
A Brief Comparison of Real-Time Software Design
Methods

Tony Spiteri Staines
Dept. of Computer Information

Systems
University of Malta

staines@cis.um.edu.mt

ABSTRACT
This paper briefly attempts to compare several mainstream
methods/methodologies that are used for the analysis and design
of real time systems. These are i) CORE, ii) YSM, iii) MASCOT,
iv) CODARTS, v) HOOD, vi) ROOM, vii) UML, viii) UML-RT.
Methods i-iii are use a data driven approach, whilst methods iv-vii
use an object-oriented approach. All these methods have their
advantages and disadvantages. Thus it is difficult to decide which
method is best suited to a particular real-time design situation.
Some methods like YSM, MASCOT and CODARTS are more
oriented towards designing event driven systems and reactive
behavior. Object oriented methods like the UML have many
diagrams obtained from other methods. In the first part of the
paper each method is briefly presented and its main features are
explained. In the second part a score based ranking is used to try
to identify which method has the best overall characteristics for
real time development. The final results are presented in a tabular
form and using a bar chart. In addition to this it is explained how
each method fits in the SDLC. Both the score of each method and
how it fits in the SDLC must be considered when selecting
methods. To conclude some other issues are explained, because
the selection of one method does not automatically imply that
there will not be any problems.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/ Specifications –
Elicitation methods, Languages, Methodologies, Tools.

General Terms
Design, Measurement

Keywords
Real Time, software design methods, methodologies, systems
modeling, comparison of methods, data driven approach, object-
oriented approach, software development lifecycle, RT – real time

1. INTRODUCTION
Real Time systems are more complex than traditional systems.
Some real time systems demonstrate reactive behavior. They
have timing, communication and reliability requirements that are
not easily accounted for [10]. RT development involves not only

software engineering but also hardware engineering, control
engineering and communication engineering. Minor changes to
specifications could be very costly. Software programs embedded
directly into hardware controller and devices might require entire
rewriting. There are hardware configuration problems when
software engineers do not understand why specific processors,
devices and operating systems are needed. Specific
methodologies have been developed for helping the analysis and
design of RT systems. These were different from normal methods
because they had to focus on behavior and not just static system
properties. Methodologies do not guarantee solving all software
development problems although they attempt to structure the
analysis & development of RT systems applying design
techniques and rules. RT methodologies make use of the basic
concepts from structured analysis and design [3,4]. First
methodologies like MASCOT, JSD, DARTS were data-driven
based on principles from traditional structured analysis and design
[4,7]. Later work was to use object oriented notations. These offer
several advantages over the former methodologies like reuse and
a neater approach [2,9]. The OMG boosted the use of object
oriented methods for analysis and design through the UML and
UML-RT. Early versions of object oriented modeling lacked the
dynamic aspects of behavior and focused mainly on static and
structural aspects which were insufficient for real time. Later
models tried to combine object oriented notations with state
charts, activity diagrams, interaction diagrams or message
sequence charts now known as sequence diagrams in the UML.
Some authors compare software design methods with software
modeling notations. This is incorrect because a proper design
method should encompass the entire software development
lifecycle process. This is not the case with the UML where the
focus is on modeling a system rather than on managing the entire
software development. The OMG created USDP (Unified
Software Development Process) based on the UML notations. The
USDP is a proper methodology. Even the COMET (Concurrent
Object Modeling architectural design method) in [8] combines the
UML notations within a special lifecycle model. On the other
hand software notations are more generic and focus on particular
aspects of the design process. In system specifications there could
be the use of models or system views. These could be singular or
multiple, formal, semi-formal or informal, graphical or language
based [1]. Good specifications using UML constructs could be
used to derive specifications in the HDL (hardware description

language or ESDL (embedded systems description language) as in
[6].

2. OVERVIEW OF SOME METHODS
2.1 Controlled Requirements Expression
 The CORE (controlled requirements expression) method [4,5,12]
is based on block diagrams, viewpoint diagrams and written
statements of requirements. It was designed in the UK for the
requirements analysis phase and was widely used in avionics. It is
suitable for the informal process of gathering the systems
requirements that are expressed using informal notations like
block diagrams, viewpoint diagrams etc. It is very simple to use
and understand not involving any complex notations etc. This
approach is mainly data driven at a very high level but still could
be used in conjunction with object oriented analysis. There is
top-down decomposition into smaller parts. The CORE makes use
of viewpoint diagrams, thread/ dataflow diagrams and block
diagram notations. Control loops are available for use in the final
diagram. The idea of view points could prove to be important to
other methods and also for situations where requirements
specification proves to be difficult. The CORE method tries to
take a practical approach to problem identification at the earliest
possible stage. The diagrams used are quite simple and some form
of support could be obtained using modern case tools. The results
that are produced using this method can be used as the input for
another method. Some limitations are that: i) There is no
reference to timing, concurrency, synchronization, ii) Unsuitable
for Architectural design iii) No simulation model is produced.

2.2 Yourdon Structured Method
The YSM (Yourdon structured method) in [4] is based on the
classic DFDs and structured methods used for traditional data
design. It has been adapted and combined with many diagrams for
RT design. It has been developed and refined over the years and
many modern CASE tools can be used to support the notation.
YSM starts off from a high-level and decomposes the system into
lower levels ending up with complete program specifications.
Two embedded design Methodologies have been derived from
YSM. These are Ward-Mellor, Hatley-Pirbhai. This method can
being used in conjunction with diagrams like PEM(Processor
Environment Model) which is a hardware based design to help
decide on the hardware configuration. There is also the SEM
(Software-Environment Model). There are many different data
driven methods that make use of the principles in YSM and add
other diagrams. The PEM model and SEM are important because
as pointed out RT systems are highly dependant on the available
hardware which is normally ignored. YSM also uses DFDs,
STDs, E-R diagrams, textual specifications, structure charts etc
for design purposes. DFDs can be combined with STDs to
represent both continuous and discrete actions. The behavioral
model consists of DFDs, STDs & ERDs together with textual
support describing the requirements but having no
implementation details. The PEM covers the physical processors
deciding which processor should do which work and HCI details.
The COM involves translating the SEM units into structure charts
and refining them so that this can be translated into program code.
One advantage is that YSM is a highly structured data analysis
method. Some limitations are i) it is unsuitable for prototyping. ii)
it must be followed in logical sequence or sequential ordering for
successful implementation iii) It is possible to take a long time to

implement the complete system iv) user must have familiarity
with certain constructs. v) there is specific reference to timing
issues, concurrency etc although the diagrams can be altered to
support time.

2.3 Modular Approach to Software
Construction Operation and Test
MASCOT (Modular approach to software construction operation
and test) was first issued in 1970s by the Royal Signals and
Radar Establishment UK and successive versions MASCOT 3
exist [11]. It is mainly used for avionics and in the military field.
It is a highly modular rigorous approach based on hierarchical
decomposition to lower levels. MASCOT is based on processes or
activities in a system and aims at designing complex interactive
RT applications in a highly structured approach. Mascot focuses
on communication between different components and enforces
that a specification must be complete at every level. Interfacing
between modules is extremely well represented, thus even
concurrency and synchronization can be dealt with. The main
steps are i) Describe the overall internal functions of the system,
together with its external connections. This is known as the
Network Diagram. ii) The network is decomposed into lower-
level components iii) Define the structure of single thread
processes (transform). iv) Design and code simple components in
terms of algorithms and data structures. There are the following
rules i) processes cannot send data directly to other processes ii)
communication between different components can only take place
through channels or windows. iii) Intercommunication Data Areas
(IDAs) must be used for data exchange, information storage and
communication. Some limitations of Mascot are i) it does not
directly support requirements analysis and goes directly into
building a model ii) it is not widely supported via many case tools
iii) it is not suitable for prototyping or RAD iv) it is expensive to
apply.

2.4 Concurrent Design Approach for RT
Systems
CODARTS (Concurrent design approach for RT systems) is a
modified form of DARTS (Design approach for RT systems) [7].
CODARTS implements concepts from DARTS for an object-
oriented perspective. ADARTS was mainly aimed for use with the
ADA language. CODARTS uses notations from RTSAD (Real-
Time structured analysis and design). The diagrams used in
CODARTS are similar to control flow diagrams that use special
symbols for different types of message passing e.g. loosely-
coupled message communication, tightly-coupled message.
Possible diagrams are task architecture diagrams, software
architecture diagrams and STDs. CODARTS classifies message
passing into several types not normally found in other methods.
These are supposed to be easily implemented in ADA. Some
limitations of CODARTS are i) Designed mainly for the ADA
language. ii) Notations used are not well understood iii) Message
communication even though well identified still does not account
for concurrency, synchronization, mutual exclusion. iii) uses a
limited number of views.

2.5 Hierarchical Object Oriented Design
HOOD (Hierarchical Object Oriented Design) method covers
some parts of the software development lifecycle. It is mainly
aimed at the ADA language taking an object oriented approach. It
can be useful for prototyping. The idea behind HOOD is to

identify objects in a parent to child relationship and their
operations. Finally a graphical system description is to be
produced in a control/ dataflow diagram that shows the flow of
information between a set of objects. The diagrams can be
decomposed to the required levels. The Top-Level Object is an
active object because it uses the lower-level ones but not vice-
versa. Rules distinguish passive Objects from active Objects.
Certain flows are not permitted like cyclic flows. Limitations of
HOOD are : i) does not distinguish Data Flows between Objects
from Event Signals ii) Not so simple and straightforward to use
iii) Has just one main diagrammatic type thus just one model
structure is given.

2.6 Real time Object Oriented Modeling
ROOM (Real time object oriented modeling) is similar to HOOD
in principle but is more oriented to RT design and focuses on
proper communication between objects. ROOM introduces the
concept of Actors in ‘ROOMcharts’ which are a variation of
StateCharts (ROOMcharts define the state of an actor, signals
that initiate transitions between states, and actions performed at
transitions. There is a strong focus on this actor behavior. The
actor is anything that initiates a sequence of events. There is the
use of ‘ports’ for information exchange and threads that can have
a priority. Some limitations of ROOM are : i) Closely Tied with
one particular CASE tool called ‘ObjecTime’ which can generate
C++ code ii) It has a limited number of diagrams that show only
certain views of the system i.e. actor view. iii) Its diagrams need
to be supported with temporal analysis for complex systems.

2.7 The Unified Modeling Language
The UML can be considered to be a repository of notations
existing in methods like ROOM, HOOD, YSM, MASCOT, etc.
The name ‘unified’ implies a unification of modeling constructs.
E.g. UML state diagrams are simplified STDs, communication
diagrams are found elsewhere as interaction diagrams, sequence
diagrams are derived from MSC (Message sequence charts). It
contains notations that are lacking in other methodologies and
tries to standardize them and it is set to improve upon previous
notations. It is well supported by a variety of CASE tools when
compared to other methods and can be used by anyone without
formal knowledge. The main system views can be categorized
into i) static ii) behavioral. The UML is not a proper software
development method and can be combined with almost any
development method. Diagrams and notations used are Informal.
It is possible to use the OCL (Object Constraint Language) to
formalize the diagrams used. When a class uses operations by a
second class a control flow is set up. The UML does not
distinguish between the spatial distribution of objects and the
logical object distribution. Code generation can be done from
some UML diagrams like a class diagram. There are projects like
the ECLIPSE open source tool that supports many UML
constructs. There is a lack of standardization amongst the UML
CASE tools and UML versions giving rise to confusion about
which notations should be used. Some CASE tools providers have
created their own notations that differ from those in the UML.
Some limitations of the UML are : i) studies show that
maintaining UML diagrams can become a complex process ii)
UML lacks formal verification iii) the same thing can be modeled
in several different ways, all could be correct. So there is a lack of
consistency.

2.8 The UML-RT
UML-RT is based on extensions to the UML specifically aimed at
RT. The most important ‘new’ notations are mainly capsules,
ports, connectors and protocols. UML-RT implements some ideas
from HOOD, ROOM and MASCOT adding them to the normal
UML notations. E.g. the idea of capsule diagrams embedding
child objects is similar to HOOD Parent-Child object
relationships. The idea of active and passive ports already exists
in ROOM. The idea of using capsules to model complex objects
that are usually spatially distributed is similar to that of MASCOT
where components / devices are connected using windows, ports
and IDAs. Some limitations of UML-RT are i) not widely used
and supported. UML-RT includes all the modeling capabilities of
ROOM.

3. PRACTICAL ASSESSMENT OF THE
METHODS
These methods were measured on the attributes in table 1.and 2.
The final classification results are in table 3. i) Consistency
between notations refers to the consistency between the diagrams
used. The more notations there are the more difficult it becomes
to keep consistency. ii) Support for communication constructs
includes support for concurrency, synchronization, mutual
exclusion, signaling, communication control, the use of ports and
abstraction. iii) Support for resource control refers to the handling
of different system components with processing loops and activity
management, possibly used for performance management. iv)
Support for temporal requirements indicates the need to show the
different states the system or components can be in. Other issues
like CASE tool support, abstraction and also ease of use were also
considered.

Table 1. Method Comparison 1

METHOD CONSISTENCY
BETWEEN NOTATIONS

SUPPORT FOR
COMUNICATION

CONSTRUCTS

SUPPORT
FOR

RESOURCE
CONTROL

DIFFERENT
SYSTEM
VIEWS

CORE Very Good Poor Poor Average
YSM Very Good Poor Poor Average
MASCOT Very Good Excellent Very Good Poor
CODARTS Very Good Good Good Average
HOOD Very Good Average Good Poor
ROOM Very Good Good Very Good Poor
UML Poor Average Average Very Good
UML-RT Good Good Good Good
score method (poor = 1, average = 2 , good = 3, very good =4, excellent = 5

Table 2. Method Comparison 2

METHOD CASE TOOL SUPPORT ABSTRACTION /
INFO. HIDING &
COMPOSITION

SUPPORT
TEMPORAL

REQUIREMENTS

EASE OF
USE

CORE Very Good Average Poor Good
YSM Very Good Average Poor Good
MASCOT Poor Very Good Average Poor
CODARTS Good Average Average Average
HOOD Good Average Average Average
ROOM Good Good Very Good Average
UML Excellent Good Average Very Good
UML-RT Average Good Good Good
score method (poor = 1, average = 2 , good = 3, very good =4, excellent = 5)

Table 3. Final Method Score

Fig. 1 below depicts the final results for the
methods/methodologies commonly used for real time software
development. The results are obtained from the data in table 3.

0 5 10 15 20 25 30

ROOM

UML

UML-RT

MASCOT

CODARTS

HOOD

CORE

YSM

Score

Figure 1. Real Time Method Ranking Bar Chart

Fig. 2 depicts how each method would actually fit in the SDLC (
systems development lifecycle) process. The main steps included
are requirements analysis, requirements specification, logical
design, physical design, coding and testing. Obviously coding
would imply integrating the components through interfaces etc.
This is based on my own observations with reference to
[3,4,7,8,9,12] and also practical use of some of these methods.

Figure 2. Methods vs SDLC phases

4. DISCUSSION
The results of this comparison in fig. 1 show that ROOM, UML
and UML-RT rank as the three best methods for the development
of RT systems. UML has the advantage of gaining widespread use
and a lot of work is being done to improve UML continuously.
ROOM and UML-RT whilst being suitable for describing
complex RT systems, unfortunately lack widespread support of
many CASE tools and require time to master. Another advantage
of UML is that some UML diagrams are applied in a MDA
approach and used to create PIM [6]. It is not justifiable that only
one particular method is used. E.g. other methods like MASCOT
embody principles that are still valid today and have been
implemented in part in ROOM. UML does not have proper
control flow diagrams similar to those found in YSM and
CODARTS. These are important for designing command and
control and embedded system tasks. UML instead uses activity
diagrams or communication diagrams. Activity diagrams are more
adequate for business analysis, communication diagrams lack
some detail and need modification on the other hand control flow
diagrams are oriented to task management, reactive behavior and
control. This could indicate that UML is more oriented towards
building soft- real time systems like those used in e-commerce ,
agent architectures, workflow systems, etc. On the other hand
CODARTS and YSM would be more suitable for things like
avionics, a cruise control description etc. Another problem with
the UML is that there are so many notations that it is often
difficult to select what is really needed. E.g. Sequence diagrams
and communication diagrams are semantically equivalent. When
should one use one rather than the other? Also there are several
ways in UML how to represent the same thing. Thus it is possible

Method Ranking Score
ROOM 24
UML 23

UML-RT 23
MASCOT 22

CODARTS 21
HOOD 19
CORE 18
YSM 17

to have different diagrams of the same type representing the same
scenario. In methods like the UML, ROOM, HOOD the
messaging topology between objects is often ‘loosely defined’
with the possibility of having confusion.
It is obvious that what is lacking in one method might exist in
another method. Object oriented methods are not a complete
guarantee that there will be reusable components that will be
available at a cheaper price especially if the interface needs to be
rewritten. RT systems depend heavily on available hardware and
might be operating system specific. This would imply that the
design pattern is already biased from the onset of the project.
All the methods mentioned do not use proper formal verification
techniques. Formal verification could be very important for
checking that a design is free from deadlock. A lot of work is
being done to try to formalize the UML like in [13]. There are
also issues of performance analysis and task scheduling that need
to be accounted for. CODARTS notations have already been used
for performance analysis and task scheduling. The UML lacks
performance analysis and does not take time into account.
Actually the timing problem for many methods can be partially
solved by translating dynamic UML diagrams into timed Petri
Nets or using timed automata. The UML has been criticized by
various authors. Note that even though ROOM is bound to a
particular case tool its diagrams can easily be supported with
other conventional case tools thus it has good case tool support.
The diagram in fig. 2 simply describes how each method fits in
the systems development lifecycle process. These issues need to
be considered when using these methods. If the focus is more on
requirements engineering CORE could prove to be better than the
others. CORE is the most adequate for requirements analysis and
specification. HOOD, CODARTS and YSM cover part of the
requirements analysis up to coding. MASCOT is more oriented
towards the design, implementation phase and testing. The UML
can be used for requirements analysis and can cover a wide aspect
of the systems development lifecycle but it needs to be used in
COMET or the USDP process. It could also be possible to
combine CORE with UML. ROOM can cover up to testing
depending on how it is used but it is not focused on the initial
requirements analysis. What is evident is that no method covers
all the required steps. This illustrates that for RT development
one never be restricted to using a single method.

5. CONCLUSION
This paper has compared several methods for the analysis and
design of real time systems. Although ROOM , UML, UML-RT
stand out clearly as being the best on a number of attributes, in
real life it is better not to be restricted to a single method. E.g.
when students are using a method like the UML for their APT s it
is always suggested that other notations from another method can

be used. This is especially the case if there is a problem that
requires some explanation. If using another notation or diagram
would help then why not use it. A synonymous approach could be
considered for industrial use. There are also other specific factors
that need to be considered when selecting a method, like i) the
type of industry involved, ii) user specialization, iii) if formal
verification is required iv) reliability and safeness. It must be kept
in mind that the results established in this paper are based on the
set of attributes in table 1 & 2 might not be fully agreed upon by
everybody.

6. REFERENCES
[1] Bennet, D. Designing Hard Software. Manning, 1996.
[2] Booch, G. Object-Oriented Design with Applications, 2d ed.

Reading, Mass.: Addison-Wesley, 1991.
[3] Burns, A., Wellings, A.. Real-Time Systems and

Programming Languages.Addison-Wesley, 2001.
[4] Cooling, J. Software Design for Real-Time Systems.

Chapman & Hall, U.K.,1995.
[5] CORE, Controlled Requirements Expression (1986). System

Designers plc, Fleet Hampshire, GU13 8 PD, UK document
no.1986/0786/500/PR/0518.

[6] Coyle, F.P., Thornton, M.A. From UML to HDL: a Model
Driven Architectural Approach to Hardware-Software Co-
Design, Information Systems: New Generations Conference
(ISNG), Apr 2005, pp. 88-93.

[7] Gomaa, H. Software Design Methods for Concurrent and
Real-Time Systems.Addison-Wesley, USA, 1996.

[8] Gomaa, H. Designing Concurrent, Distributed and Real-
Time Applications with UML. Addison-Wesley, USA, 2004

[9] Graham, I. Object Oriented Methods. Addison-Wesley, USA
2000.

[10] Liu, J.W.S. Real-Time Systems, Pretence Hall, 2000.

[11] MASCOT, The Official Handbook of MASCOT. Joint
IECCA and MUF Committee, 1987.

[12] Mullery, G.P., CORE - a method for controlled requirement
specification. ,ACM International Conference on Software
Engineering Proceedings of the 4th international conference
on Software engineering, Munich Germany 1979 , pp.126 –
135.

[13] Saldhana, J.A., Shatz, S.M., Hu, Z.Formalization of Object
Behavior and Interaction From UML Models. International
Journal of Software & Knowledge Engineering, 11(6), 2001,
pp. 643-673.

	Anthony Staines

