
Of Web Trust and Policies: A suggested framework to
enhance Internet Security

Steven Caruana
Department of Computer Science

Univeristy of Malta

scar009@um.edu.mt

Dr. Matthew Montebello
Department of Computer Science

Univeristy of Malta

mmont@cs.um.edu.mt

ABSTRACT
We tend to trust people, software or anything else around
us through experience or through a recommendation from a
trusted source. Web voyeurs have similarly envisaged the
notion of software entities roaming over the World-Wide
Web capable of trusting other similar entities. Ideally, Web
agents would be able to distinguish and differentiate be-
tween sites, services and resources over the Internet that
are reliable and worth the confidence accredited to them. In
this paper we present several trust and policy frameworks
built within the evolving agent mark-up languages in an at-
tempt to encapsulate the Web in a new dimension of trust.
Furthermore, we propose a novel mechanism that exploits
existent policies, that govern servers and provide them with
credentials responsible for their authentication, by extend-
ing the existent web site structure.

Keywords
Agents, Semantic Web, Trust, Security, Policies

1. INTRODUCTION
Trust is one word which is important to the greater part
of humanity for whatever the scope, reason or context one
applies it. Most often business, industry, academics and re-
searchers place information and the divulgation of informa-
tion as the centre point of all of their activities. This means
that people for whom the evolution of means of communi-
cation and dissemination of information plays a central role
for their operations and accomplishments, trust gains more
significance. With the onset of more complex and demand-
ing e-services in various fields, the concerns of security has
become a reason for which many a brow will furrow. In a
recent talk during a World-Wide Web Consortium [16] meet-
ing in London, Sir Tim Berners Lee pointed out that People
learn to trust through experience and through recommen-
dation, and argues that a Web of trust would be not only
safe for people to use and access but also for software which
needs reliability and dependability when servicing user re-

quests. The notion of having trustworthy web services such
as active networks, mobile agents, etc. which thrive upon
entire distributed networks of information and computation
resources, is becoming more challenging as requests are be-
coming more complex and less trivial. The rest of the paper
is organised as follows: In Section 2 we review how trust
over the Web is currently being achieved through the use
of a number of policy frameworks. In Section 3 we propose
a model for building trust over the Semantic Web through
the use of entities and adapting policies to govern those en-
tities. The model described in Section 3 aims to empower
users with creating their own policy frameworks, merging
them with distributed authenticated systems which are es-
sential components for achieving trust and ensuring security
over the web. The last section of the paper describes the fu-
ture implementation of the application and the extent of
research needed in the field of trust and security over the
World Wide Web.

2. TRUST OVER THE SEMANTIC WEB
The current web has no notion of entities or relationships
between entities. Users browse the Internet finding informa-
tion in the same document format, style and layout as they
are used to handling. On the other hand, software agents
whose role is to handle information and service requests by
the users, have no means of parsing information from the
traditional layout. For these agents to be able to crawl the
web and service user requests, there needs to be defined a
service-oriented architectural structure to represent data on
the internet and the relations that different clusters of infor-
mation display. The Semantic Web is a possible solution for
this problem because it deals with the representation and
aggregation of relationships between resources on the web.

One of the more important factors that tend to dissuade the
community from the adoption of Semantic Web Applications
is the notion of trust. At this present stage in the devel-
opment of the Semantic Web we have produced languages
(DAML + OIL, OWL[18] etc.) which are capable of rep-
resenting information on the internet. Despite the richness
of these languages we are still not able to describe relations
like “I want to trust only papers written by professors who
are still registered with a university and these papers must
have been published less than five years ago”, or “Do not
give information to users unless they can clear their identity
as members of the university I am registered with”.

2.1 Introducing Trust



Research projects use the term trust to signify different
meanings. The following is one such definition:

“Trust is a method of dealing with uncer-
tainty; when dealing with independent agents,
institutions or providers of resources (including
knowledge), one trusts them if one accepts their
characterisation of what they will do. Trust can
be a moral notion (X trusts Y to act in Xs inter-
ests), or not (X trusts Y to perform some task
T).” [12]

If one were to apply the above statement to the Semantic
Web it would mean that a user (human or agent) has the
capacity to trust other users, but that not every user can be
trusted. In this paper we are defining trust as being either of
two issues. The first is the issue of authenticating a person
as being whom they claim to be. Trust can also be defined as
being a measure of the degree of trust that a user attributes
to another user in the context of a particular domain.

Most of these problems are not new to the internet. Projects
such as the Microsoft .Net Passport[11] and OpenID[13]
have provided solutions for possible distributed authenti-
cation infrastructures. On the other hand projects such as
Foaf[6] have provided us with a means of adding our creden-
tials in a machine readable format across the web.

2.2 Trust and Policy Frameworks
When the Semantic Web was first introduced in [1] one of
the ideas which was put forward was that of having a web
of correlated information from which software agents could
acquire knowledge which they would eventually use to help
the user for every day life service requests. In turn research
projects have been making progress in trying to find solu-
tions for various issues that this vision put forward. As a
result of this, trust frameworks were developed by research
groups and are now being used by developers researching
the field of semantics in web applications.

The following section will give a brief description of few such
projects.

2.2.1 Ponder
Ponder[3] is a distributed policy management system that
was developed a few years back. This system was designed
to allow users across the web to specify information (poli-
cies) about resources which would otherwise be impossible
to define and enforce.

These specifications were recorded using what the authors
referred to as policies. Ponder supports a number of pol-
icy specifications, including Authorisation policies, Obliga-
tion policies, Refrain policies, Delegation policies, Compos-
ite policies and Meta-policies. Each of these policies can
have constraints applied to them. These policies are then
applied to specific domains for which Ponder provides the
authentication and trust reasoning engine.

2.2.2 P3P

P3P[17] is a project organised by the W3C[16] which is try-
ing to provide a specification for an extension to the current
web. This initiative aims at enabling web sites to store in-
formation about privacy policies which should be applied
to them. This information is meant to be analysed and
processed by agents that can use this information in the
background on the user’s behalf, while he/she is browsing
other web pages. Even though this information is meant
to be used by agent software, this standard also caters for
human users by presenting information in a reader-friendly
way. Having agents process privacy preferences on behalf of
the user will conveniently take the load off the user, reliev-
ing him/her of having to acknowledge every privacy policy
for each individual page.

Numerious implementations of this standard have already
been presented and can be found at the W3C web site[16].

2.2.3 KAoS
KAoS[2] is an open agent system that offers possible solu-
tions to some of the problems that adversely affect agent
architectures. In [15] the author writes about how KAoS
policies can now be defined in OWL and gives a good de-
scription of how KAoS proposes to use a policy ontology
termed the KAoS Policy Ontology (KPO). The KPO is then
used as a base ontology to define ontologies that can repre-
sent statements like:

It is forbidden for employees of a company X
or employees of a company Y to apply for this
package.

The system that employs this policy can then use it to deter-
mine who is eligible to apply for the package in question and
who is not. At runtime the system will then interact with
users and once each user registers with the services, the site
will be able to formulate who are employees of companies X
and Y and determine what they can apply for.

KAoS can be said to be more agent oriented than others
because it was designed with agents in mind rather than
web users. It aims to provide agents (KAoS agents) with
a roaming space intended for authenticating users when re-
quired and providing other services which the user might
benefit from.

2.2.4 Rei
Rei[7] is another attempt to create a policy language. It
provides an ontology which is used to define the policies in
its engine. In the Me-Centric project[7], the author pro-
poses a system whereby the use of policies defines a global
perspective which is made up of domains and sub domains
that can overlap each other. Similar to other projects, this
project aims at making this web accessible not only to users
but also to software agents.

The first problem that Rei tries to tackle is the fact that
users who are not very technical find it hard to understand
most policy languages. Therefore Rei is based on First-
Order Logic (FOL), which is not only easy for users to read
but is also simple to translate to RDF or DAML + OIL. This



means that FOL language can be translated into a semantic
language representation.

This system also provides a set of ontologies which are not
domain specific so that whoever is writing his/her own poli-
cies can use these ready made concepts to create varied op-
erations and functions such as setting of permissions, obli-
gations, speech acts etc. It might be the case that a single
domain might require more specific objects to be defined
(such as person, readFile, deleteUser etc.) and properties
associated with them (name, age, comany, email), which is
why Rei also supports the extension and definitions of its
policy ontologies by the user.

The Me-Centric policy server stores all the policies that de-
termine how entities are to be treated, while its domain
server contains the information pertaining to various do-
mains. The policy server can retrieve the policies of dif-
ferent domains and then use the domain server to map the
domain specific names to the policies. When a user requests
a speech act, the policy engine will determine the logic of
this speech act and then will add the information it gathers
to its knowledge base. These speech acts can be categorised
in four different policies, delegate, revoke, cancel and request.

2.2.5 Rein
Rein[8] is a project that tries to extend on Rei by adding
support for N3 logic reasoning. The target audience of Rein
is the internet in general and it proposes a few twists to the
structures seen so far. All the policy languages reviewed so
far have defined their own structures (policy languages) in
which policies should be defined (policy files, KAoS ontol-
ogy, Rei Onotlogy etc.).

This methodology proposes the use of Rei ontologies to de-
fine the policies, but unlike other projects, it does not place
strict rules to enforce which language is used to define these
policies. It promotes the use of different policy languages
and refers to policies written in these languages as Meta-
Policies. It also takes advantage of various features of the
Semantic Web, such as allowing an entity to be categorised
by another entity, according to its definition. In such an
eventuality the Rein engine will go to the desired URIs and
collect the necessary information to complete the definition
of the entity.

[9] gives the reader a good idea of how Rein can be used to
deploy a domain with varied implementations of Rein and
a variety of policies residing on each node. It also gives the
reader a good insight as to how Rein ontology is defined
and how the Rein engine works. [10] also discusses issues
related to the implementation of Rein and adds a few more
examples which provide a useful insight as to how a network
using Rein policies should be constructed.

3. FROM WEB OF TRUST TO A SEMAN-
TIC WEB OF TRUST

When one browses the web, he/she will encounter a number
of pages which encapsulate certain unique features. Some
sites propose mechanisms for the sharing and annotation of
information (e.g. Flickr[5], Riya[14] etc.) or even commu-
nity voting which can determine the trust level of a resource

or user (e.g. ebay[4] etc.). In this paper we are proposing
the construction of a mechanism which extends the current
website structure by providing a direct feed to the user’s ma-
chine providing a diagrammatic representation of the poli-
cies that govern the currently viewed website. It is also a
means of informing the client’s machine about how to pro-
vide its user’s credentials to the servers that are responsible
for authentication. We are also proposing the extension of
a typical web server allowing it to make use of a policy lan-
guage such as Rein to define policies that will govern the
specified domain and to provide a means of allowing the
server to use distributed authentication.

Below is a diagram of how such a network would be setup
and of how the user is expected to interact with the system.

Figure 1: Network Setup

In the diagram above one can see all the major entities that
partake in this system. At the back-end there is a server that
will await requests from the client. Once the server receives
a request it can make use of remote servers to authenticate
the client and send an adequate response in return.

Figure 2: Document transfer



In Figure 2 the browser will display only items for which
the user has credentials. Items for which no credentials are
given will be automatically blocked. It also shows how the
user can send his credentials to provide authentication for
the blocked items.

This setup is quite often adopted by those who develop dis-
tributed authentication systems. What distinguishes this
setup and makes it unique is the way the client and server
communication is handled. When the client first requests in-
formation from a page the server will return and display the
requested data. Along with this, the user will also receive a
‘feed’ that will inform the browser that the user was not au-
thorised to view certain components because he/she did not
fulfil the necessary policy requirements. The user will then
be prompted by the browser to allow the use of credentials
which would have already been inputted into the system in
order to fulfil these requirements. Once this structure is in
place, the system will know that this user can be trusted
and that his/her credentials can be reused at a later stage
if required.

The above proposition could offer a solution in terms of the
server which would otherwise have to decide whether the
user can be trusted or not. However this still does not solve
the problem of how the user could gain the trust of other
users viewing pages submitted by him/her. As a solution
to this problem, we are proposing that the servers store the
credentials within the policy feed attributed to this page,
and that agents on the client-side will be able to process
this information and make use of rules that the user would
have defined beforehand to determine whether a site could
be trustworthy or not.

Below is a typical example of how such a system could be
used:

A user might log into his/her account on the University of
Malta web server. His/her agent submits his credentials to
the web server and this in turn keeps track of them. The
user then decides to upload a paper about his main area of
research. This paper is then forwarded to a board who is
assigned to approve it. Once the document is approved, the
user’s agent returns to the site and updates the credentials
which are related to the paper and the policies governing it,
thus including the fact that the document was accepted and
published.

To extend this example let us consider the added circum-
stance during which, three other uses are roaming the net
looking for papers in this same research area. Once the page
is accessed by all three search agents, the privacy field em-
bedded in the page will interoperate with these agents. User
agent ‘A’ has a policy of not showing unpublished papers,
whilst ‘B’ and ‘C’ lack this policy. When ’A’ identifies that
this paper has not yet been published it refuses to view the
paper and informs the user that an unpublished paper was
refused. User agents ‘B’ and ‘C’ try to access the paper but
the paper requires that to view the paper, the users must
be on the auditing board. User agent ‘B’ had been informed
a priori that its owner would be reviewing this paper, and
sends over the necessary credentials. On the other hand
user agent ‘C’ lacks this credential and sends a message to

the user’s browser to ask the user to submit the necessary
credentials if s/he intends to view this page. User ‘C’ then
inputs an encrypted link to his board credentials and up-
dates his public profile which his agent can then use to re
submit the credentials required to view this site.

3.1 Of entities and policies
In this paper we are proposing that web pages and the In-
ternet should have a means of publishing or of enforcing a
set of policies. In the example provided in section 3 we can
notice that there are various entities and each have their
own policies.

The following is a table listing the policies applied in the
example found in Section 3

Table 1: Table of entity policies
Entity Policy
Web Page Allow all
Paper If user can be authenticated

as being on the submission board
(After paper approved) Allow all

User Agent A Do not download publications which
have not been approved

User Agent B Allow all
User Agent C Allow all

The following is a table listing the credentials found in the
example found in Section 3

Table 2: Table of entity credentials
Entity Credentials
Web Page Credentials that point to author
Paper Credentials that point to author
User Agent A No Credentials in this example
User Agent B Credentials to prove he/she is a

board member
User Agent C No Credentials

(After inputting credentials) Credentials
to prove he/she is a board member

3.2 Empowering users
An important factor which is to be considered is that it will
be hard for such a system to be adopted unless the users are
able to migrate their current security structures and perform
maintenance on them more efficiently. To assist users in
overcoming this problem we are proposing that a browser
extension for web authors be developed and that this be
used for both testing and updating of the policy files. This
extension should provide two different modes of use which
are browse mode and edit mode.

When the user is viewing the page in browse mode the
browser should be searching for policy feeds that web pages
might be broadcasting and offer the necessary credentials to
them accordingly, whilst still offering the user a chance to



replace these credentials with more specialised ones. If the
browser cannot find the necessary credentials in the user’s
profile, then a means of asking the user to input his authen-
tication details should be provided.

In edit mode the browser should visualise the policy feed
that the user is constructing, in a logical and intuitive struc-
ture. Making it easy to construct and view policy files is of
great importance because it will be only the minority of users
who are Semantic Web aware and capable of constructing
complex policy strucutres manually. A visual aid, such as a
graphical user interface, would help bridge this problem by
providing the less technical users with an adequate mecha-
nism enabling them avoid dealing with the back-end system
whilst still being able to declare their own policies.

Using the structure discussed we would be empowering the
less technical users (such as blog users or wiki eidtors) to
declare their own policies and help them to implement a
Semantic Web Policy Structure to limit access to the re-
sources they publish on the internet. As for the users who
are meant to access these web resources, they can use the
simple interface provided by their browser to fulfill the re-
quirements that the authors would have set and gain access
to the services being broadcasted.

3.3 Distributed Authentication
Distributed authentication research projects have been un-
dergoing development for a number of years. As a by-
product of these research groups, products like OpenID[13],
Microsoft .Net Passport[11] were developed.

Both of the projects mentioned above aim at offering the
user a single sign-on structure. The .Net Passport frame-
work provides a number of Microsoft-owned servers on which
each user has an account. Using this infrastructure Mi-
crosoft are pushing forward the idea that a user should have
the facility for logging into a website (e.g. logging into hot-
mail) and not needing to log into any other page including
ones in separate domains. OpenID tries to push forward a
similar concept by offering an infrastructure where the user
need only have an account on one domain and should use
this account to authenticate himself accross the web.

These systems aim at providing solutions to the problems
of authentication and trust. However not one of them pro-
vides a solution which could solve both of these problems.
The .Net Passport does not offer a real solution for trust
problems because even though each user should be assigned
a single user login on the internet, it promotes no means of
understanding the user’s profile. For example if a user has
a .Net Passport he/she can login using that passport and
roam about on the internet using this credential, but if the
user is publishing a paper to a website and this user has
already submitted a number of publications before, the .Net
Passport has no means of relating these publications.

OpenID on the other hand offers a structure that is not only
a single login system but provides an infrastructure that can
be used to identify a user as being a member of a certain do-
main for example, if one decides to submit a blog post on a
blog hosted at www.myBlog.com, but his/her current blog-
ging account is found at www.hisBlog.com, using OpenID

the user can be allowed to log into hisBlog.com account
and post a comment on someone else’s www.myBlog.com ac-
count. As the system logs the user and authenticates his cre-
dentials it is also giving access to the site’s security gateway.
OpenID does not let you carry forth information about your
account to use as credentials for trust algorithms. For ex-
ample to make a distinction between two classes in a domain
(e.g. a profressor of science and a student of science) using
OpenID, the only workaround to represent this differnce is
for the two classes to be assigned different domains to log
into (e.g. student login student@student.cs.um.edu.mt, pro-
fessor login professor@professor.cs.um.edu.mt)). Although
this work around does provide a rudimentary means of at-
tributing trust, it can become very hard to manage, and will
only allow the representation of very basic differences be-
tween the classes of users and more complex relations (such
as number of publications, issued or amount of time ded-
icated to students a week). If the user were to write the
policy files manually with no visual tool they would be next
to impossible to keep track of. Policies would need to be
amended every time a change in a user’s credentials occurs.

In this paper we are proposing a structure that can leverage
the power of distributed login mechanisms with an added
extension which integrates a trust framework into it. This
would allow a user not only to authenticate himself/herself
as being registered to a specific domain (like OpenID) but
also to carry forward his/her credentials which can give
him/her credibility over the web. Using Semantic Web tech-
nologies credentials can now be represented in a format that
can be reasoned upon (such as rdf) and this can then be
used as input for a trust engine (such as Rein) giving as a
result the trustworthiness of a website or user.

4. FUTURE WORK
The application being described in this paper is currently
still being developed. Further extensions to the mechanisms
and structures mentioned above are still being refined.

In this paper we have also emphasised the concept that a
ubiquitous security framework might not be the best way
around providing security mechanisms. However more re-
search is needed to devise a framework which could bridge
the transfer of user credentials across domains using a prede-
fined security standard, whilst still allowing the separate do-
mains to make use their own means of authentication mech-
anisms.

Finally an idea which will need to be looked into further, is
that of providing support for Semantic Web Services and Se-
mantic Web Applications. As the web continues to progress,
web services and web enabled applications are becoming ever
more vital for the web and its users. Extending such a frame-
work to support the use of policy feeds could provide these
applications with a subsystem that caters for trust and au-
thentication.

5. REFERENCES
[1] T. Berners-Lee, J. A. Hendler, and O. Lassila. The

semantic web. Scientific American, 284(5):34–43, May
2001.

[2] J. Bradshaw, S. Dutfield, P. Benoit, and J. Wooley.



Software Agents, chapter KAoS: Towards industrial
strength open agent architecture, pages 375–418. MIT
Press, 1997.

[3] N. Damianou, N. Dulay, E. Lupu, and M. Sloman.
Ponder: A Language for Specifying Security and
Management Policies for Distributed Systems.
Technical report, 2000.

[4] ebay. http://www.ebay.com.

[5] Flickr. http://www.flicker.com.

[6] FOAF. http://www.foaf-project.org/.

[7] L. Kagal. Rei: A policy language for the me-centric
project. Hp labs technical report, hpl-2002-270, HP
Labs, 2002.

[8] L. Kagal and T. Berners-Lee. Where policies meet
rules in the semantic web. Technical report, MIT,
2005.

[9] L. Kagal, T. Berners-Lee, D. Connolly, and
D. Weitzner. Self-describing delegation networks for
the web. IEEE Workshop on Policy for Distributed
Systems and Networks (IEEE Policy), June 5 - 7 2006.

[10] L. Kagal, T. Berners-Lee, D. Connolly, and
D. Weitzner. Using semantic web technologies for
policy management on the web. 21st National
Conference on Artificial Intelligence (AAAI), July 16
- 20 2006.

[11] Microsoft. http://www.passport.net.

[12] K. O’Hara, H. Alani, Y. Kalfoglou, , and N. Shadbolt.
Trust strategies for the semantic web. In Proceedings
of the Trust, Security and Reputation workshop at the
ISWC04, Hiroshima, Japan, Nov. 2004.

[13] OpenID. http://openid.net/.

[14] Riya. http://www.rija.com.

[15] A. Uszok, J. M. Bradshaw, M. Johnson, and
R. Jeffers. Kaos policy management for semantic web
services. IEEE INTELLIGENTSYSTEMS,
284(5):32–41, July-August 2004.

[16] W3C. http://www.w3.org/.

[17] W3C. http://www.w3.org/P3P.

[18] W3C. OWL Web Ontology Language 1.0 Reference.
http://www.w3.org/TR/2002/WD-owl-ref-20020729,
July 2002.


	Steven Caruana, Matthew Montebello

