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Abstract. In Machine Learning the main problem is that of learning
a ‘description’ of a class (possibly an infinite set) from a finite num-
ber of positive and negative training examples. For real world problems,
however, one must distinguish between the actual instance of the class
to be learned and the numeric or symbolic encoding of the instances
of the same class. The question here is whether different encodings (or
representations) of the instances of a real-world class can actually affect
the performance of the learning algorithm. In artificial neural networks
(ANNs), for example, it is required that the classes are always encoded as
vectors over some field (usually the set of reals). In this paper it is argued
that the representation of the class instances plays a very important role
in machine learning since it has bearing on two very important issues
— the structural completeness of the training set and also the inductive
bias of the learning algorithm.

1 The Learning Problem

A learning program is a program that improves its performance with experience.
To explain how this is done let us first give give an informal definition of the
learning problem. Let O be a domain of discourse and let C be a, possibly infinite,
set of related classes in O. Let C be a class in C and let C+ be a finite subset
of C and C− be a finite subset of O whose members do not belong to C. We
call C+ the positive training set and C− the negative training set. The learning
problem is then to find, using C+ and C−, a class description for C. Of course,
in practice, this might be, for all intents and purposes, impossible since if the
number of classes in C is infinite, then C+ may be a subset of infinitely many
classes in C. In other words, no finite subset, on its own, can characterize an
infinite set. We therefore insist only on finding a class description for some class
C ′ ∈ C such that C ′ approximates C. This depends, of course, on our having a
satisfactory definition of what it means for a class to approximate another.

The above definition covers one of the most common learning tasks. This is
the task of finding a function that maps objects that are considered ‘similar’
to the same class value. As Sammut explains in [Sam94], this is the so-called
categorization problem referred to by Bruner, Goodnow, and Austin in their
seminal 1956 work [BGA56]. To quote Sammut:
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Learning experience may be in the form of examples from a trainer or
the results of trial and error. In either case, the program must be able to
represent its observations of the world, and it must also be able to repre-
sent the hypotheses about the patterns it may find in those observations.
Thus, we shall often refer to the observation language and the hypoth-
esis language. the observation language describes the inputs and outputs
of the program and the hypothesis language describes the internal state
of the learning program, which corresponds to its theory of the concepts
and patterns that exist in the (training) data.
The input to a learning program consists of descriptions of objects from
the universe and, in the case of supervised learning, an output value as-
sociated with the example. The universe can be an abstract one, such as
the set of all natural numbers, or the universe may be a subset of the real
world. No matter which method of representation we choose, descriptions
of objects in the real world must ultimately rely on measurements of some
properties of those objects, for example the length of time a person has
been employed for the purpose of approving a loan. The accuracy and
reliability of a learned concept depends heavily on the accuracy and re-
liability of the measurements. A program is limited in the concepts that
it can learn by the representational capabilities of both the observational
and hypothesis languages.

The observation language is therefore used to encode instance of the universe of
discourse while the hypothesis language is used to describe the concepts that are
learned (from the data). Learning is therefore reduced to the task of searching
through the space of all sentences in the hypothesis language for the sentence
(concept) that is consistent with the training data.

2 What is Representation?

The issue of representation deals with the encoding, into some mathematical
structure, of the domain of discourse of some learning problem. We cannot over-
emphasize the fundamental, and very important, distinction between the objects
themselves in some domain of discourse and their representation in the observa-
tion language, i.e. the numeric or symbolic encoding of the objects (as strings,
numbers, vectors, graphs, etc.). Consider, for example, the set of all humans. A
human can be encoded, or represented, in a number of ways;

1. Bitmap encoding, i.e. a picture (binary image) of a human,
2. Genome, a string containing the DNA sequence of a human,
3. 2-D vector, e.g. (weight, height), and
4. Attribute n-tuple, e.g. race, complexion, colour of hair, etc.

Depending of what classes we want to consider in a given domain of discourse,
an encoding may or may not be appropriate for the purpose of class description.
It was shown in [Sch92], for instance, that a 2-D vector (weight, height) is,
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in general, sufficient to distinguish the class of male humans from the class of
female humans. In fact, when the vectors are plotted in the Cartesian plane
it is easy to see that the two classes form two recognizable clusters. It is also
conceivable that one can distinguish between males and females from bitmap
representations. If, on the other hand, we want to consider the class of humans
who have minor thalassaemia, a completely asymptomatic congenital condition
of the blood, then such a 2-D vector will not do. Neither would a bitmap. The
genome representation of the human would, in this case, be required. This is
because people with minor thalassaemia are not externally distinguishable but
their DNA contains the thalassaemia gene.
A representation may be better than another because it ‘stores more information’
relevant to the class in question. It has been argued that there is no form of
representation that can ‘store all the information‘ about a given object in the
domain of discourse. The closest thing to such a perfect form of representation
might be the hypothetical ‘transporter’ device in the Startrek TV series. The
transporter device can, allegedly, ‘dissolve’ a human into the constituent atoms,
encode the human is some form, transfer this information to a remote location,
and then reconstruct the exact human, from different atoms, complete with
identical DNA, thoughts, feelings, emotions, memory, experiences, etc.
Another argument why one particular representation may be better than an-
other is that the regularities of a particular class might not be ‘visible’ under
some representations [CT95]. We illustrate with an example.

String Gödel Number

ab 4
aabb 900

aaabbb 889,350
aaaabbbb 8,687,348,670

Table 1: Some strings from anbn and their Gödel Numbers.

Table 1 shows, in the first column, four strings from the language anbn. It should
be easy to anyone with a basic knowledge of formal languages to guess from
which language the strings are drawn. The second column shows the Gödel
number of the same strings. All we have done is to re-encode the strings as
natural numbers. We have used the Gödel number encoding of the strings. This
mapping is deterministic and computable in polynomial time. The regularity
that was previously visible in the strings now ‘seems’ to have disappeared. It is
clearly more difficult for humans to ‘guess’ the correct class if the encoding is
not ‘right’. But why? Are learning algorithms also sensitive to the ‘appropriate’
choice of representation?
As Clark and Thornton explain in [CT95]:
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Some regularities enjoy only an attenuated existence in a body of train-
ing data. These are regularities whose statistical visibility depends on
some systematic re-coding of the data. The space of possible re-coding is,
however, infinitely large — it is the space of applicable Turing machines.

Many learning algorithms, such as BP ANNs and C4.5, accept only one form of
representation of the input data. This means that they allow only one observation
language and the implication of this is that the practitioner must always use the
same encoding (representation) of the domain of discourse. It is well known that
artificial neural networks (ANNs) accept only vectors over the field of reals as
input. The questions we ask is: Does the choice of representation affect learning?
In other words, are learning algorithms sensitive to re-encodings of the domain
of discourse and do these re-encodings effect the learning process in any way?

3 Does Representation Matter?

In the early days of A.I. (i.e. 1960s to 1980s) most researchers agreed that repre-
sentation was an important issue in cognitive science. Recently this assumption
has been questioned. As Thornton explains in [Tho03b],

Now there is growing disagreement over the relevance of representation
and a steadily deepening polarization of views with respect to the necessity
of employing it in cognitive machinery.

An argument very often used by those who do not see representation as a crucial
issue is that if a class in a given domain of discourse can be learned in polynomial
time under one encoding (observation language) then it should be learnable in
polynomial time in another encoding as long as the mapping from one encoding is
deterministic and is computable in polynomial time. This argument, prima facie,
makes sense. Suppose we have a GI algorithm that learns the language anbn from
a finite number of examples in time polynomial in the size of the training set. If
we can re-encode the strings as natural numbers using, for instance, the Gödel
encoding of the strings, then there must be a polynomial algorithm to learn the
same class. Before we present our objections and reservations to this argument
we must first clarify a number of points.

1. It is always assumed that, under any reasonable encoding, a class is always
computable. If, for example, our domain of discourse is the set of all animals
and we want to consider the class of cats, then if we encode the animals as
strings in some observation language, the set of strings corresponding to cats
must be a computable language. This assumption is fundamental since if a
class is not computable (under some encoding) then it cannot have a finite
description (a sentence in the hypothesis language).

2. If a class is computable and has a finite description under some encoding E
then it will still be computable and have a finite description under encoding
E′ as long as there is a deterministic and computable mapping from E to E′.
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If the language anbn is a computable language and has a finite description
then the set of natural numbers which are Gödel encodings of the strings
of this language must also be a computable set with a finite description.
The finite description of anbn is a formal grammar while the description
of the associated set of Gödel numbers is a set of µ-recursive functions. It
is well known from the theory of computation that graphs can be encoded
as strings and string as numbers. If fact, for every computable language,
the set of Gödel number encodings of the strings in the language is itself a
computable set [Sud97].

The argument of those who do not see representation as an issue is that any
representation can be used as long as the class to be learned has a finite descrip-
tion in the hypothesis language. This argument is used mostly by those in the
connectionist community. This is probably because artificial neural networks,
ANNs, only accept vectors as input. Although the above is, in theory, true we
believe that researchers in the connectionist and machine learning communi-
ties who claim that representation is not an important issue are missing some
important points.

Domain 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 2: All the functions with two binary-valued parameters.

We are not claiming that classes become ‘unlearnable’ if the representation is
changed. What we are claiming is that the learning problem changes if the rep-
resentation changes. Let us consider again the language anbn and the set of
strings drawn from this language shown in Table 1. It is conceivable that one
can design a simple GI algorithm that learns languages of this type. Now what
if one is given only the Gödel encodings of this language? Does learning become
harder? We claim that these are two different learning problems. If one encodes
the strings as natural numbers, the class then changes too. In other words, the
specification of the class is tied to the form of representation. The set of natural
numbers that are Gödel number encodings of the strings in anbn is no longer the
class anbn. This set of numbers is computable and does have a finite description
(a set of µ-recursive functions) but might require a completely different learning
algorithm with a different inductive bias and a different search strategy. This
may go some way towards explaining why neural networks perform so badly in
certain applications. It has been claimed that a neural network (of the appropri-
ate size) can approximate an computable function in the Euclidean space Rn. In
other words, given an ANN of the appropriate size, a set of weights exists that
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will compute the function. Even if this is true the problems remain. When one
chooses a particular architecture and size of a neural network one is putting an
implicit bound on the size of the class description. Suppose, for example, that we
have an ANN with n weights to learn a class C. We are then implicitly assuming
that C can be described (or parameterized) with n real numbers. This issue has
recently received attention from the connectionist community [LGC96].

To demonstrate this we conducted a number of experiments with backpropaga-
tion (BP) ANNs. We tried to train a Backpropagation neural network with the
complete data sets for 8, 10, 12, and 16-bit even parity mapping. By complete
we mean that for each n-bit parity we labeled each of the 2n strings with a T
(True) or F (False). The reason we tried complete data sets was to find the opti-
mal network size, i.e. number of weights, for each of the mappings. For the 8-bit
parity data set we first tried an 8 × 8 × 2 network. This did not converge after
running for many hours. We then tried changing the various learning parame-
ters but to no avail. We increased the number of hidden neurons to 16 and then
to 32 and got very much the same results. We finally tried a network with 64
hidden neurons and the network converged within a few seconds. This network
had (8× 64) + (64× 2) = 640 weights. The ANN for 10-bit parity converged in
just over 3 mins and required 256 hidden neurons while the ANN for 12-Bit par-
ity required 1024 hidden neurons and and converged in just under 12 minutes.
We could not use Backpropagation to learn the 16-bit parity problem since the
ANN software we used, Brainmaker R©, was limited to 1024 hidden neurons. We
then used a Cascade Correlation neural network to learn the 16-bit even par-
ity mapping. The Cascade Correlation network changes its architecture during
learning. We then tried to train the networks on incomplete data, sometimes
with data sets that contained up to 85% of the 2n possible strings. The networks
never generalized correctly from incomplete data. This phenomenon has been
observed many times [Tho03a]. We were not surprised at the neural network’s
inability to learn from incomplete parity data. There is absolutely no reason why
a learning algorithm should generalize correctly from incomplete parity data un-
less the algorithm has the right inductive bias. This point is, most unfortunately,
not always well understood. For any given training set of incomplete parity data,
there might be thousands of mappings that are consistent with the training set.
Why should then the neural network converge to the parity mapping? It will
only do so if it has the correct inductive preference bias. Our experiments with
the complete parity data sets demonstrated that a Backpropagation neural net-
work can, in fact, represent the parity mapping. In other words, given an ANN of
appropriate size, there exist a set of weights that can describe (or parameterize)
the parity mapping. Generalization from incomplete training sets is a totally
different issue. Neural networks do not learn the parity mapping precisely be-
cause they do not have the correct bias. Moreover, the inductive bias of a neural
network is fixed and can only be changed slightly by modifying some learning
parameters. It is therefore unlikely that anyone can convince a Backpropagation
ANN to generalize the parity problem correctly from incomplete training ex-
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amples. Some researchers, including Thornton [Tho03a], have proposed various
reasons as to why this happens.
Table 2 shows the complete list of mappings with two binary input values. Sup-
pose we would like to teach a learning algorithm the AND function (function
2) and, to do this, we prepare the following training set (0,0 → 0) and (0,1 →
0). This is clearly an incomplete training set for the AND function. There is
absolutely no reason why a learning algorithm should find the correct function
from this training set. The reader should note that functions 1, 2, 3, and 4 all are
consistent with the training examples. Why would a learning algorithm choose
function 2 (AND) over the others unless it had exactly the right inductive pref-
erence bias?

It turns out that, for any given n, the set of binary strings that are odd or
even parity form a kernel language [Abe02]. For example, 4-bit even parity can
be described by the following evolving transformation system (ETS) [Gol90]
description:

Kernels: ε, 11, and 1111.
Transformations: 0→ ε (Weight 0.0) and 1→ ε (Weight 1.0)

Fig. 1: Enumeration of the search space according to the inductive bias of the learning
algorithm.

We ran an ETS grammatical inference (GI) algorithm on a number of incomplete
16-bit parity data sets — par01 had no noise and par02 had 2% misclassification
noise. In each case the algorithm found the correct ETS description is less than
3 minutes on a training set of several thousand strings. The training examples
were exactly the same that were used, unsuccessfully, to train the ANNs.

par01 16-bit parity-problem training set (even parity) used to train Back-
propagation neural network. Binary alphabet, very large training set (≈
10, 000), multiple kernels, no noise, confluent.
Kernels: 11 , 1111 , 111111 , 11111111 , 1111111111 , 111111111111 ,
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11111111111111 , and 1111111111111111 .
Features: 0 , and 1 .

par02 16-bit parity-problem training set (even parity) used to train Back-
propagation neural network. Binary alphabet, large training set (≈ 8, 000),
multiple kernels, 2% misclassification noise, confluent.
Kernels: 11 , 1111 , 111111 , 11111111 , 1111111111 , 111111111111 ,
11111111111111 , and 1111111111111111 .
Features: 0 , and 1 .

The ETS algorithm can learn the parity mapping even with very small, struc-
turally complete, data sets of less than 20 strings. We must emphasize that this
is because the ETS algorithms so happens to have the right inductive preference
bias. When the algorithm learns, it first considers the ‘simple’ ETS descriptions,
i.e. the ETS description with the least number of features. It so happens that
the parity problem has a very simple ETS description and this was very close to
the algorithm’s starting point in the search space. This is depicted in Figure 1.
It might turn out that under some other representation, the target class de-
scription will be ‘far away’ from the starting point in the search space. The
phenomenon was evident when the author was considering ETS learning of
chain-code picture languages [Abe96]. A picture such as a rectangle could be
represented by its string contour encoding. It this case, the language of all
strings that are contour encodings of rectangles (or any other figure) would be a
context-sensitive language — sometimes with many productions. A GI learning
algorithm that used Occam’s bias would have a hard time learning these classes.
This because the algorithm would first consider grammars with small number
of productions before grammar with a large number of productions. The target
grammar would therefore be ‘far away’ from the starting point in the search
space. The same class of figures encoded as graphs could be represented by a
very simple graph grammar. This would arguably be much closer to the starting
point of the search if one used a learning algorithm with Occam’s bias to search
the space of graph grammars. We also strongly feel that the ‘correct’ inductive
bias for a given learning problem depends on the choice of representation. If
the representation is changed then a new, completely different bias might be
required. Most learning algorithms search through the space of class descrip-
tions by first considering the simple class descriptions and progressing to more
complex class descriptions. A DFA learning algorithm might first consider DFAs
with 1 state, then DFAs with 2 states, and so on. In other words, the algorithm
exploits an ordering of the space of class descriptions (i.e the search space). This
bias is another example of Occam’s bias. In essence, a learning algorithm’s in-
ductive preference bias specifies the method of enumerating the space of class
descriptions. The algorithm stops when it finds a class description consistent
with the training set. If one changes the method of enumerating the space, a
different class description may be found. This is because, in general, the search
space may contain several class descriptions consistent with the training set. In
the case of parity problem, a neural network finds the first set of weights con-
sistent with the set of incomplete parity data. It so happens that the mapping
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found by the network is not the correct (i.e. parity) mapping. This means that
the network does not have the ‘right’ bias for the parity problem.
Wolpert [WM95] and many others have shown that no inductive bias can achieve
a higher generalization accuracy than any other bias when when considered over
all classes in a given domain. In spite of this, it has been documented that certain
bias do perform better than average on many real-world problems [Tho99]. This
strongly suggests that many real-world problems are homogenous in nature in
that they require very similar inductive biases. This explains why certain learning
algorithms such as ID3 do well on most applications. When learning algorithms
do badly it is very often a case of incorrect inductive bias. The answer, of course,
is to use a learning algorithm that has a variable inductive preference bias. With
these algorithms the user can, to a certain extent, change the algorithm’s bias
by modifying a number of parameters.

4 Conclusions

In this paper we have argued that the choice of representation (the observation
and hypothesis languages) is an important one. The choice of the observation lan-
guage is important since this determines which concepts can be learned [Sam94].
The choice of the hypothesis language is also of importance since, as Goldfarb
explains in [Gol90], the class description learned must be communicable. As
Sammut explains:

A representation that is opaque to the user may allow the program to
learn, but a representation that is transparent also allows the user to
learn

Learning algorithms that fix the observation and hypothesis languages, such
as BP ANNs, are limited in the concepts that they can learn. The choice of
representation influences the inductive bias of the learning algorithm and also
the structural completeness criteria of the training data. Given a real world
problem therefore, the choice of the observation and hypothesis languages must
be very carefully chosen.
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