
Runtime Validation Using Interval Temporal Logic

Karlston D’Emanuele
kema001@um.edu.mt

Dept. of Computer Science and AI
University of Malta

Gordon Pace
gordon.pace@um.edu.mt

Dept. of Computer Science and AI
University of Malta

ABSTRACT
Formal specifications are one of the design choices in reactive
and/or real-time systems as a number of notations exist to
formally define parts of the system. However, defining the
system formally is not enough to guarantee correctness thus
the specifications are used as execution monitors over the
system. A number of projects are around that provides a
framework to define execution monitors in Interval Temporal
Logic (ITL), such as Temporal-Rover [3], EAGLE Flier [1],
and D3CA [2] framework.

This paper briefly describes the D3CA framework, consist-
ing in the adaptation of Quantified Discrete-Time Duration
Calculus [7] to monitoring assertions. The D3CA framework
uses the synchronous data-flow programming language Lus-
tre as a generic platform for defining the notation. Addi-
tionally, Lustre endows the framework with the ability to
predetermine the space and time requirements of the mon-
itoring system. After defining the notation framework the
second part of the paper presents two case studies - a mine
pump and an answering machine. The case studies illustrate
the power endowed by using ITL observers in a reactive or
event-driven system.

Categories and Subject Descriptors
[Formal Methods]: Validation

General Terms
Formal validation, duration calculus, QDDC, D3CA , inter-
val temporal logic.

1. INTRODUCTION
The question “Does this program do what it is supposed

to do?” and “Will the program work under any environment
changes?” are frequently asked when developing a software.
A number of techniques have been proposed and adopted
during the years, one of which is formal validation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

The major validation tools around concentrate on tem-
poral logics as they provide a means for time measurement.
The temporal logic branch of Interval Temporal Logic (ITL)
provide means to measure correctness in intervals, which fa-
cilitates the scoping of tests and reduce the total impact of
the monitors on the system.

We illustrate this by building a basic framework in which
the user can, alongside the program, specify properties us-
ing interval temporal logic which are automatically woven
as monitors into the source code, thus producing the single
monitored application. The monitored application at cer-
tain intervals checks whether the application state is valid
according to the mathematical model, enabling runtime val-
idation of ITL properties.

In this paper we concentrate on showing how the frame-
work can be used in a normal application using two simu-
lated environments.

The rest of the paper is organised as follows: the next
section briefly describes some of the validation tools around.
Section 3 outlines the syntax and semantics of the interval
temporal logic notation used in the paper. In section 4 we
describe a framework for the Interval Temporal Logic (ITL)
monitors generation and weaving. Finally we conclude by
presenting two scenarios where the framework was applied.

2. VALIDATION
The size and complexity of software developed today re-

sult in debugging and testing not being sufficiently effective.
Formal methods go some way towards tackling this prob-
lem. Using model-checking, one test all execution paths of a
system to be checked for correctness. Nevertheless, model-
checking is expensive to run and does not scale up, even
when systems are reduced via abstraction. Validation is a
light-weighed formal method, which checks the system cor-
rectness for a single path of execution. The path verification
is performed by checking at runtime that the formal specifi-
cations weaved into the system source code constantly hold.
A number of projects have been undertaken in order to find
a suitable validation technique for different logics and sce-
narios. Some projects are Temporal Rover [3], Java-MaC [6],
Eagle [1] and RTMAssertions [8].

Temporal Rover. is a proprietary validation tool by Time-
Rover. It integrates properties specified in Linear Temporal
Logic (LTL) and Metric Temporal Logic (MTL) into an an-
notated source code [3]. The integration is performed by
a pre-compiler. The formal properties are checked for con-
sistency on every cycle, determined by a call to a method

“assign”. On a false evaluation of a property an exception
is raised, which the system handles in order to return to a
safe state. One of the aims of Temporal Rover is to validate
embedded system, which are limited in resources. Hence,
the system provides another tool, DBRover, which allows
properties to be checked remotely on a host PC.

Java-MaC. is a prototype implementation of a more generic
architecture named Modelling and Checking (MaC). The
MaC architecture consists of three modules, a filter, event
recogniser and run-time checker. The properties used by the
filter and event recogniser are written in Primitive Event
Definition Language (PEDL), which provides a means of
defining the formal specifications in relation to the imple-
mentation level. When an event (state transition) is iden-
tified by the event recogniser, the new state information is
sent to the run-time checker, whose properties are written
in Meta Event Definition Language (MEDL). The run-time
checker in MaC is executed remotely and the information is
transmitted using TCP sockets, leading to less strain on the
monitored system resources.

Eagle. framework distinguishes from the other validation
projects mentioned in this report. Eagle performs vali-
dation over an execution trace and on a state-by-state ba-
sis that frees the monitoring system from using additional
memory for storing the trace. The framework provides its
own logic, named Eagle, which is enough powerful to allow
other logic notation to be specified in the Eagle logic. A
disadvantage in Eagle is that the type of properties, that
is whether it is a liveness or safety property, has to be ex-
plicitly specified.

RTMAssertions. uses Aspect-Oriented Programming (AOP)
to separate between LTL properties and the program imple-
mentation. The LTL properties are first converted into an
Abstract Syntax Tree (AST) which together with the RTM
framework is weaved into the code by the aspect weaver.
The LTL properties are evaluated by subdividing the LTL
formula into a number of atomics, the tree leaves, which are
evaluated first. Then by following the nodes path to the
root, the actual formula result, is calculated recursively.

This section overviewed some of the projects in the vali-
dation field. Next is the logic notation used in the paper

3. DISCRETE AND DETERMINISTIC DU-
RATION CALCULUS

Discrete and deterministic Duration Calculus is a de-
scendant of Quantified Discrete-Time Duration Calculus
by Pandya [7]. The logic assumes that the future is deter-
mined by the past events thus it can be easily implemented
using any programming language.

3.1 Syntax and Semantics
The most basic expression in discrete and deterministic

Duration Calculus are propositions, referred to as state vari-
ables. Let P be a state variable than its syntax is

P ::= false | true | p | P op P | ¬P

where p is a propositional variable and
op ∈ {∧, ∨, ⇒, ⇔, ⊗ (xor)}.

On the assumption that system states have finite variabil-
ity. Let σ be a non-empty sequence of state variables

σ =df (state variable 7→ B)+

where, the length of the sequence is given by #(σ).
Discrete and deterministic Duration Calculus is an Inter-

val Temporal Logic, in other words the expressions defined
using this notation require an interval. Defining first the
concept of time as

T =df N

Then an interval is defined as

Intv =df {(b, e) | b, e ∈ T}

Let σI |= D mean that the finite sequence σ satisfies the
duration formula D within the interval, I ∈ Intv.1.

σi |= P iff i ∈ T ∧ P (i) = true

σi |= P1 <̃ P2 iff i ∈ T ∧ σi−1 |= P1 ∧ σi |= P2

σI |= begin(P) iff σIb
|= P

σI |= end(P) iff σIe
|= P

σI |= ⌈⌈P ⌉ iff ∀i ∈ I · i < Ie ∧ σi |= P
σI |= ⌈⌈P ⌉⌉ iff ∀i ∈ I · σi |= P
σI |= η 6 c iff (#(σ) = Ie − Ib) 6 n

σI |= Σ(P) 6 c =df

P

Ie−1
Ib

P (i)

σI |= age(P) 6 c =df The state variable P is true for
the last part of the interval and
it is not constantly true for
more than c time units.

σI |= D1 then D2 iff ∃m ∈ I · Ib 6 m 6 Ie∧
σ[Ib,m−1] |= D1∧
σ[Ib,m] |= ¬D1∧
σ[m,Ie] |= D2

σI |= D1
δ
←֓ D2 iff The duration formula D2 must

be true for the first δ time units
that formula D1 is true.

σI |= D∗ =df ∃n ∈ N ·D1 then D2 . . . then Dn

The next section describes the design of a system that
translates formulae written using the notation introduced
into run-time monitors for .NET systems.

4. THE TOOL: D3CA
D3CA is a prototype implementation of a validation en-

gine for properties defined in deterministic QDDC. The pro-
gramming language used for implementation is C#.

D3CA consists of two modules: the validation engine and
the weaving of validation with the system. The validation
engine grabs a collection of properties and using a simu-
lated Lustre environment checks the each property with the
current state. The weaving process can be performed using
Aspect Oriented programming (AOP) tools. Nevertheless,
for better understanding of the communication process be-
tween the validation engine and the monitored system, a
weaver is discussed.

Figure 1 illustrates the architecture of a D3CA monitored
system.

1Due to lack of space, some operators are defined informally.
For full formal definitions, refer to [2].

Figure 1: D3CA Architecture Overview.

4.1 Lustre
Lustre is a dataflow synchronous language [4], that is it

applies the synchrony hypothesis over execution of code.
The hypothesis states that all computations are performed
atomically and take no time to execute. Lustre implements a
restricted subset of dataflow primitives and structures, that
makes it applicable to reactive and real-time systems.

Lustre provides three data types: integer, real and boolean.
The variables used inside Lustre must be explicitly declared
and initialised to the appropriate data type. The expression
variables have the form “X = E” where X is associated
with the expression E. Therefore, E is taken to be the only
possible value for X.

The Lustre operators set consists in the basic data type
operators, conditional branching and two special operators,
pre and “followed by” (→). The pre operator enables the
access to a variable history. While the “followed by” oper-
ator is used to concatenate two streams together, where at
time zero the second stream is equal to the first value of the
first stream.

In D3CA the Lustre environment is simulated, that is,
rather than using a Lustre compiler the data types are im-
plemented as classes. Using boolean variables with deter-
ministic QDDC leads the value of false to be ambiguous.
The Lustre environment is extended with 3-valued logic data
type, which extends the boolean data type with the addi-
tional value of indeterminate for expressions whose truth
value has yet to be determined.

The use of a Lustre environment in D3CA allows the space
and memory requirements of the specified properties to be
predetermined. Hence, providing a place for optimisation
and a knowledge on the side-effects of the validation engine
on the monitored system.

4.2 Weaver
The weaver module consists in transforming annotated

control instructions to the actual validation code. The an-

notated control instructions can be of five types:

1. {validation engine: bind variable name variable value}

2. {validation engine: unbind variable name}

3. {validation engine: start assertion name}

4. {validation engine: stop assertion name}

5. {validation engine: synchronise B}

In validation the state variables are mapped to the system
variables. In software, variables are typically placed in their
local scope, hence, they cannot be accessed from outside
code. This raises a problem with interval temporal logic as-
sertions that have crosscutting semantics. To surmount the
problem the two variable un/binding annotations are pro-
vided. A variable can be bound to either a system variable
while the variable is in scope or to a numeric value. The un-
bind annotation instructs the weaver that the value of the
variable must be kept constant.

An important characteristic of the D3CA is that it uses
interval temporal logic. That is, the properties are expected
to hold for intervals. To control the interval of an assertion
the start and stop annotations are provided. When checking
a stopped assertion, the indeterminate value is considered
to be false as the property has not been full satisfied during
the interval.

The last and most important annotation is “synchronise”.
This annotation instructs the weaver that the properties has
to be checked for consistency. Nevertheless, before perform-
ing the runtime checking the variables are updated. The
update also includes the reassignment of constant variables
as to reflect their values according to the current state, Fig-
ure 2.

��
��n0
c ∈ N

const = c

pre0(const) = 0

��
��

1

c ∈ N

const = c

pre0(const) = c

pre1(pre0(const)) = 0

��
��n2
c ∈ N

const = c

pre0(const) = c

pre1(pre0(const)) = c...
pren(. . . (pre0(const))) = 0

Figure 2: Lustre constant to system state relation

The “synchronise” annotation takes a boolean value. This
value instructs the synchronisation method whether to aban-
don execution on trapping an error. However, independently
of the value passed the runtime checker still reports the er-
rors that has been encountered.

4.3 Monitoring
The monitoring process consists in two interdependent

tasks. The core task is the evaluation of the properties,
which is performed using the Lustre environment. The di-
rect use of the evaluation process is cumbersome. Hence, the
validation task is used to abstract the evaluation process and
perform the repetitive task of evaluating each property.

4.3.1 Initialisation
The initialisation process consists in converting the moni-

toring properties from the mathematical notation to a collec-
tion Abstract Syntax Trees (ASTs). The conversion process

is performed using a parser as the mathematical notation
provides a suitable grammar representation.

The AST data structure is adopted since it provides a
suitable visualisation of how complex properties are decom-
posed into smaller properties. Evaluating the smaller prop-
erties is assumed to be simpler, hence, by evaluating the
lower nodes in the tree facilitates the process of obtaining
the satisfiability value.

4.3.2 Evaluation
The evaluation process is a bottom-up traversal of the

AST structure. The simplest nodes to evaluate are the leaf
nodes that are either propositions or numeric variables. Af-
ter mapping the system state value to the leaf nodes, the
nodes at a higher level can be evaluated. The evaluation
of the non-leaf nodes consists in calling the function related
to the operator2. The property satisfiability value is then
determined by the value obtained by evaluating the root
node.

Evaluate(Symbolic Automaton)

1 for each node starting from the leaf nodes
2 do expression variable ← evaluation node expression
3 Symbolic automaton validity result ← root node value

4.3.3 Validation
The evaluation process described above is encapsulated

in the validation process. The property ASTs are evaluated
bottom-up, hence, the state variables has to be updated
before the starting the evaluation. In algorithm Validate

line 1 suspends the system execution to perform the valida-
tion process. Therefore, ensuring that the system state is
not corrupted during the validation process. When the sys-
tem is stopped, line 2 updates the state variables to reflect
the system variables. That is, performs a transition from
the current state to the new state.

The actual validation process consists in performing the
evaluation process on the collection of ASTs, lines 3–6. Each
AST is checked for validity and one of the 3 logic states is
returned. When a property is violated the system reports
the error together with a the property trace. Note that, the
monitoring system uses symbolic automata to represent the
system, hence, it is not possible to depict the entire state
according to the execution path, without keeping a history.

Validate

1 Stop system execution. // Required for variable integrity
2 Update non-expression variables
3 for each symbolic automaton
4 do Valid ← Evaluate(Symbolic automaton)
5 if Valid == false

6 then Error(Symbolic automaton)
7 Resume system execution. // On the assumption that

the system was not
aborted due to errors.

2Refer to [2] for the actual deterministic QDDC execution
semantics.

4.4 Design review
D3CA implements a solution for monitoring systems using

interval temporal logic. The validation process is performed
on a Lustre environment, which allows memory and space
requirements to be predetermined.

Properties are cleaner if written in mathematical nota-
tion. The validation mechanism provided by D3CA includes
a parser that on initialisation of a property the mathemati-
cal notation is converted into symbolic automata. The sym-
bolic automata are then stored in an Abstract Syntax Tree
data structure as it provides a suitable representation for
the evaluation process.

The architecture of the monitored program during run-
time is illustrated in Figure 3.

Figure 3: System composition diagram

5. CASE STUDIES
The framework is applied to two simulators, a mine pump

and an answering machine.

5.1 Mine Pump
The first case study consists in the adaptation of a com-

monly used example in Duration Calculus literature [7, 5].
The case study consists in simulating the behaviour of a wa-
ter extraction pump employed in a mine to lower the level
of the water collected in a sump.

A mine has a water (H2O) and methane (CH4) leakage.
The water leaked is collected in a sump which is monitored
by two sensors signalling when the water level is high or
dangerous. When the water level is high a pump is started to
pump water out. Nevertheless, the pump cannot be started
is the methane level is high. Using the notation introduced
earlier the property for starting the pump can be defined as,

(⌈⌈LowH2O⌉⌉ then

(age(HighH2O∧¬HighCH4) <= δ then

⌈⌈PumpOn⌉⌉))∗

where, δ is the time required for the pump to start operating.
When the pump is operating it takes ǫ time to lower the

water level to acceptable level. This property is defined as

(⌈⌈PumpOn⌉⌉ ∧ η 6 ǫ then begin(LowLowH2O))∗

The last property related to the pump operation is to
check that when the water level is low or the methane level

Figure 4: Mine Pump Environment

has rose to the level where it is dangerous to operate ma-
chines.

(age(LowH2O ∨ HighCH4) 6 δ then ⌈⌈PumpOff⌉⌉)∗

The discrete and deterministic Duration Calculus nota-
tion allows environment assumptions to be defined. The
water level sensors are expected to report the water level in
ascending or descending order. That is the water cannot go
to dangerous level before it reaches the high level. The first
sensor assumption is that the water is at high-level for some
time before it reaches the dangerous level.

⌈⌈HighH2O⌉
ω
←֓ ⌈⌈¬DangerousH2O⌉

We can also say that the water is in dangerous levels if it is
also at the high level.

⌈⌈DangerousH2O ⇒ HighH2O⌉⌉

The other environment assumptions are related to the
methane release. For the mine operations not to be inter-
rupted on frequent intervals, the methane release occurs only
at least ζ time after the last methane release. More formally,

(age(¬HighCH4) 6 ζ then true) <̃ HighCH4

When deploying the mine pump an assumption is made
that methane releases are of short burst thus allowing the
pump to be operated.

age(HighCH4) 6 κ

where κ is the maximum time a methane release can take
for the pump to be operatable.

Finally we equip the mine pump with an alarm system to
notify the workers that there is possibility of danger. The
alarm will go off when either the water reaches the dangerous
level or there is a high level of methane in the mine.

(age(DangerousH2O) 6 δ then ⌈⌈AlarmOn⌉⌉)∗

(age(HighCH4) 6 δ then ⌈⌈AlarmOn⌉⌉)∗

(age(¬DangerousH2O∧¬HighCH4) 6 δ then ⌈⌈AlarmOff⌉⌉)∗

5.2 Mine Pump Scenario
The scenario presented here consists in simulating a long

methane release, which violates the methane release assump-
tion.

The constant variables are initialised as follows: δ = 2,
ǫ = 7, κ = 2, ω = 17, ζ = 25.

Figure 5: Mine Pump Screen Shot

The simulator has two controls, one for the water level and
another for the methane level, which allow the simulation of
environment changes. The simulation interface also provide
three buttons one to signal a clock tick, another to simulate
5 clock ticks using the same system state and the last button
to simulate 10 clock ticks.

To simulate the scenario where a methane release breaks
the assumption

age(HighCH4) 6 κ

the methane controller is set on the high mark. Then since
κ = 2 the 5 clock ticks button is pressed. On the third
clock tick the assumption breaks and an assumption violated
error is reported back to the user. In order to track back
the origin of the error the user is presented back with the
assertion that failed and the system state values. In our
case the system state is (age(HighCH4) = 3, η = 3, κ = 3,
age(HighCH4) 6 κ = false). When analysing the system
state it is immediately clear that that the methane release
was longer than what is expected.

5.3 Answering Machine
This section describes a simulated answering machine on

which the D3CA is applied. Figure 6 illustrates the answer-
ing machine states and the possible transition between the
states.

The answering machine depicted above has four different
interval measurements. The time spent in the “idle” and
“receiver up” states cannot be determined. Therefore, when
specifying the system in Duration Calculus the intervals can
be considered as open. While the “ringing” and “recording”
intervals that are fixed in length. The ringing interval is
set to 10 rings, therefore, the answering machine must start
playing the recorded message only if in the meantime the
receiver has not been pulled up. The message “recording”
interval allows the callee to leave a message for about 3
minutes and then the line is dropped. The last interval
measure is determined by the length of the message recorded

Figure 6: Answering Machine State Diagram

by the answering machine owner. This interval measurement
is applied to the “playing” state. Therefore, the specification
of the system is
`

(⌈⌈idle⌉⌉ then

age(ringing) 6 10 then

⌈⌈playing⌉⌉ then age(recording) 6 3)∗ ∨

end(receiver up)
´∗

It can be noted that although the intervals are measured
using different units, the specifications consider the length
of interval independently of the measuring units. In the
case of D3CA and of this particular case study the different
measuring units are handled by the placing of “synchronise”
annotation in the system implementations.

The “idle” state reflects that the answering machine is
doing no other operation. Hence, when the receiver is lifted
up the answering machine is expected to be idle. The “re-
ceiver up” state in Figure 6 is included to show that the idle
state of the answering machine and the idle state when the
receiver is up are different.

The “idle” state property can be specified in terms of the
answering machine states as

idle = ¬ringing ∧ ¬playing ∧ ¬recording.

The simplest assumption properties to verify are related
to the transition from one state to the next, where the next
state has only one entrance path.

idle <̃ ringing

age(ringing) 6 9 <̃ playing

playing <̃ recording

The answering machine under design assumes that when
the receiver is up then no other calls can come in. That is,
there is no multiplexing between different lines. When the
receiver is up, the answering machine should be idle.

end(receiver up) =⇒ end(idle)

The answering machine is then simulated in relation to
the above operation properties and assumption properties.
The properties specified above were able to trigger all the
errors inserted in the simulation. Hence, they forced the
behaviour of the system to the specifications.

5.4 Answering Machine Scenario
The mine pump scenario showed how the framework can

trigger violations to state properties. In this scenario we
show that the framework is also capable of detecting vio-
lations to state transitions. This is illustrated by a small
simulation that violates the transition from ringing to play-
ing the recorded message.

Figure 7: Answering Machine Screen Shot

The answering machine simulator has a number of con-
trol buttons, one for every state except for “idle”. The
state “idle” is represented by unmarking all the other con-
trols. When the system starts the state is immediately set to
“idle”. A number of steps are performed to leaving the state
as “idle”. Then the phone starts ringing, so the “ringing”
control is marked and a number of clock ticks are simu-
lated. However, after the 5 ringing tone the “playing” state
is marked. This violates the transition assumption

age(ringing) 6 9 <̃ playing

as only 5 ringing tones has been performed. The simulator
immediately reports the error, figure 8. The error shows the
property violated together with the values of each subex-
pression.

Figure 8: Answering Machine Error Report

From the two simple scenarios presented in this section it
was shown that the framework has the potential to define

different properties of the system. The framework hides all
the complexities related to notation interpretation in pro-
gramming language and in defining the monitoring system.

The benefit of using Interval Temporal Logic monitors is
the increase in reliability of the system without the need to
overwhelm the system with point-logic assertions.

6. CONCLUSION
The use of validation for testing software correctness is a

well applied concept, and different scenarios lead to the use
of different validation approaches. In this paper we showed
how Interval Temporal Logic validation can be integrated
with normal applications and in real-life scenarios. The in-
tegration is obtained through the use of a framework that
allows to predetermine the space and time requirements for
computing state satisfiability. The framework presented in
this paper simplifies the migration from one scenario to an-
other by freeing the validation part from environment and
platform dependencies.

7. REFERENCES
[1] H. Barringer, A. Goldberg, K. Havelund, and K. Sen.

Eagle monitors by collecting facts and generating
obligations. Technical Report Pre-Print CSPP-26,
University of Manchester, Department of Computer
Science, University of Manchester, October 2003.

[2] K. D’Emanuele. Runtime monitoring of duration
calculus assertions for real-time applications. Master’s
thesis, Computer Science and A.I. Department,
University of Malta, 2006. To be submitted.

[3] D. Drusinsky. The temporal rover and the ATG rover.
In SPIN, pages 323–330, 2000.

[4] N. Halbwachs. Synchronous programming of reactive
systems. In Computer Aided Verification, pages 1–16,
1998.

[5] M. Joseph, editor. Real-time systems specification,
verification and analysis. Tata Research Development
and Design Centre, Jume 2001.

[6] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and
M. Viswanathan. Java-MaC: a run-time assurance tool
for Java prgrams. In 1st Workshop on Runtime
Verification (RV’01), volume 55 of ENTCS, 2001.

[7] P. Pandya. Specifying and deciding quantified
discrete-time duration calculus formulae using
DCVALID. Technical Report TCS00-PKP-1, Tata
Institute of Fundamental Research, 2000.

[8] S. Thaker. Runtime monitoring temporal property
specification through code assertions. Department of
Computer Science, University of Texas at Austin, 2005.

