
Evolving Viable Pitch Contours

Kristian Guillaumier
kguil@cs.um.edu.mt

Dept. of Computer Science and AI
University of Malta

ABSTRACT
At a very basic level, a piece of music can be defined as an
organised arrangement of sounds1 occurring both sequen-
tially (as in melody) and concurrently (as in harmony). As
music evolved into a science and an established form of art,
people started studying the characteristics of these sounds
and drew sets of guidelines and rules, that if followed would
produce pieces of music that are aesthetically more pleasing
than others. Early examples can be seen in Pythagoras’ ob-
servations and experiments with blacksmiths’ hammers [1].
Allegedly some 2500 years ago, he was walking by a black-
smith’s shop when he heard the ringing tones of hammers
hitting an anvil. Upon further observation, he realised that
a hammer weighing half as much as a previous one sounded
twice as high in pitch (an octave – ratio 2:1). A pair of
hammers whose weights had a ratio of 3:2 sounded a fifth
apart. Eventually he came to the conclusion that simple
ratios sounded good.

In this paper, we are concerned with the generation of
musical phrases constrained by the rules that governed mu-
sic developed during the so called Common Practice Period
(CPP). This period refers to an era in musical history span-
ning from the 17th to the early 20th centuries [2] and in-
cluded the Baroque and Romantic styles amongst others.
Colloquially, music in the style of the CPP is sometimes
better (but incorrectly) known as ‘Classical’ music.

General Terms
Aleatoric composition, music theory, common practice pe-
riod, genetic algorithms.

1. INTRODUCTION
Computers have been used as an aid in composing mu-

sic since the mid-1950s and the techniques generally em-
ployed fall into the categories of aleatoric composition and

1In this context we refer to sounds of a musical nature –
notes.

.

processes that return permutations of predefined musical
elements such as pre-composed measures of music [6]. In
the former technique, stochastic methods are used to gen-
erate sounds – possibly utilising some musical observations
to guide random processes. In the latter, a number of pre-
defined measures of music are selected and attached to each
other to yield a piece of music. This technique has been prac-
ticed since the 18th century using an algorithm known as the
Musikalisches Würfelspiel (musical dice game) [7]. Mozart
has been known to compose a number of Minuets based on
this algorithm. An interactive example of this method can
be found at [8].

In this paper, we present a Genetic Algorithm (GA) de-
signed to generate pitch contours2 that conform to the rules
used in the CPP. Clearly, the rules we will be considering
form the basis of the fitness function of the GA. Here we as-
sume that the reader is familiar with basic–to–intermediate
theory of music. We refer beginners to any introductory
textbook on the matter such as [3], [4] and [5].

1.1 Rules for Developing Melodies/Pitch Con-
tours

1. Notes in the melody should be diatonic.

2. Most of the melody must progress in stepwise motion.

3. The melody should contain a number of leaps. The
number of leaps depends on the length of the melody
and a leap must always occur in the context of contrary
motion. Also, leaps must be a consonant interval.

4. Melodies should cover the whole range of notes as-
signed to it.

5. The highest note (climax) in a melody should occur
only once, usually in the latter half. This climax note
should be melodically consonant with the tonic.

6. Certain note intervals such as augmented intervals are
unacceptable.

(a) Augmented intervals are not allowed.

2A pitch contour is a sequence of notes that sound melodical
but without possessing any rhythm (essentially, a melody
composed with notes of a single duration only such as
crotchets). Melodies are rhythmically more complex than
pitch contours, but in this text the terms pitch contour and
melody are synonymous.



(b) A diminished interval is not allowed unless the
note following the interval falls between that in-
terval by a perfect or imperfect interval.

7. The note on the seventh degree of the scale must rise
stepwise to the tonic.

8. Melodies in a major scale should start and end with the
tonic or dominant. Melodies in a minor scale should
start and end with the tonic or mediant.

9. Only notes in a single soprano, alto, tenor or bass voice
should be used. Arbitrarily, the soprano range is con-
sidered here (from middle C to G two octaves up).

10. Notes should be repeated rarely.

2. THE GENETIC ALGORITHM
Creating a melody conforming to a set of rules can be

construed as a constraint satisfaction problem. Consider
an 8-note melody to be composed using any of 7 notes (an
octave-worth of diatonic notes). These parameters would
yield 5,764,801 (78) different melodies – the search space.
Longer, more varied melodies would clearly increase the
search space immensely making the problem non-trivial. In
this section we describe a GA used to search the space for
melodies that conform to the rules outlined earlier on. It is
assumed that the reader is familiar with the mechanics of a
GA and its theory. Readers are referred to [9] for a thorough
exposition.

2.1 Chromosome Structure
The scheme used to represent a candidate pitch contour as

a chromosome in our algorithm is straightforward. The chro-
mosome is an array of integers, where each integer represents
a note value in the contour. The integer values representing
each note are borrowed from the Musical Instrument Digital
Interface (MIDI) standard, where, for example, middle-C is
represented by the value 60, C# by the value 61, D by the
value 62, etc... This idea is illustrated in Figure 1.

71 72 71 73 74 73 74 75

Pitch Contour

Chromosome

Figure 1: Chromosome representation of a pitch
contour.

The simplicity of this representation scheme allows for
uncomplicated designs for crossover and mutation operators.
Additionally, the fact that the note values map to the MIDI
standard allows us to export the contour as a MIDI file for
quick auditioning or editing purposes.

2.1.1 Pitch Sets
The possible note values for each locus in the chromosome

(i.e. each possible note in the contour) are selected from a
set of permissable notes called the pitch set. Essentially the
pitch set defines which notes the melody can be composed

of. Restricting the melody to use only notes from a pitch
set has a number of advantages:

1. Ensuring that the notes in the pitch set are diatonic,
implies that any candidate pitch contour will be di-
atonic as well. This implicitly enforces the first rule
mentioned previously.

2. Similarly, by ensuring that the notes in the pitch set
are within the range of a single voice (e.g. the soprano
voice), rule 9 above is implicitly observed.

3. The search space is reduced to the various permuta-
tions of the notes in the pitch set rather than all the
notes in the range of a particular instrument.

2.1.2 Fixed Notes
During setup of the algorithm, certain loci in the chro-

mosome can be fixed to certain notes. For example, the al-
gorithm can be instructed that the first note in the melody
should always be middle-C and no operator, such as a muta-
tion, would be allowed to change it. The allows us to ensure
that the pitch contour would, for example, always start with
the tonic and end with the dominant. By specifying fixed
notes in ‘the middle’ of the melody we can give it a par-
ticular texture or shape. Additionaly, since most notes are
required to progress in stepwise motion, the fixed note effec-
tively becomes an attractor for other notes thereby serving
as a climax note.

2.1.3 Initialisation
In the initial population, chromosomes are initialised to

pitch contours with notes randomly selected from the pitch
set. Fixed notes in the pitch contour are observed – the
fixed notes in any pitch contour are immutable.

2.2 The Fitness Function
The fitness function developed is penalty-based. A fault-

less melody has a fitness value of zero whilst the fitness of a
flawed melody is negative. Essentially, for each rule that is
violated, a penalty value is deducted from the fitness. The
penalties for each rule are interpreted as follows:

1. Rule: Notes in the melody should be diatonic.
Interpretation: This rule can never be violated be-
cause a chromosome can only be composed of notes
selected from a pitch set whose notes are already guar-
anteed to be diatonic. This rule is implicitly observed.

2. Rule: Approximately n% of the melody must progress
in stepwise motion.
Interpretation: Determine the number of expected
stepwise intervals in the melody from n. By observing
the actual intervals in the candidate melody, determine
the number of actual stepwise intervals. If the actual
number of stepwise intervals is less than expected, ap-
ply a penalty (e.g. -5) to the fitness for each expected
interval that is not present.

3. Rule: The melody should contain a number of leaps.
The number of leaps depends on the length of the
melody and a leap must always occur in the context
of contrary motion. Also, leaps must be a consonant
interval.
Interpretation: Determine the number of leaps in



the melody. If the actual number of leaps differs from
some required amount, penalise in proportion to this
difference. If the leap is not consonant, apply a penalty.
For contrary motion, if the leap is preceded by a note
that is not within its interval, apply a penalty. Finally,
if the leap is followed by a note that is not within its
interval, apply a penalty too.

4. Rule: Melodies should cover the whole range of notes
assigned to it.
Interpretation: For each note in the pitch set to
be used that does not occur in the melody, apply a
penalty.

5. Rule: The highest note (climax) in a melody should
occur only once, usually in the latter half. This climax
note should be melodically consonant with the tonic.
Interpretation: Let c be the the number of times
the highest note in the melody occurs. Apply a penalty
to the fitness (c-1) times. The requirement of the cli-
max note occurring in the latter half of the melody
and being consonant to the tonic can be implicity ob-
served by setting the climax note as a fixed note in the
chromosome.

6. (a) Rule: Augmented intervals are not allowed.
Interpretation: Apply a penalty for each aug-
mented interval in the melody.

(b) Rule: A diminished interval is not allowed unless
the note following the interval falls between that
interval by a perfect or imperfect interval.
Interpretation: For each diminished interval in
the melody, if the next note does not lie between
that interval and is a perfect or imperfect interval,
apply a penalty. Also, a penalty is applied if the
melody ends in a diminished interval (there would
not be a note following the interval).

7. Rule: The note on the seventh degree of the scale
must rise stepwise to the tonic.
Interpretation: For each note on the seventh degree
of the scale that does not rise to the tonic, apply a
penalty.

8. Rule: Melodies in a major scale should start and end
with the tonic or dominant. Melodies in a minor scale
should start and end with the tonic or mediant.
Interpretation: This rule is implicitly observed by
setting the starting and end notes as fixed notes in the
chromosome.

9. Rule: Only notes in a single soprano, alto, tenor or
bass voice should be used. The soprano range is con-
sidered here (from middle C to G two octaves up).
Interpretation: This rule is implicitly observed by
setting the notes in the allowed pitch set to those in a
desired voice range.

10. Rule: Notes should be repeated rarely.
Interpretation: Count the number of repeated notes
in the melody. If this amount varies from some ex-
pected value, apply a penalty proportional to this dif-
ference.

2.3 Genetic Operators and Other Parameters

2.3.1 Crossover
In our algorithm, the crossover operator is a basic imple-

mentation of single-point crossover. A illustrated in Figure
2, a common locus in two parent melodies is randomly se-
lected, and notes between the two parents are swapped along
that interval. Parent melodies are selected to participate in
crossover using a roulette-wheel selection scheme.

A crossover rate value governs how many parents are se-
lected for crossover purposes. A crossover rate of 80% means
that after selection, 80% of the new population will be made
up of offspring that were generated by mating the parents.
The remaining 20% of the new population is populated with
new, randomly-created chromosomes.

Parent 1

Parent 2

Offspring 1

Offspring 2

Figure 2: Single-Point Crossover between two pitch
contours.

2.3.2 Random Mutations
In the algorithm a random mutation is implemented as:

1. The replacement of a random note in the melody with
any random one in the pitch set of allowed notes.

2. The swapping of two, random notes in the melody.

A random mutation rate is used to determine the proba-
bility that a child chromosome created after crossover will be
randomly mutated. The mutation operator is partial to the
fixed note configuration of the chromosomes. A mutation is
aborted if it would effect a fixed note.

2.3.3 Guided Mutations
This operator, works by altering a note in an attempt to

rectify a deficiency in the melody. For example, if it is de-
termined that a melody contains too little stepwise motion,
a note in a non-stepwise interval is changed to make that in-
terval stepwise. Similarly, if an augmented interval is found
in a melody, a note in that interval is replaced to change the
improper interval.



A guided mutation rate is used to determine the probabil-
ity that a random child chromosome created after crossover
will be mutated ’intelligently’ as described above.

2.3.4 Elitism
The roulette–wheel selection mechanism used ensures that

the fittest parents are paired to yield the new offspring pitch
contours. Nonetheless, there is always the risk that the pitch
contours generated after crossover and possible mutations
have a fitness less then that of the original parent contours
that spawned them. This implies that there is a possibility
that, over time, the overall fitness of the population could
degrade. To avoid this risk, an elitism rate parameter is
used. This parameter represents a percentage of the best
contours in the current population that will replace random
contours in the next one.

3. EXPERIMENTAL RESULTS
In this section, we present a number of experimental runs

of the algorithm and their respective results.

3.1 General Notes

1. Pitch contours have been generated in C Major, G Ma-
jor, A Minor (harmonic3) and E Minor (harmonic). In
this section, we only present the results of the algo-
rithm when instructed to compose contours in A mi-
nor. This choice is arbitrary since setting a different
scale for the algorithm to work in will not effect its
performance in any way.

2. Various settings for population size, crossover and mu-
tation rates have been used to determine how the GA
converges under these conditions.

3. All pitch contours generated have been set to be 16
and 32 notes long.

4. The algorithm converges to multiple optimal solutions
in all cases. The only cases observed when an optimal
solution could not found were when they either did
not exist or the parameters of the GA conflicted. For
example when the pitch set is so limited that it would
be impossible to satisfy the rate of stepwise motion
desired – if the only notes in the pitch set are C5 and
G5, it is clearly impossible to move in stepwise motion.

Adornment

Figure 3: An optimal pitch contour (with an added
adornment) generated by the algorithm.

3Natural minor with a raised seventh.

3.2 Experiment 1

• Key: A Minor (harmonic).

• Contour Length: 16 notes.

• Pitch Set: {A4, B4, C5, D5, E5, F5, G#5, A5}.
• Note Usage: 80%.

• Fixed Notes: {Pos 1=A4, Pos 15=G#5, Pos 16=A5}.
• Population Size: 100.

• Maximum Number of Generations: 50.

• Crossover Rate: 90%.

• Random Mutation Rate: 5%.

• Guided Mutation Rate: 5%.

• Stepwise motion rate: 80%.

• Leap Rate: 15%.

• Average Generations to Yield Optimal Con-
tours: 25.

• Average Number of Optimal Contours Yielded
in Final Generation: 3.

• Example result: A4, B4, A4, F5, E5, C5, B4, C5,
D5, C5, D5, E5, D5, A5, G#5, A5.

3.3 Experiment 2

• Key: A Minor (harmonic).

• Contour Length: 16 notes.

• Pitch Set: {A4, B4, C5, D5, E5, F5, G#5, A5}.
• Note Usage: 80%.

• Fixed Notes: {Pos 1=A4, Pos 15=G#5, Pos 16=A5}.
• Population Size: 100.

• Maximum Number of Generations: 50.

• Crossover Rate: 50%.

• Random Mutation Rate: 20%.

• Guided Mutation Rate: 20%.

• Stepwise motion rate: 80%.

• Leap Rate: 15%.

• Average Generations to Yield Optimal Con-
tours: ¿ 50.

• Average Number of Optimal Contours Yielded
in Final Generation: 0.2.

• Example result: A4, E5, D5, C5, D5, E5, D5, E5,
F5, C5, D5, E5, F5, E5, G#5, A5.



3.4 Experiment 3

• Key: A Minor (harmonic).

• Contour Length: 16 notes.

• Pitch Set: {A4, B4, C5, D5, E5, F5, G#5, A5}.
• Note Usage: 80%.

• Fixed Notes: {Pos 1=A4, Pos 15=G#5, Pos 16=A5}.
• Population Size: 100.

• Maximum Number of Generations: 50.

• Crossover Rate: 100%.

• Random Mutation Rate: 5%.

• Guided Mutation Rate: 5%.

• Stepwise motion rate: 80%.

• Leap Rate: 15%.

• Average Generations to Yield Optimal Con-
tours: 20.

• Average Number of Optimal Contours Yielded
in Final Generation: 3.

• Example result: A4, E5, D5, C5, D5, C5, E5, F5,
E5, F5, E5, F5, E5, A5, G#5, A5.

3.5 Experiment 4

• Key: A Minor (harmonic).

• Contour Length: 16 notes.

• Pitch Set: {A4, B4, C5, D5, E5, F5, G#5, A5}.
• Note Usage: 80%.

• Fixed Notes: {Pos 1=A4, Pos 25=E5, Pos 32=A5}.
• Population Size: 200.

• Maximum Number of Generations: 200.

• Crossover Rate: 90%.

• Random Mutation Rate: 5%.

• Guided Mutation Rate: 5%.

• Stepwise motion rate: 80%.

• Leap Rate: 15%.

• Average Generations to Yield Optimal Con-
tours: 70.

• Average Number of Optimal Contours Yielded
in Final Generation: 15.

• Example result: A4, B4, C5, D5, E5, A4, B4, A4,
E5, D5, A5, G#5, A5, C5, D5, C5, D5, C5, B4, C5,
E5, D5, E5, D5, E5, F5, E5, D5, E5, F5, E5, A5.

3.6 Experiment 5

• Key: A Minor (harmonic).

• Contour Length: 16 notes.

• Pitch Set: {A4, B4, C5, D5, E5, F5, G#5, A5}.
• Note Usage: 80%.

• Fixed Notes: {Pos 1=A4, Pos 25=E5, Pos 32=A5}.
• Population Size: 200.

• Maximum Number of Generations: 200.

• Crossover Rate: 50%.

• Random Mutation Rate: 20%.

• Guided Mutation Rate: 20%.

• Stepwise motion rate: 80%.

• Leap Rate: 15%.

• Average Generations to Yield Optimal Con-
tours: ¿ 200.

• Average Number of Optimal Contours Yielded
in Final Generation: 0.1.

• Example result: A4, B4, C5, D5, E5, A4, B4, A4,
E5, D5, A5, G#5, A5, C5, D5, C5, D5, C5, B4, C5,
E5, D5, E5, D5, E5, F5, E5, D5, E5, F5, E5, A5.

3.7 Experiment 6

• Key: A Minor (harmonic).

• Contour Length: 16 notes.

• Pitch Set: {A4, B4, C5, D5, E5, F5, G#5, A5}.
• Note Usage: 80%.

• Fixed Notes: {Pos 1=A4, Pos 15=G#5, Pos 16=A5}.
• Population Size: 200.

• Maximum Number of Generations: 200.

• Crossover Rate: 100%.

• Random Mutation Rate: 5%.

• Guided Mutation Rate: 5%.

• Stepwise motion rate: 80%.

• Leap Rate: 15%.

• Average Generations to Yield Optimal Con-
tours: 50.

• Average Number of Optimal Contours Yielded
in Final Generation: 25.

• Example result: A4, B4, C5, D5, F5, E5, D5, C5,
B4, A4, C5, B4, D5, A4, C5, B4, E5, D5, E5, F5, C5,
D5, C5, F5, E5, F5, E5, D5, E5, D5, C5, A5.



3.8 Some Observations

1. As expected, searches for longer contours require a
larger population and in some cases more generations
to produce a result. This can be easily correlated to
the immensely larger search space.

2. Low crossover rate values (albeit higher mutation rates)
hinder a successful search for optimal solutions. As the
crossover rate decreases, the GA effectively degener-
ates into a random search with is inadequate for such
large search spaces.

3. Very long optimal pitch contours can be discovered.
Optimal 64, 96 and 128–note pitch contours could be
found using the exact same parameters used in exper-
iment 4 above with the exception that for 128–note
melodies, more generations and a slightly larger popu-
lation size was required for the algorithm to converge
to one or more optimal solutions.

4. CONCLUSION
In the title of this paper we labeled the pitch contours we

sought to generate as viable. We associate the term viable
with whether a contour observes the rules imposed or not.
By observing these rules we could safely say that all viable
contours do sound melodic and flow smoothly. This obser-
vation can be intuitively demonstrated by listening to the
results of the algorithm. The issue of whether the contours
actually sound beautiful, or whether they express some kind
of emotion is another issue altogether. Whilst it is true that
certain compositional techniques can give melodies some
emotional character4, in this paper we have not considered
them and left the issue as a potential next topic of research.
We conclude this work by suggesting some techniques and
future projects than can augment the simple pitch contours
we generated here and use them as the basis of fully fledged
musical compositions:

• Apply note grouping techniques and rhythmic unit
presets to the pitch contour for it to become a complete
rhythmic melody line.

• Using species counterpoint techniques to enrich the
melody harmonically. Chord progression rules may be
derived by studying common progressions used in the
CPP.

• Observing cadences when harmonising the melody.

• Observing orchestration guidelines when determining
the relationships between voices.

• Using instrumentation principles when choosing in-
struments to play a given voice. For example certain
instruments possess timbres that lend themselves to a
more dramatic score.

4For example, it is a known ‘fact’ that composing in a major
key usually results in ‘happy sounding’ scores. Composing
in minor keys is usually associated with music of the more
’sad’ kind.
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