
How Did I Find That? Automatically Constructing Queries
from Bookmarked Web Pages and Categories

Chris Staff
University of Malta,

Department of Computer Science and AI,
Malta

cstaff@cs.um.edu.mt

ABSTRACT
We present ‘How Did I Find That?’ (HDIFT), an algorithm
to find web pages related to categories of bookmarks (book-
mark folders) or individual bookmarks stored in a user’s
bookmark (or favorites) file. HDIFT automatically gener-
ates a query from the selected bookmarks and categories,
submits the query to a third-party search engine, and presents
the results to the user. HDIFT’s approach is innovative in
that we select keywords to generate the query from a book-
marked web page’s parents (other web-based documents that
contain a link to the bookmarked web page), rather than
from the bookmarked web page itself. Our initial limited
evaluation results are promising. Volunteers who partici-
pated in the evaluation considered 20% of all query results
to be relevant and interesting enough to bookmark. Addi-
tionally, 56.9% of the queries generated yielded results sets
(of at most 10 results) containing at least one interesting
and bookmarkable web page.

1. INTRODUCTION
Users who browse the Web store references to pages that
they would like to revisit in their Web browser’s Bookmark
(of Favorites) file [1][2]. Sometimes, some users organise
their bookmark file to collect related bookmarked Web pages
into the same category, [1][2]. Frequently, bookmark files be-
come disorganised over time, with categories containing ref-
erences to pages about unrelated topics, and stale references
(e.g., to pages that no longer exist) [9]. Some research has
been conducted into why users bookmark Web pages and
how they use those bookmark files [1][9][2]. There seems to
be little research into how a user’s bookmarks can be used
to automatically find related content on the Web [6].

Manually finding Web pages that are interesting, relevant,
and useful enough to bookmark usually takes considerable
effort. Users must think of a query that might satisfy a
requirement. Search results must be looked at to see if the

query has really been satsified. The query may undergo
a number of reformulations until a satisfactory Web page is
found by a search engine. Once the user has visited the page,
the user may bookmark it, to support a re-visit some time in
the future. Sometimes a user may decide to search for more
information related to a bookmark or a collection of related
bookmarks. But all the effort that was put into deriving
queries in the first place has been thrown away. Can the
user remember what query was used to find each bookmark
in the category? [14][5][10][5] store queries submitted during
a user session that eventually results in a bookmarked page.

Rather than relying on user generated queries, ‘How Did I
Find That?’ uses a Web page’s ‘context’ to automatically
generate a query. The query is submitted to a third-party
search engine1, and a page of up to 10 results is shown to
the user. Eventually, ‘How Did I Find That?’ will be in-
corporated into a Web browser, and will automatically and
periodically search for relevant web pages. For the time
being, users can select individual bookmarks or whole cate-
gories of bookmarks as the basis of their search. A query is
composed from the top ranking terms that occur in the con-
text of the selected bookmarked web pages, and at most ten
results are shown to the user. In our evaluation (see section
5), 56.9% of the results sets for 58 automatically generated
queries contained at least one relevant result that was also
bookmarkable (on average there were 1.72 bookmarkable re-
sults per results set).

This paper is organised as follows: Section 2 discusses sim-
ilar work. We describe our approach to automatically gen-
erating queries from Web browser bookmark files in section
3. The evaluation approach and results are described in sec-
tions 4 and 5 respectively. Finally, we discuss the results
and our future work in section 6.

2. BACKGROUND AND SIMILAR SYSTEMS
There is little research about automatically generating queries
from a collection of bookmarks maintained by a user. Web
browsers, such as Microsoft Internet Explorer, Mozilla, Mozilla
Firefox, and Safari, contain tools for managing interesting
pages that a user intends to revisit as bookmarks, but the
tools are mostly deficient, unhelpful at reminding users how
and in what context the pages had been bookmarked [9].
The bookmark files themselves are not without problems.

1For this study, we used Google at http://www.google.com.



Although users may organise bookmarks into a hierarchy of
folders (or categories, as we call them here), effort is required
to maintain them, and they can quickly become out of date
or disorganised [1][2]. However, from an adaptivity point of
view, bookmarks are useful because they contain documents
that a user has found relevant and useful enough at some
point to actually keep a record of them [7].

Queries to automatically search the Web are generated for
a number of reasons, including helping users find relevant
information while browsing [4][3][9][15], acting as a search
intermediary [13][14][10][5], or creating and sharing paths
through related material [6].

Queries may be automatically generated by identifying terms
that describe a user’s interest. Systems that help users to
find relevant information while browsing typically use terms
extracted from the pages that the user has visited recently.
HyperContext identifies a “context path” as a collection of
pages visited during a “context session” [15]. Nakajima,
et. al., defines context as the collection of pages that have
been visited between a search page and a bookmarked page
[10]. El-Beltagy, et. al., define context as the description ex-
tracted from the centroid of a document cluster [7]. Bugeja
also automatically extracts terms from web pages that are
bookmarked in the same category and uses them to con-
struct a query to find relevant web pages [5]. [14] incorporate
an explicit query submitted by the user which is modified
following relevance feedback .

The most common approach to identifying significant terms
is based on a modified TFIDF [7][10][14][15][5], though oth-
ers use, for example, a Simple Bayesian Classifier [3] or Asso-
ciation Rules [4]. In TFIDF, terms occurring in documents
are ranked according to a weight that takes into account
the frequency of term occurrence within a document (Term
Frequency) as well as the number of documents in which
the term occurs (Document Frequency) [12]. In information
retrieval, a term that has a high frequency of occurrence
within a particular (relevant) document and that occurs in
few documents in the collection is considered to be a good
discriminator between relevant and non-relevant documents,
so the Inverse Document Frequency (IDF) is used to calcu-
late a term weight. On the other hand, we are more in-
terested in identifying those terms that occur in documents
seen recently by a user (or which occur in some cluster or
co-occur in some bookmark category) and that are likely to
enable us to find more relevant documents. In this case,
terms which occur frequently in individual documents and
in a large number of documents seen by the user are likely
to be good descriptors of a user’s interest. Like Nakajima,
et. al. [10], HyperContext extracts terms from documents
visited during a “context session”, but unlike Nakajima, et.
al., it does not require that a ‘context’ begins with a search
page (so it can operate with no user input), and it does not
count all the terms that occur in the documents. Rather, it
identifies segments called “context blocks” around the links
that are followed by users. Terms that are used in the auto-
matically generated query occur frequently in context blocks
as well as in a large number of documents visited during the
context session [15].

3. APPROACH

Let’s say that we have a Web browser bookmark category
containing a number of bookmarks that have been manually
bookmarked and organised by a user. If we can find out what
it is about these Web pages that makes them related, then
we should be able to generate a query that would return
other related documents in a query results set.

We could have identified frequently occurring terms that
occur in most of the documents contained in a bookmark
category (or, simply, the highest occurring terms if a single
bookmarked document is selected by the user), or created
a cluster centroid from the category members, but instead
we have chosen to apply a modified HyperContext [15] ap-
proach. In HyperContext, an accessed document is inter-
preted in the context of the link, or parent, that was followed
to access it. An interpretation is a collection of keywords
describing the document that are relevant in that context
[15]. To generate a query from a bookmark category, we
can create a category centroid based on the bookmarks’ in-
terpretations. HyperContext does not generate queries from
bookmark files, and in ‘How Did We Find That?’ we do not
have access to a user’s path of traversal that eventually re-
sulted in a document being bookmarked.

We have modified the HyperContext approach for ‘How Did
I Find That?’ to look at a number of Web pages that contain
a link to the bookmarked document (parents), because we do
not know which link was followed by the user before the page
that was bookmarked was accessed. We extract the region in
each parent for each parent of each bookmark that contains
the source of the link and create a centroid representation.
We rank the centroid’s (stemmed) terms (after stop-words
have been removed). In this way, the query is automatically
created from a bookmarked page’s parents, rather than from
the bookmarked page itself.

3.1 Processing Steps
HDIFT is a Python 2.3.4 program that interfaces with the
Extended Boolean document indexing and retrieval system
SWISH-E2 and the Google Web API3.

As shown in Fig. 1, there are six processing steps involved.
We first enable a user to select a bookmark or category
about which she would like to find similar documents. We
then find twenty of each of the selected documents’ parents,
and process them to find the ‘context blocks’: the regions
that contain links to the selected bookmarked web page. We
merge the context blocks to create a centroid, and construct
a query from the 10 top-ranking terms in the centroid. The
query is submitted to Google through the API, and the re-
sults are displayed to the user.

The first step assumes that a user has chosen a bookmark or
category for which she would like to find relevant Web pages.
HDIFT then interfaces with Google through the Google Web
API to identify the parents of a Web page (using the ‘link:’
operator in the Google query). As the processing overhead
to identify a context block in a parent can be quite high, we
limit the number of parents per bookmarked page to 20. As

2http://www.swish-e.org
3The Google API is available from http://www.google.
com/apis. There is a limit of 1000 queries and 1000 results
per query per day using the API.



Select 
bookmarks 

& categories
Find 

parents
Extract 
context 
blocks

Create 
centroid

Extract top-
ranking terms

User SWISH-E Google

Find relevant 
documents

Google

Figure 1: ‘How Did I Find That?’ processing steps.

these are ranked according to Google’s PageRank algorithm
[11], we have identified the 20 pages most likely to be used
to access the bookmarked page.

The parents must be English-language documents. We de-
fine a document to be an English-language document if at
least 5% of the terms in the document (ignoring HTML
tags) are English language stopwords. If less than 5% of
the terms in the document are English language stopwords,
then we reject the document4. The next task is to identify
the context blocks, the regions in each parent that contain
a link to the bookmarked web page. We search through the
text to identify the location of the link anchor, and once we
find it, we scan the document to identify the context block.
The context block is an HTML chunk between delimiters.
Examples of delimiters are the heading tags (<H1>, <H2>,
etc.), horizontal rule (<HR>), and table elements (<TR>,
<TD>). In addition, we limit the context block to 100
words or less.

Once a context block is identified it is written to a text file
for subsequent indexing. If a user selects a category of book-
marked pages, then rather than just one bookmarked page,
each context block from each parent of each bookmark in
the category is written to a separate text file for indexing.
Once all the context blocks have been identified, SWISH-E
is used to generate a central index. Stopwords are removed
during the indexing process, and the terms are stemmed
using SWISH-E’s stemming option. Eventually, when the
top-ranking terms are used in a Google query, the original
terms, rather than their stems, must be submitted. There-
fore, we also keep a map of the stems to their originals.

Once the central index has been created, we can process it
to create a centroid representation of the cluster of context
blocks to extract n terms with the highest rank to construct
the Google query. SWISH-E provides a mechanism whereby
all term information can be accessed. The frequency infor-
mation is in the form of a set of document IDs and an indica-
tion of where in the document the term has occurred (e.g.,
in a title or heading, etc.) for each occurrence of a term.
We convert the frequency information into a term weight,
which takes into account each term’s Document Frequency
(expressed as a percentage of contexts of bookmarked web
pages in the collection in which the term occurs), and derive
an average weight for the term. We then extract the top 10
term stems with the highest average weights (after removing
terms shorter than 2 characters in length), look up the orig-
inal terms for each stem (ORing the terms if the stem has
been mapped to more than one original), and concatenate
the terms into a query string. A completed query string

4Note that we do not perform a language test on book-
marked Web pages themselves.

might look like ‘firefox extension OR extensions download
OR downloading OR downloads OR downloader tab OR
tabbed OR tabs opera mozilla web windows OR window
page OR pages links OR link google’.

Finally, we submit the query to the Google Web API using
PyGoogle5, and display the top 10 results to the user.

4. DATA COLLECTION
We evaluated ‘How Did I Find That?’ during September-
October 2006 by asking volunteers to anonymously upload
their Bookmark (or Favorites) files to the HDIFT Web server6and
then to select one or more bookmarks or categories of book-
marks to run HDIFT against. Volunteers were recruited by
e-mail from undergraduate and postgraduate students in the
Department of Computer Science and AI at the University
of Malta, the WebIR mailing list7, and lecturers and stu-
dents in all disciplines at the University of Malta. A total of
20 unique bookmark files were uploaded. Once a bookmark
file was uploaded, each volunteer was given a unique HDIFT
ID to enable them to return to view their own results and
give feedback.

Once a selection was made, a server-side script extracted the
URLs associated with the bookmark or category and pre-
pared a file for input to the HDIFT algorithm. The HDIFT
algorithm generated a query and submitted it to Google,
using the method described in section 3.1, and stored the
results of the query on the server. As HDIFT generates
queries based on frequently occurring terms that appear in
the context blocks of the bookmarked web pages’ parents,
if a page does not have parents (a request to Google with
the ‘link:’ operator finds no documents) then it may not
be possible to generate a query. In addition, a generated
query may have no results returned by Google. Each query
has a maximum of 10 results, equivalent to the first page
of results that Google returns. It is possible that there are
more than 10 results, but given Jansen’s et. al. findings [8]
we assume that for the majority of users, there should be
relevant information in the first 10 results. There are five
feedback levels: ‘I would bookmark this’, if the page was
relevant and the user would bookmark it; ‘Relevant, but I
wouldn’t bookmark it’; ‘Not given yet’, a default value to
indicate that the user has not evaluated the result; ‘Error
opening page’, because it is possible for a page to be off-line
or removed; and ‘Not relevant’. Evaluators were asked to try
to evaluate as many results as they could. Once feedback
had been submitted, it was not possible to modify it.

5PyGoogle is a Google Web API wrapper for Python avail-
able from http://pygoogle.sourceforge.net/
6http://poseidon.cs.um.edu.mt/~csta1/hdift/
uploadbk.php.
7http://groups.yahoo.com/group/webir/



Volunteers could select as many categories and bookmarks
as they liked. In addition, volunteers could return on up
to five separate occasions to make additional selections. Fi-
nally, there was no way to limit file uploads (unless we ran
out of HDIFT IDs), so it is possible for the same volunteer
to upload the same bookmarks file several times and make
more selections. We could tell if the bookmark files were bit
identical that they were probably submitted by the same
person, but this happened only once, and selections were
only made off one of the duplicate bookmark files anyway.

In all we collected 20 bookmark files, at least one selection
was made off 16 of them, 267 valid queries were generated
in all (a valid query has at least one Google result) and
feedback was given on 58 of the valid queries (21.7%). In
the next section, we evaluate the results of the valid queries.

5. RESULTS
Although only limited feedback was obtained (only 20 book-
marks files submitted, and feedback on results given on only
58 out of 267 valid queries), the results are promising. A de-
tailed breakdown is given later in this section, but overall,
Google returned 502 results in all for the 58 queries. Of
these, 19.9% were considered good enough to bookmark,
23.9% were relevant but the user did not think they were
worth bookmarking, and 38.5% were not relevant. Feedback
was not given at all on 16.5% of the results, and there were
HTTP problems with the remaining 1.2% (Google would
have returned the page in the results set, but the page may
have been non-responsive when the user tried to access it).
Furthermore, the results sets for 56.9% of the queries on
which feedback was given contained at least one result that
the user considered worthy of bookmarking.

5.1 Analysis of the Bookmark Files and Over-
all Selections

In all, 20 bookmark files were uploaded, with users mak-
ing selections of categories and individual bookmarks from
16, and giving feedback on the results of queries generated
from selections made from 7 bookmark files. In all, 145 cate-
gories, containing an average of 16 bookmarks each, and 331
individual bookmarks were selected from 16 bookmark files,
yielding a total of 476 attempts to generate a query. There
were 267 valid queries generated (queries which when sub-
mitted to Google returned at least one result), meaning that
there were 209 failed attempts. The failed attempts can be
differentiated between failure to generate a query, and failure
to obtain results following a query. We generated a query
but failed to obtain results 11 times for category selections
and 18 times for individual bookmark selection. We failed
to generate a query 13 times for selected categories, and 167
times for selected individual bookmarks. We explain the
high failure rate for individual bookmarks in subsection 5.2.

There were 121 valid queries (i.e., queries with results) from
selected bookmark categories, and 146 valid queries from
selected individual bookmarks. Feedback was given on the
results of 58 queries in all, 31 queries generated from cate-
gories and 27 generated from individual bookmarks. In all,
502 results were provided for the 58 queries, and feedback
was given on 413 of them.

As shown in Table 1, more results overall are considered
bookmarkable when the query is generated from a category,
rather than from an individual bookmark. The number of
non-relevant results increases when the query is generated
from individual bookmarks. On average, 1.72 results per
query were considered bookmarkable, with 0 the lowest and
6 the greatest number of bookmarkable results per query.
We also measured the degree of satisfaction with the results
by the rank in which Google returned results (Fig. 2).

We can see that the number of non-relevant results (Fig.
2c) seems to be unaffected by rank. The number of book-
markable results (Fig. 2a) is highest at P1 independently
of whether the query is generated from a category or an
individual bookmark.

5.2 Discussion of Results
Apart from the low number of responses to the request for
volunteers to assist with the evaluation of HDIFT, and the
large number of user selections from bookmark files made
without feedback being given on the results, the most sig-
nificant figure is the failure to generate a query for a high
number of selections made from bookmark files. In all, out of
476 bookmark selections made, 209 (43.9%) failed to result
in a generated query. This was a far greater problem for in-
dividual bookmarks than for categories of bookmarks, with
only 13 failed queries out of 145 (9%) selected categories,
but 167 failed queries out of 331 (50.5%) selected individual
bookmarks. We analysed the reasons for the high percent-
age of failed queries for individual bookmarks and discovered
that 47 (28.1%) HTTP requests for the Web page resulted
in an error code; the servers hosting 6 (3.6%) pages were
unresponsive at the time of the request, and for the remain-
ing 114 (68.3%), a ‘link:’ request to Google for documents
linking to the page yielded no results.

Feedback was given on the results of 58 queries. In all there
were 413 Google results generated on which users gave feed-
back for the 58 queries (83 additional results were not given
feedback on, and six results gave the user an HTTP error
code on access). Of these 413 results, only 7 web pages in
the results already existed in the users bookmark file (in the
same category or individual bookmark that was used as a
basis to generate the query). The feedback given on these
results have not been separated out from the global results
given above. Interestingly, and even though the users had
already bookmarked these web pages for the selected cate-
gory or individual bookmark, only two of the results were
considered interesting and bookmarkable. Another two re-
sults were considered relevant but not bookmarkable, and
another two were considered not relevant! User feedback
was not given on the final, already bookmarked, result. In
future, we will remove Google results that already exist in
the same user selection.

6. FUTURE WORK AND CONCLUSIONS
We have described ‘How Did I Find That?’ (HDIFT), an
algorithm to find Web-based material that is related to Web
pages that a user has bookmarked in the past. A user can
select a category of bookmarked web pages, or individual
bookmarked web pages from their personal bookmark file
and HDIFT will automatically generate a query based on
the selection, submit the query to Google, and present the



Table 1: Overall Feedback Levels
‘I would ‘Relevant, but I ‘Not

bookmark this’ wouldn’t bookmark it’ relevant’

Total = 413 100 120 193
Total % 24.2 29.1 46.7
Queries from
Categories only % 27.4 31.5 41.1
Queries from Individual
Bookmarks only % 21.3 26.9 51.9

Figure 2: Feedback levels according to results rank.

results to the user. Rather than generating the query di-
rectly from the bookmarked web pages, we download up to
20 of the document’s parents (found using Google’s ‘link:’
modifier) and create a centroid representation of the context.
We use the centroid representation to construct a query. Al-
though the number of participants in the evaluation was low,
results are promising and indicate that HDIFT is able to find
relevant bookmarkable web pages. The results appear to be
equally good for queries generated from categories of book-
marks and from individual bookmarks, although an issue
still to be resolved is the inability to generate a query for an
individual bookmark if Google cannot find any parents for
it.

We intend to conduct studies with a smaller group of people
to compare HDIFT with the results of extracting terms from
the centroid of documents in category, and manually gener-
ated queries (by the participants) from the same category.
In the same study, we will identify synonyms in the bag-
of-words representation of the centroid and the generated
query so they can be ORed in the query. We intend to anal-
yse the bookmark files for information about the frequency
with which bookmarks are added; the order in which they
are added; average gaps between returning to a category to
add new bookmarks; the number of stale links in bookmark
files, etc. Finally, we intend to utilise the HDIFT algorithm
to perform automatic bookmark classification to help users
keep bookmark files automatically organised.

7. REFERENCES
[1] D. Abrams and R. Baecker. How people use WWW

bookmarks. In CHI ’97: CHI ’97 extended abstracts
on Human factors in computing systems, pages
341–342, New York, NY, USA, 1997. ACM Press.

[2] D. Abrams, R. Baecker, and M. Chignell. Information

archiving with bookmarks: personal web space
construction and organization. In CHI ’98:
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 41–48, New York,
NY, USA, 1998. ACM Press/Addison-Wesley
Publishing Co.

[3] D. Billsus and M. Pazzani. Learning probabilistic user
models. In Proceedings of the Workshop on Machine
Learning for User Models, International Conference
on User Modeling. Springer-Verlag, 1997.

[4] D. Boley, M. Gini, R. Gross, E.-H. Han, K. Hastings,
G. Karypis, V. Kumar, B. Mobasher, and J. Moore.
Document categorization and query generation on the
World Wide Web using WebACE. AI Review,
13(5-6):365–391, 1999.

[5] I. Bugeja. Managing WWW browser’s bookmarks and
history (a Firefox extension). Final year project
report, Department of Computer Science & AI,
University of Malta, 2006.

[6] P. Dave, I. Paul Logasa Bogen, U. P. Karadkar,
L. Francisco-Revilla, R. Furuta, and F. Shipman.
Dynamically growing hypertext collections. In
HYPERTEXT ’04: Proceedings of the fifteenth ACM
conference on Hypertext and hypermedia, pages
171–180, New York, NY, USA, 2004. ACM Press.

[7] S. R. El-Beltagy, W. Hall, D. D. Roure, and L. Carr.
Linking in context. In HYPERTEXT ’01: Proceedings
of the twelfth ACM conference on Hypertext and
Hypermedia, pages 151–160, New York, NY, USA,
2001. ACM Press.



[8] B. J. Jansen, A. Spink, J. Bateman, and T. Saracevic.
Real life information retrieval: a study of user queries
on the web. SIGIR Forum, 32(1):5–17, 1998.

[9] W. Jones, H. Bruce, and S. Dumais. Keeping and
re-finding information on the web: What do people do
and what do they need? In ASIST 2004 Annual
Meeting, Managing and Enhancing Information:
Cultures and Conflicts, November 2004.

[10] S. Nakajima, S. Kinoshita, and K. Tanaka.
Context-dependent information exploration. In
Proceeding of the the 11th World Wide Web
Conference (WWW2002), New York, NY, USA, 2002.
ACM Press.

[11] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford Digital Library
Technologies Project, 1998.

[12] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, New York, 1983.

[13] A. Sieg, B. Mobasher, S. Lytinen, and R. Burke.
Concept based query enhancement in the ARCH
search agent, 2003.

[14] G. Somlo and A. E. Howe. Querytracker: An agent for
tracking persistent information needs. In AAMAS ’04:
Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent
Systems, pages 488–495, Washington, DC, USA, 2004.
IEEE Computer Society.

[15] C. Staff. HyperContext: A Framework for Adaptive
and Adaptable Hypertext. PhD thesis, University of
Sussex, 2001.


	Chris Staff 1

