked together. 



Table 1: qapairs set for the Travelling Domain 

QID Description
Triples Set

<Subject, Predicate, Object>

1 Problem is a Travelling Problem? <TravellingProblem, subClassOf, Problem>

2 Do you want to attend a Conference? <AttendConference, subClassOf, TravellingProblem>

3 Do you need transportation? <Transportation, subClassOf, AttendConference>

4 Do you want to use a plane? <Airplane, subClassOf, Transportation>

5 Do you want to use a train? <Train, subClassOf, Transportation>

6 Do you want accommodation? < Accommodation , subClassOf, AttendConference >

7 Do you want to stay in a hotel? <Hotel, subClassOf, Accommodation>

8 Do you want to stay in a hostel? <Hostel, subClassOf, Accommodation>

9 Is Conference registration required? <Conference, subClassOf, AttendConference>  
The domain is used to provide datatype information relevant to 
the service inputs and outputs. In our case the task knowledge is 
defined through an OWL-S definition. Thus for example the triple 
<Hotel, subClassOf, Accommodation> will provide, in the 
solution, a generic place holder for a Hotel Reservation service. 
Other services that might be useful to include in the solution are 
Flight Booking, Train Reservation, Hostel Reservation and 
Conference Registration services. Figure 4 represents a UML 
Activity Diagram of a particular solution for this domain. The use 
of this graphical representation to define a service workflow has 
also been adopted by [22] and [8]. 
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Reservation

Service

 
Figure 4: UML Activity Diagram for the Service Workflow 

3.2 Case Creation 
During case creation the expert user can define and add a new 
case to the case base. As already explained earlier, in CCBR a 
case consists of a case description and a problem and solution 
state. In PreDiCtS though, a case ci is defined as a tuple: 

c i = (dsc i, cxt i, {q1a3….qiaj}, acti, hsti) where; 

dsc i is a textual description for the particular case. 

cxti represents a set of context related features, such as Role and 
CaseCreator information based on the foaf:RDF ontology 
definition. 

{q1a3….qiaj} is a representation of the problem state by a set of 
qapairs 

act i denotes the solution which is represented by service 
composition knowledge stored in an abstract template. 

hst i, is the usage history associated with each case. 

Each case is based on the CCBROnto ontology which is described 
in more detail in [4] and can be found at [9]. The CaseCreator UI 
(see Figure 5) allows the user to add all the necessary information 
which is then translated into a CCBROnto case-representation in a 
manner transparent to the user.  

 
Figure 5: CaseCreator UI in PreDiCtS 

The context description cxt, is important in an open-world such as 
the Web since this will be used as a discriminating feature during 
case retrieval. The action or solution definition act, represent the 
service compositional knowledge and can be defined through any 
composition language. In PreDiCtS we are using parts of an 
OWL-S service description, but the framework can be easily 
extended to work with other service languages such WS-BPEL. 
hsti is an other feature which represents the usage-history of each 
case. This history could provide either positive (i.e. case was 
found useful) or negative feedback (i.e. implying that aspects of 
the case were not found ideal by past users) to the case user. This 
history information is used to generate a reputation value during 
case retrieval.  

 
Figure 6: Question-Answer Pair Design Tool 

An important aspect to consider when creating a new case is the 
definition of the problem through a set of qapairs. PreDiCtS’ 
retrieval component uses two approaches to find suitable cases, 
one of which is based on an adapted version of TCCBR. For this 
reason a special qapairs-creation tool, shown in Figure 6, is 
provided that allows the user to easily associate a new qapair 
definition with domain ontology concepts.  

Some adaptations have been made to the TCCBR theory to allow 
the system to work with ontologies and to be able to handle the 
open-world aspects required when defining the service template.  

3.2.1 Rule 1 
Only one qapair from a taxonomy can be included in a case (i.e. 
there is no abstract relation between concepts relating each qapair 



in case). This is similar to TCCBR, unless these concepts 
associated to these qapairs are specifically defined as disjoint 
within the taxonomy.  

Example: 

<owl:Class rdf:ID="Hotel">
   <rdfs:subClassOf rdf:resource="#Accommodation"/>
   <owl:disjointWith rdf:resource="#Hostel"/>
</owl:Class>
<owl:Class rdf:ID="Hostel">
   <rdfs:subClassOf rdf:resource="#Accommodation"/>
   <owl:disjointWith rdf:resource="#Hotel"/>
</owl:Class>

 

Given the above situation a case can contain both questions: 

Accommodation required is Hostel? 

Accommodation required is Hotel ? 

In this way the case covers the situation whereby a user might 
require staying at both a Hotel and a Hostel which are both 
subclasses of Accommodation. 

3.2.2 Rule 2 
The most specific available and applicable qapair is used to 
represent the case. We adapt this rule as is defined in the TCCBR 
theory. We look at a taxonomy as a dialogue composed of an 
ordered set of nodes (qapairs). We start by looking at both the 
domain of discourse and the different services that might be 
required (in the solution) to solve a particular issue. We extract 
those classes that are relevant to the problem that we want to 
model and give them an ordering. This ordering, though abstractly 
defined through the subClassOf relation, does not always imply 
that one class is in effect a subClassOf another, but rather that the 
question associated with that concept will be asked before or after 
another one associated with another concept. Therefore given the 
questions: 

Accommodation required is Hotel? and Do you need 
Accommodation?, the former will be preferred over the latter 
because it is more specific and thus is considered to be closer to 
the solution. 

3.2.3 Rule 3 
We consider a qapair to be associated with a unique concept in 
the taxonomy. Thus for example, the question: 

Accommodation required is Hostel? will be associated to the 
Hostel concept while Do you need accommodation? is associated 
to the Accommodation concept 

We make use of reification to generate more knowledge about 
each statement. Infact a question will be associated with a reified 
statement that threats each component of a triple <subject, 
predicate, object>, as a Resource. 

Example: For the question Do you need accommodation?  

a reified statement with the following subject, predicate and 
object resources will be defined: 

Subject: Accommodation 

Predicate: subClassOf  

Object: AttendConference 

In this example, Accomodation is defined to be a subClassOf 
AttendConference. We envision that this technique will allow us, 
in the future, to work with other types of abstract relations such as 
those similar to is-a-part-of by considering other properties that 
associate classes together. 

3.2.4 Service Template Creation 
The case creator is provided with a visual-composer tool that 
allows him to easily create a workflow with the generic services 
that can solve a specific problem. The UML Activity Diagram 
representation is used to eventually generate an OWL-S Process 
definition. The Process ontology in OWL-S provides for the 
definition of a workflow of services and related properties. Since 
we wanted this description to be as generic as possible, each 
service definition is conceptually linked to an ontology of service-
related concepts. Thus if the user adds a node that represents a 
Flight Reservation service, a generic atomic service definition 
will be generated whose input and output resources are defined by 
some external service-related ontology. 

<process:AtomicProcess rdf:ID="FlightReservationService">
  <process:hasInput>
    <process:Input rdf:about="#FlightReservationInput">
      <process:parameterType
            rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"/>
    </process:Input>
  </process:hasInput>
  <process:hasOutput>
    <process:Output rdf:about="#FlightReservationOutput">
      <process:parameterType
            rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"/>
    </process:Output>
  </process:hasOutput>
</process:AtomicProcess>

In this manner when searching for actual services, these generic 
placeholders will be bound to actual service inputs and outputs. 
The workflow also defines information related to the order of 
execution of the services.  

3.3 Case Retrieval 
The CaseRetriever is responsible for the CCBR retrieval process. 
It takes as input the choice of similarity measure and problem 
domain and presents questions for the user to answer. The 
answered questions will then be used to generate a list of cases 
based on the similarity measure component.  

It is up to the user to decide whether a case from the retrieved set 
of cases is suitable enough to solve his problem. In the situation 
where further problem-filtering is required, the user can decide to 
answer more questions, with the consequence that the list of 
retrieved cases is also filtered down.  

The set of questions presented with every step in this filtering 
process are generated through a conversation-generation 
component which takes care of identifying which questions are 
best suited to be presented to the user in the next step. Different 
conversation-generation algorithms are available in PreDiCtS, 
depending on the type of similarity measure chosen initially by 
the user. 

3.3.1 CaseRetriever UI 
This is divided into three main components (see Figure 7). The 
top-most pane consists of two combo boxes; one displays a list of 
problem-domain ontologies while the other displays the different 
types of similarity methodologies that the retriever is capable of 



using. At present this is limited to two, the Default CCBR and the 
TCCBR (Taxonomic CCBR) methodologies. We envision the use 
of a graph-based retrieval method, GCCBR, based on [7], in the 
near future. 

 
Figure 7: CaseRetriever UI 

The middle left and right panes show two tables. The table on the 
left presents those questions that still require an answer from the 
requester. These are generated by the conversation-generation 
algorithm. They act as a filtering and refinement mechanism for 
the list of retrieved cases. The middle right-hand pane presents a 
table of already answered questions. The bottom pane also 
contains a table component, but this one shows the cases that have 
been retrieved during a CCBR retrieval cycle. 

3.3.2 Default CCBR 
This similarity measure is based on that presented by [6] and 
discussed in Section 2. The following similarity function is used: 

sim1(Q,C ) =
same(Qqa,Cqa) - diff(Qqa,Cqa)

|Cqa |
 

where |Cqa| represents the number of qapairs in the case problem 
definition. This function is also adapted by [26] but a 
normalisation function is also included to keep the similarity 
value between [0, 1]. The normalisation function is as follows: 

sim2(Q,C) = * (sim1(Q,C) + 1)1
2  

The technique used to present and rank new questions during a 
conversation is based on their frequency in the considered cases, 
though other different techniques could be utilised as defined by 
[2], [15] and others.  

3.3.3 TCCBR  
As discussed earlier in Section 2, retrieval in TCCBR is based on 
two processes, the case-retrieval process and the conversation 
generation process. We will discuss the steps associated to each 
one and any adaptations made in PreDiCtS. 

The searching step, of the case-retrieval process in the original 
TCCBR starts by getting the user’s textually-defined query and 
mapping this with the most similar qapair in the specific domain. 
In PreDiCtS though, the system presents the list of the most 
generic qapairs for a chosen domain, that is, those that are at the 
roots of the specific taxonomies.  

The qapairs are not directly taxonomised, as explained earlier, but 
each question is associated with a triple <subject, predicate, 
object> which is defined in a problem related-ontology. This 
implicitly makes a qapair part of a taxonomy.  
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Figure 8: PreDiCtS qapair Taxonomy 

Considering the situation in Figure 8 above, we assume that the 
set of cases, CQ, and the set of qapairs, QP, are linked to an 
Ontology O as follows: 

case set CQ = {c1,c2, c3, c4,c5,….,ci} 

qapairs in QP = {qp1, qp2, qp3,…., qpj} 

ontology O = {oc1,oc3, oc5,oc7,….., ock} 

where, qp1 can be seen to be present in two cases, c1 and c3, and is 
associated with ontology concept oc1 (this is assumed to be the 
subject from the associated triple). Similarly qp3 is associated 
with ontology concept oc3 (which is the subject in yet another 
triple) and is present in two cases, c2 and c4. In this way qp1 
subsumes qp3 based on the relation between the ontology concepts 
oc1 and oc3. Therefore during a case retrieval cycle, qp1 will be 
asked before qp3 since it is more generic. In a case ci there will 
either be qp1 or else qp3, as per Rule 2 above, this provides for a 
reduction in the redundant questions being presented to the user 
during case retrieval. 

The second step in the case-retrieval process is the matching step 
and in the original TCCBR this involves matching each qapair 
element in QP with the qapairs in each of the candidate cases. A 
ranked list of cases is established based on the following 
similarity measure sim(qpi,pj): 

sim (qpi ,pj) =

1                                if pj ⊆ qpi

(n+1-m)/(n+1+m)  if qpi ⊆ pj

0                               otherwise  
where,   
qpi is the question-answer pair in the user’s query and  
pj  is the question-answer pair in a candidate case 
n = number of edges between qpi and the root of the taxonomy 
m = number of edges between qpi and pj

Having calculated such similarity between qapairs then an 
aggregate similarity metric is used to calculate the overall 
similarity between the user query QP and a case problem 
description, Pk. This aggregate similarity is calculated as follows: 



Σ sim( qpi , pj )
i∈ QP , j∈ PkSim (QP, Pk) =

T  
where, T in the original taxonomic theory represents the number 
of taxonomies, here it represents the number of disjoint branches 
in the domain ontology, that are associated with the qapairs. 
Cases are then ranked in a descending order based on this 
aggregate value. 

In PreDiCtS we adopt the same similarity metric except that this 
similarity is computed on the qapairs’ associated concepts rather 
then on the qapairs themselves. With reference to Figure 8 above, 
suppose that in the user’s problem definition there are two 
qapairs, qp1 and qp4, while in the problem definition of the 
candidate case there are three, qp3, qp2 and qp5. 

Based on the associated concepts oc1 and oc3, the qapairs qp1 and 
qp3 are related by a parent-child relation, while the qapairs qp4 
and qp2, which are associated with the concepts oc7 and oc5, are 
bound by a child-parent relation (see Table 2). 

Table 2: qapair/Concept relations 

User's Query Case
q-a pair concept q-a pair concept

qp1 oc1 qp3 oc3

qp4 oc7 qp2 oc5

qp5 oc2  
The user’s query though, does not contain a qapair in the 
candidate case that is related with qp5. Using the adapted 
similarity metrics defined by TCCBR, we assume the following 
values: 

sim (qp1,qp3) =  sim (oc1,oc3) = 1

sim (qp4,qp2) = sim (oc7,oc5)  = 0.5
 

for which the aggregate similarity will be  

Σ sim (oci , ocj ) = 3 = 0.51 +  0.5

 
where the number of taxonomies here is 3 since: 

a. the concepts oc1 and oc5 represent 2 disjoint branches 
in the ontology and  

b. the concept oc2 has to be considered as a separate 
disjoint branch. 

The last phase of the case-retrieval takes the set of cases that are 
retrieved and rank-orders them in descending order based on the 
similarity score obtained from the previous step. Both the TCCBR 
and the PreDiCtS theories handle this step in a similar manner. 

The conversation algorithm in PreDiCtS is the same as that 
defined by the TCCBR theory. The goal is to present the user 
with a ranked list of questions derived from the retrieved cases 
CR. The process starts by considering all qapair taxonomies 
applicable to the cases in CR. The score of each qapair in a 
taxonomy is based on the similarity scores obtained for the node-
related cases. Each node takes the score of all related cases and 
the similarity of each parent node is the accumulation of the 
scores of its child nodes. A backward pass algorithm is used to 
calculate the score of each node. If the user problem definition 

contains a qapair from the taxonomy then the system selects its 
child nodes, else the most specific node that subsumes the set of 
retrieved cases is selected. 
The question score is a tuple that includes <taxonomy score, q-a 
pairs score> as in Figure 9. 
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Figure 9:Question-Answer pair scoring 
Example: s(qp4) = 1.3 = ((Simc6 = 0.2) + (s(qp7) = 0.4) + s(qp8) 
= 0.7)) 

4. EVALUATION 
In this section we will present the main results of the tests that 
were carried out to evaluate the case retrieval performance in 
PreDiCtS (for a more detailed description see [5]). We considered 
a number of different requests to find suitable cases relevant to 
the travelling domain.  

Table 3: Cases for the Travelling Domain 

Case_ID Solution Problem
CID1 Conference + Hotel + Train QID 5, QID6, QID9
CID2 Conference + Hotel + Airplane + Train QID3, QID5, QID6, QID9
CID3 Conference + Hotel + Airplane QID3, QID6, QID9
CID4 Conference + Hostel + Train QID5, QID8, QID9
CID5 Conference + Hostel + Airplane + Train QID3, QID5, QID8, QID9
CID6 Conference + Hostel  + Airplane QID3, QID8, QID9

CID7 Conference + Hostel + Airplane + Hotel +
Train QID3, QID5, QID6, QID8, QID9

CID8 Conference + Hotel QID6, QID9
CID9 Conference + Hostel QID8, QID9

 

A list of relevant cases (see Table 3) was developed, where each 
case had a unique CID (case ID). The problem definition 
consisted of sets of qapairs’ ID references where each QID was 
also unique for the particular domain. The solution represented a 
set of services that were stored in a service template. 

Four problems were identified and the performance of both the 
Default CCBR and the TCCBR approaches was considered. The 
identified problems were: 

i. The person (requester) wants to register for a 
conference, travel by train and stay in a hotel. 

ii. The person (requester) wants to attend for a conference, 
requires accommodation and transportation. 

iii. The person (requester) wants to travel by airplane for a 
conference and requires accommodation. 

iv. The person (requester) wants to attend for a conference, 
has to travel by airplane and train and stay at a hotel. 



The main differences between the two approaches were in: 

1. the number of questions that were presented to the 
requester by the conversation-generation algorithm, at 
the end of each retrieval cycle. 

2. the accuracy of the similarity values. 

3. the effect of leading the requester towards the Most 
Suitable Case (MSC). 

The reason behind the first result is attributed to the fact that 
TCCBR considers the abstract relations between qapairs and thus 
limits the number of redundant questions to present to the user at 
each stage. This though, does not come without an initial effort on 
behalf of the case base designer. Infact time has to be dedicated to 
create suitable qapairs taxonomies that reflect a particular 
problem domain and then to associate these to the appropriate 
cases.  

The second and third results both depend on the first one. The 
former is due to the fact that redundant qapairs are not considered 
in the case-similarity computation and this gives a more accurate 
figure at the end. The latter is the end result of the taxonomic 
aspect when designing the qapairs set. Infact this leading effect to 
solution-finding in more pronounced in the TCCBR then in the 
Default CCBR. Though again this is highly dependent on the 
design aspect of the case base. 

5. FUTURE WORK 
In this section we will consider how this work can be extended 
and improved by the inclusion of an adaptation component and 
feedback mechanism.  

5.1 Adaptation 
The addition of this component to PreDiCtS completes the CCBR 
cycle. Adaptation is closely related to the retrieval process, since 
it can be considered as the personalisation of a retrieved case to 
suit more effectively the requester’s needs.  

The main issue that has to be considered is the decomposition of a 
case into its basic components and then the ability to adapt each 
component separately. An adapted case will then be added to the 
case base and tested to ascertain its effect on the case base, after 
which it might be re-adapted or retained in the case base.  

The adaptation of cases can be considered as a personalisation 
process through which the requester or designer can change 
aspects of a case to provide a more suitable problem-solution 
relation. 

The possible changes can include: 

 the addition and removal of services from the template 
definition (or solution) 

 editing of input/output for particular services, including 
changes to associated ontological concepts 

 changes in the order of execution of services or changes to 
the control constructs used 

 adding or removing qapairs that make up the problem 
definition. Editing qapairs is a more complex process and 
will surely have a negative effect on the case base. So great 
care has to be taken in this case. 

The most important aspect of this adaptation component will be 
the UI that provides the visualisation of all subcomponents of the 
case requiring adaptation. A mapping from the template definition 
back to UML activity diagrams is required. This will provide an 
easy way to adapt the solution. This component will be accessed 
also from within the retrieval component, where it would be 
possible to adapt the MSC to obtain a higher similarity to the 
problem at hand. 

5.2 Feedback Mechanism 
In Section 3 we have mentioned the importance of having a 
feedback mechanism included in PreDiCtS. It is a process that 
strives to maximise the usefulness of the case base.  

We have identified that such a mechanism can help: 

 the requesters to identify how a case has been used, by 
whom (here we refer to a process which clusters users not 
the actual person) and whether it has been reputed useful. 

 the designer when importing cases from third-parties, 
since, based on the reputation of cases, then he can decide 
whether to import or not further cases from this source.  

 the designer when performing maintenance on the case 
base; those cases that have a negative reputation may be 
removed from the case base. 

Such reputation mechanism may be based on user feedback such 
as that discussed in [27] and in [15]. It is similar to the feedback 
mechanism of recommendation systems and considers the overall 
feedback given by case users to generate a reputation score. This 
score represents the usefulness of a particular case to solve a 
specific problem. For this reason we have included in CCBROnto 
a way to structure this information as part of the case history. We 
have also identified the need to compute a trust value, for the case 
creator. This trust value will be based on the global reputations of 
the cases provided by that particular case supplier. If the overall 
case-reputation is less then a certain threshold then this implies a 
lower trust level and that source will not be used any more. In a 
way this is similar to how eBay [12] reputes its sellers and buyers, 
though PreDiCtS will take action and remove this source from the 
list of possible case-suppliers. 

6. CONCLUSION  
In this paper we presented the motivation behind PreDiCtS. The 
use of the underlying CCBR technique as a pre-process to the 
service discovery and composition is promising since it provides 
for inherent personalisation of the service request and thus as a 
consequence also more personalised compositions. The tests that 
were performed showed that the design of both the case base and 
qapairs affects the retrieval process and to some extend, this also 
depended on the similarity measure. The most important 
difference between these two similarity measures was infact the 
number of relevant questions that the taxonomic similarity 
measure presented vis-à-vis the frequency based similarity 
measure during the conversation.  
It will be interesting to see how PreDiCtS will continue to 
develop. Meanwhile we hope that the work presented in this paper 
provides an initial step towards the adoption of such mixed-
initiative processes in the personalisation of the discovery and 
composition of Web services. 
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