
Functional HDLs: A Historical Overview

Joseph Cordina
Dept. of Computer Science and A.I.

New Computing Building
University of Malta, Malta

joseph.cordina@um.edu.mt

Gordon J. Pace
Dept. of Computer Science and A.I.

New Computing Building
University of Malta, Malta

gordon.pace@um.edu.mt

ABSTRACT
When designing hardware systems, a variety of models and
languages are available whose aim is to manage complexity
by allowing specification of such systems at different abstrac-
tion levels. Languages such as Verilog and VHDL where
designed with simulation in mind rather than synthesis and
lack features such as parametrised complex circuit defini-
tions, a must for the design of generic complex systems. A
more modern approach is the use of functional languages for
hardware description that take advantage of the inherent ab-
straction in this paradigm, resulting in a more concise and
manageable description of the system. This paper gives an
overview of different functional language implementations
for hardware description, highlighting their historical signif-
icance in terms of their capabilities and design approach.
We will compare and contrast different ways that certain
features, such as circuit sharing, have been implemented in
these.

Keywords
Hardware Description Languages, Language Embedding, Func-
tional Languages

1. INTRODUCTION
When an electrical engineer needs to specify a complex sys-
tem, he or she certainly does not specify the system by list-
ing every single gate and connecting them. The usual tech-
niques of modularity, re-use and abstraction are applied to
improve both development time and also the quality of the
final system. After specifying the system using some struc-
tural description, the engineer may want to perform actions
on the circuit described:

• Simulate the circuit. At the very least the designer
of the system would want to run a simulation of the
circuit to observe its behaviour. This is also useful
for testing the eventual circuit, where test cases are

simulated on the circuit description and on the circuit
proper.

• Verify the circuit’s behaviour. Ideally one should
be able to run some model checking techniques to ver-
ify that the described circuit obeys from specification.
Having this facility increases the confidence of the cir-
cuit and also helps in discovering certain obscure bugs
early on prior to the expensive hardware realization
process.

• Gather knowledge about the circuit. These are
metrics on the circuit such as number of components
or expected signal propagation delay. More complex
things which are desirable are behavioural description
of the circuit, and an analysis of non-functional as-
pects.

• Netlist generation. Eventually the circuit will need
to be placed in hardware, and thus it is crucial that
the original circuit description is translated to the gate
level together with an unambiguous description of how
the gates connect to each other (also known as the
netlist). The more abstract the specification language
and the more automatic the low level description gen-
eration, the easier it is for the systems designer. It is
also assumed that the original semantic behaviour of
the system is maintained when the netlist is generated.

• Circuit Transformation. It is also commonly de-
sirable for the designer to be able to make changes to
the original circuit specification or to the netlist. This
could include changes in functionality or tweaking the
circuit to decrease the number of required components.
Changes could be the result of bug-fixing or to tailor
the system for re-use. Automated circuit transforma-
tion would be highly desirable.

The first step to allow the above is to generate some lan-
guage that is able to describe the final target system. Very
popular languages are VHDL and Verilog [1]. These lan-
guages offer a variety of features such as allowing the user
to specify the circuit using a structural description of the
circuit, alternatively using a behavioural description of a
circuit, efficiently simulating the target system, synthesiz-
ing the high-level description to hardware and being general
enough to describe any hardware system. One thing that
is immediately obvious when looking at VHDL and Verilog
compilers it that a lot of work has been done on optimising

them for simulation. In turn this led to the situation that
synthesis becomes a very difficult process and it is not un-
common that one specifies a system that behaves differently
after synthesis [4]. One can still use the behavioural descrip-
tion for testing, yet it obviously is not an ideal scenario. In
addition, it soon became apparent that certain circuits are
very difficult to specify in either VHDL or Verilog. Earlier
versions of VHDL did not allow one to define complex cir-
cuits which vary according to the definition’s parameter (for
example a circuit which is made up of a number of compo-
nents, the number of which is defined as a input parame-
ter inside the circuit’s definition). More modern versions
allow a very limited subset of these1. In brief, while Ver-
ilog and VHDL are very successful tools, they do not lend
themselves easily to higher-order descriptions when giving
the structural description, thus limiting the amount of ab-
straction one can have. These higher-order descriptions are
usually known as connection patterns and are functions that
take other circuits as input parameters and whose outputs
are generic patterns of the input circuits, for example rows,
trees or arrays of circuits.

What we discuss in this document is an approach that has
proved to be very successful in describing circuits at multiple
levels of abstraction, while being able to maintain easy and
automatic synthesis and simulation. We concentrate mainly
on the structural description of circuits, even though we
mention briefly some recent research work in terms of auto-
matic synthesis of behavioural descriptions. Also we limit
ourselves to describing synchronous systems, due to the fact
that combinational circuits with feedback can only converge
to a specific fixed output when taking into account low level
propagation delay, something which one normally tries to
abstract away from.

2. FUNCTIONAL HDLS
We will now discuss how the functional language paradigm
has been been used to allow the specification of hardware
systems. This has been done using one of two approaches:
the development of new functional languages or the use of
existing languages and embedding these with hardware de-
scription capabilities.

2.1 Early Work
Following Backus’ Turing Award Paper in 1978, it was im-
mediately obvious that descriptions of programs in func-
tional languages tend to be concise and since abstraction is
implicit in the model, it is an ideal platform for describing
complex systems. In 1984, Sheeran [17] developed a variant
of FP, µFP, and used it to describe the tally circuit. What
is apparent is that the definition was much more under-
standable and concise than the same description in VHDL
or Verilog (languages that had still to be created). One of
the reasons is that the circuit was defined recursively, thus
lending itself perfectly to the functional style of program-
ming. In addition, such a concise description makes it easier
to debug and to modify.

In µFP, circuits are defined in terms of built in connection
patterns, i.e. functions that accept circuit descriptions as

1This is achieved through the generic keyword but is still
not generic enough!

input parameters and connect these descriptions together
depending on some other input parameters. The successor of
µFP was Ruby [18]. In Ruby, while maintaining the concept
of combinators, it looks at circuits as relations on streams.
In other words, inputs and outputs are seen as a stream of
data and circuits as the functions transforming them. This
gives the advantage that components such as a delay can be
easily specified.

2.2 Functional Embedded Languages
Early attempts to create functional hardware description
languages (HDLs) concentrated on the creation of new lan-
guages that make use of the functional paradigm. Yet this
entails the construction of compilers and interpreters for
each new language and also does present the problem of de-
ciding upon the syntax and semantics of each new in-built
feature.

An alternative approach, is to embed a hardware descrip-
tion language in a generic host language. This allows one
to make use of all the features of the host language, thus
taking advantage of all the packages available for the host
language, including compilers and debuggers. Another large
advantage is that the written circuit descriptions are them-
selves objects within the host language and can thus be ma-
nipulated, inspected and transformed. To embed the new
language, one usually creates new libraries to allow the de-
scription of hardware in the host language.

One the earliest attempts to create an embedded HDL was
HDRE [12]. This was implemented in Daisy, a non-strict
functional language. In HDRE, wires are treated as a stream
of values using lists. One can then easily simulate the cir-
cuit by defining circuits as transformation functions on these
lists. One can also synthesize the circuit’s definitions by hav-
ing alternate values within the list and defining the circuits
themselves as functions on lists of generic types. Depending
on the type of values within the lists passed to the func-
tions, one can evaluate (i.e. simulate) the circuit or one can
generate a circuit description(i.e. netlist). This approach is
called shallow embedding. A typical implementation within
a Haskell-like language would be as follows:

type Signal = [Bit]

inv::Signal -> Signal

inv = map bit_invert

bit_invert::Bit -> Bit

bit_invert True = False

bit_invert False = True

Having a lazy programming language, one can also talk
about infinite lists which allows any complex circuit to be
specified, such as delay circuits whose delay is an input pa-
rameter. The biggest disadvantage with shallow embedding
is that since circuits are programs within the language, they
cannot be inspected and thus something simple like gener-
ating the number of gates in the target netlist is impossible.

2.3 Data Types and Deep Embedding
Instead of using lists of values, one can alternatively define
circuit descriptions as values in a recursive data type. Then
one can write functions that take these values and manipu-
late them. Thus the description given above would look as
follows:

data Signal = Inv Signal | Low | High | ...

inv :: Signal -> Signal

inv = Inv

We can also create functions that are able to evaluate a given
circuit description, thus effectively simulate it. Additionally
one can write a function to generate the symbolic interpre-
tation of the circuit, thus resulting in the netlist (symbolic
evaluation).

This approach has been taken by the majority of functional
HDLs today. One the early implementations to make use
of this approach was Hydra [14], a functional HDL imple-
mented in Haskell and now used as a teaching language. In
Hydra one still has to annotate the circuit descriptions when
needing to generate the netlists. A follow up to this language
is Lava [4], a language with a large suite of features includ-
ing automatic synthesis of circuits in VHDL, specification of
generic connection patterns, automatic verification of prop-
erties through the use of observers and an adequate model
checking tool. Another embedded HDL within Haskell is
Hawk [7]. Hawk’s main target is for modeling and simulat-
ing microprocessor architectures. Architectures can be de-
scribed at the behavioural level. As Claessen notes in [4], it
is very difficult to generate netlists from such a high level of
abstraction. In Hawk, high-level components are used as el-
ementary objects within the language and thus its very diffi-
cult to simplify these automatically to their gate-level coun-
terparts. Another deeply-embedded HDL, this time within
ACL2 is DE2 [9]. This language is mainly targeted towards
rigorous hierarchical description and hierarchical verification
of finite-state machines. Another variant is the modeling of
streams within Daisy [10], a descendant of LISP, which can
be used to model communication between self-timed com-
municating processes.

2.4 Haskell and Embedding
As one can see, Haskell is being used extensively for the use
of embedding hardware description languages. One of the
main reason for this is purely historical, in that the people
working on embedded HDLs have been working closely with
the Haskell development team. Yet arguably Haskell has got
a very strong type system and is well renown for its elegance
and clarity of syntax and semantics.

Other languages have also been used to embed within them
HDLs, some with more success than others. There are
several groups working on different languages yet one that
seems very promising is the construction of an HDL within
reFLect, a functional language based on ML [11]. Interest-
ingly within such a language one can make use of shallow
embedding and then use the reflection capabilities2 to ma-
2reFLectis able to reason and manipulate about the programs
written within it, using quote and unquote operators

nipulate the circuit functions, thus arbitrarily changing from
shallow to deep embedding as required.

Deciding to embed within a host language does have its dis-
advantages, primarily that one has to live with limitations
of a generic language that was not designed primarily as an
HDL. Within Haskell, one cannot define types that can also
be given the allowed size of the type. These are known as
sized types. Certain circuits makes certain assumptions on
their input and output types and thus it would be desirable
to be able to talk about type sizes within Haskell. Addi-
tionally as noted in [4], it would be helpful if Haskell was
able to distinguish easily3 between parameters to circuit de-
scriptions, at the very least between the inputs and outputs
signals.

3. OUTPUT SHARING AND FEEDBACK
It is obvious that one inherits a lot of advantages when mak-
ing use of a functional language for hardware description.
One major feature is referential transparency whereby any
expression will always yield the same result for the same ar-
guments, a property which is assumed in hardware and sub-
sequently components are seen as functional elements. In
functional languages, referential transparency is a result of
lambda beta reduction, whereby evaluation becomes a sim-
ple exercise of argument replacement. Unfortunately this
hides away context and does not allow us to refer to inter-
nal components form other parts of the program.

Consider Figure 1 that depicts two typical circuits made
up of several components. When describing the first in a
Haskell-like Language, one would use:

circuit_i::Signal -> Signal -> Signal

circuit_i in1 in2 =

let interm = f in1 in2

in g interm interm

While this definition might look strange, we know it will be-
have correctly precisely because of referential transparency
whereby the evaluation of g is applied to two separate eval-
uations of interm. Yet this evaluation strategy leads us to
the realization that circuit (ii) cannot possibly be described
since f would have to be evaluated twice. Implementing
the second circuit as follows, clearly highlights the resulting
similarity between the first and second circuits.

circuit_ii::Signal->Signal->(Signal,Signal)

circuit_ii in1 in2 =

let interm = f in1 in2

in (g1 interm, g2 interm)

While this has no effect on its behavioural semantics (thus
its simulation), it does have a huge effect when this circuit
is realised in hardware. Since the above naive description
of this circuit will result in two separate and identical im-
plementations of f, this will result in a larger number of
components than is strictly required.

3Note that this is possible in Haskell as shown in Wired, yet
the techniques used are not straightforward

(i) (ii)

in1

out

f

g

in2
f

in1

in2

f

g1

g2

out1

out2

Figure 1: Typical circuits. (i) makes use of two identical circuits while (ii) shares the output of one single
circuit.

inp
out

Figure 2: Circuit containing feedback. This circuit
will alternate from true to false with every clock
cycle, initiated by a true input.

The situation worsens when one has feedback loops, a com-
mon occurrence in real circuits. Consider Figure 2 where we
have a typical circuit that inverts its output per cycle4. It
is made up of an OR gate, a latch (a component that delays
its input by one clock cycle) and an inverter. At first glance,
one would implement such a circuit using the following code:

circuit::Signal

circuit inp =

let out = inv (latch (or (inp,out)))

in out

Unfortunately when trying to generate the netlist of this cir-
cuit, a functional language compiler would try to expand the
out argument in the second line, whose evaluation depends
on the value of out again within the OR gate. This cyclic
dependency has no terminating condition, and thus would
be expanded until there is no more working stack space.

Such a terminating condition can only be found if the HDL
in its execution trace can recognise components that it has
already visited. Such a clause would also facilitate wire shar-
ing as demonstrated in the beginning of this section. Note
that through the use of shallow embedding and functional
laziness, one can solve very nicely these problems, yet as
noted before, shallow embedding does not allow us to anal-
yse the circuit description within the program.

3.1 Wire Forking
One solution we can envisage is the use of a circuit that
explicitly represents the forking of a particular output wire
(see Figure 1(ii)). The semantics of this fork circuit is that
an input wire is connected to this circuit that outputs two
or more wires containing a copy of the input wire. This
circuit can then be translated in the netlist generation to
the diagram shown in the figure. This approach has sev-
eral drawbacks, most importantly that the use will have to
explicitly make use of this fork circuit to assemble the cir-

4While such a circuit usually requires a synchronisation in-
put, this has been omitted to simplify the circuit.

cuits. In addition, we cannot envisage how this can solve
the problem of feedback loops.

3.2 Explicit Naming
A better solution is to give a component an explicit name.
This name will then be used when generating the descrip-
tion of the circuit. By storing the names of symbolically
evaluated components and not evaluating already seen com-
ponents, one can avoid having infinite recursion loops. A
naive implementation would simply keep a list of names of
evaluated components, and then traverse this list for every
component that has to be evaluated. When implemented
within a lazy functional language, making use of certain
techniques that delay evaluation to the last possible moment
can speed up evaluation considerably [8].

This approach was implemented in Hydra and proposed by
O’Donnell in [13]. The code for the inverter circuit would
now look as follows, where the inverter has been been given
an explicit name.

circuit::Signal

circuit inp =

let out = inv Name1 (latch (or (inp,out)))

in out

This code would not generate an infinite description since
Name1 will only be evaluated once. Another advantage of
this approach is that the explicit name can be carried on all
the way to the netlist generation, thus having a reference to
the top-level design, aiding in debugging. Yet a major draw-
back is that it relies on the user to keep track of component
names. While this might be a trivial task, it does tend to
increase the possibility of error. One alternate approach is
to make use of the fork approach mentioned above and one
just explicitly names the fork components, thus reducing the
management overhead required.

3.3 Monadic State
In traditional imperative languages, one makes use of vari-
ables to store data that will be needed by subsequent com-
putations. In functional languages, one makes use of state
monads to store some data through some computation [20].
In the first version of Lava [16], monads were used to hide
away the details of components that have already been eval-
uated and need to be re-used. Using this method, a circuit
identifier can be created automatically. While this approach
does away with the user having to specify the names for
components, it does require the user to use special opera-
tors and ways of programming that tend to quickly make the

code unreadable. In addition, to express feedback loops one
needs to make use of some very nasty looking definitions.

3.4 Non-updateable references
Another approach proposed by Claessen and used in the
latest version of Lava [6] is the use of non-updateable refer-
ences resulting in observable sharing. Here the problem of
sharing of wires is solved through the use of references, very
similar to pointers in C. By allowing references to circuits
and then evaluating reference equality, sharing can be easily
implemented transparently from the user. In addition, both
circuits shown in Figure 1 can be easily specified. Thus from
the user’s point of view, the only significant change is the
types of the arguments to circuits.

The introduction of references in a functional language means
that referential transparency is not upheld and one could
also end up with side-effects. In Lava, the impact is limited
by enforcing the references to be read-only. Underneath the
hood, observable sharing is achieved without resorting to
changes in the compiler by taking advantage of compilers
that automatically evaluate an expression only once when
this is repeated5.

4. RECENT DEVELOPMENTS
One major drawback of functional embedded languages is
that due to their abstraction mechanism, they are unable to
describe non-functional aspects. In other words, while they
are able to describe the components of the circuits (that
contribute to the function of the circuits), an engineer might
want to describe the components’ eventual placement, how
they are connected in terms of distance of wiring, etc. As
importantly, before burning to hardware, the wires and the
area configuration needs to be analysed since it has a direct
impact on the cost of production. The reason why the de-
scription of non-functional aspects is difficult in functional
HDLs is that it would require descriptions that cannot be
evaluated, thus breaking the abstraction levels. Wired [2]
is an extension to Lava where the placement of wires in
the final circuit can be specified within the language. A
series of operators are provided, with which one can con-
nect different components together and specify their relative
placement. One can also analyse the eventual space require-
ments and also power consumption. This approach has also
been applied by Taha [19] where in their implementation,
two specifications for the generation of the circuit are given.
One specification talks about the circuit itself and the other
specifies domain-specific optimizations targeted at the cir-
cuit generated. This approach avoids the transformation of
circuits after they have been generated. Note that when us-
ing VHDL or Verilog, one specifies these aspects by using a
different specification language than is used to describe the
circuit. Yet this just adds another layer which the use has
to manually correlate. As of yet, the problem of the com-
plete specification of these aspects in a functional way has
not been solved.

In our discussion, we have been mainly concerned with func-
tional HDLs that can describe circuits by using a structural

5This implies that the solution is not entirely portable. A
naive compiler might not be able to implement observable
sharing correctly.

language, normally embedded within a functional language.
In 2002, Claessen and Pace [5], showed a technique that
allows the specification of a circuit using a behavioural de-
scription language. By embedding the behavioural language
syntax using data types (very much like HDLs are embed-
ded), one can specify the semantics of the language syn-
tax in terms of other circuits (thus defining its semantics).
Furthermore, by making use of the netlist generation mech-
anism within the HDL, one can easily also automatically
synthesize the behavioural description. By making use of
previously mentioned techniques, one can also verify prop-
erties about the behavioural program. In 2005, Claessen and
Pace [15], also showed how one can verify properties about
the compilation process itself. At time of writing, the au-
thors of this paper are currently working on implementing
an industry standard language, Esterel[3], into Lava allow-
ing complex behavioural programs to be specified while also
guaranteeing the semantics during compilation.

5. CONCLUSION
Hardware systems are ever increasing in complexity, and
are placing large demands on the hardware designer, both in
terms of development time and complexity management. To
solve these problems, the standard approach is to use differ-
ent levels of abstraction and then map each layer to the one
underneath. This was the approach taken with VHDL and
Verilog, even though the mapping between some levels was
not automatic and rarely dependable. Another approach is
the use of hardware description languages that make use of
functional programming paradigm, viewing circuits as maps
between the inputs to the outputs. The main advantage of
this paradigm is that abstraction is an implicit concept.

In this paper we have seen an overview of several functional
HDLs in terms of their historical development. According
to our opinion, the most advanced functional HDL to date
is Lava with all its supporting libraries, automatic synthesis
of circuits and automatic verification capabilities. We have
also investigated a small selection of hardware characteris-
tics that tend to be incompatible with the functional way
of programming, namely circuits containing feedback and
non-functional specification of circuits. We saw how these
two characteristics have been recently tackled. We envisage
several other approaches will arise in the near future since
a lot of ongoing work is being done to solve these problems.

6. REFERENCES
[1] P. J. Ashenden. The Designer’s Guide to VHDL.

Morgan Kaufmann Publishers, 1996.

[2] C. Axelsson and Sheeran. Wired: Wire-aware circuit
design. In Charme 2005, LNCS 3725. Springer, 2005.

[3] G. Berry. The Foundations of Esterel. In Proof,
Language and Interaction: Essays in Honour of Robin
Milner. MIT Press, 1998.

[4] K. Claessen. Embedded languages for describing and
verifying hardware, April 2001. Dept. of Computer
Science and Engineering, Chalmers University of
Technology. Ph.D. thesis.

[5] K. Claessen and G. J. Pace. An embedded language
framework for hardware compilation. In Designing
Correct Circuits ’02, Grenoble, France, 2002.

[6] K. Claessen and D. Sands. Observable sharing for
functional circuit description. In Proc. of Asian
Computer Science Conference (ASIAN), Lecture
Notes in Computer Science. Springer Verlag, 1999.

[7] B. Cook, J. Launchbury, and J. Matthews. Specifying
superscalar microprocessors in HAWK. In Formal
Techniques for Hardware and Hardware-Like Systems.
Marstrand, Sweden, 1998.

[8] HaWiki. Typing the knot, cyclic data structures.
Available at
http://www.haskell.org/hawiki/TyingTheKnot.

[9] W. A. Hunt, Jr. and E. Reeber. Formalization of the
DE2 Language. In The Proceedings of the 13th
Conference on Correct Hardware Design and
Verification Methods (CHARME 2005), No. 3725,
pages 20–34. Springer-Verlag, 2005.

[10] S. D. Johnson and E. Jeschke. Modeling with streams
in daisy/the schemengine project. In M. Sheeran and
T. Melham, editors, Designing Correct Circuits
(DCC’02). ETAPS 2002, 2002. Proceedings of the
Workshop on Designing Correct Circuits, held on 6–7
April 2002 in Grenoble, France.

[11] T. Melham and J. O’Leary. A functional HDL in
ReFLect. In Designing Correct Circuits, Mar. 2006.

[12] J. O’Donnell. Hardware description with recursive
equations. In IFIP 8th Internation Symposium on
computer Hardware Description Languages and their
Applications, pages 363–382. North-Holland, 1987.

[13] J. O’Donnell. Generating netlists from executable
circuit specifications in a pure functional language. In
Functional Programming Glasgow, pages 178–194.
Springer-Verlag Workshops in Computing, 1993.

[14] J. O’Donnell. From transistors to computer
architecture: Teaching functional circuit specification
in hydra. In Functional Programming Languages in
Education, Volume 1125 of Lectures Notes in
Computer Science. Springer Verlag, 1996.

[15] G. J. Pace and K. Claessen. Verifying hardware
compilers. In Computer Science Annual Workshop
2005 (CSAW’05). University of Malta, Sept. 2005.

[16] M. S. Per Bjesse, Koen Claessen and S. Singh. Lava -
hardware design in haskell. In International
Conference on Functional Programming. ACM
SigPlan, September 1998.

[17] M. Sheeran. µfp, An Algebraic VLSI Design
Language. In LISP and Functional Programming,
pages 104–112. ACM, 1984.

[18] M. Sheeran. Describing Hardware Algorithms in Ruby.
In Functional Programming, Glasgow 1989. Springer
Workshops in Computing, 1990.

[19] W. Taha. Two-level languages and circuit design and
synthesis. In Designing Correct Circuits, Mar. 2006.

[20] S. Thompson. Haskell, The Craft of Functional
Programming. Pearson Assison-Wesley, 2nd edition,
1999.

	Joe Cordina

