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Slow waves represent one of the prominent EEG signatures of non-rapid eye movement (non-REM) sleep and are thought to play an
important role in the cellular and network plasticity that occurs during this behavioral state. These slow waves of natural sleep are
currently considered to be exclusively generated by intrinsic and synaptic mechanisms within neocortical territories, although a role for
the thalamus in this key physiological rhythm has been suggested but never demonstrated. Combining neuronal ensemble recordings,
microdialysis, and optogenetics, here we show that the block of the thalamic output to the neocortex markedly (up to 50%) decreases the
frequency of slow waves recorded during non-REM sleep in freely moving, naturally sleeping-waking rats. A smaller volume of thalamic
inactivation than during sleep is required for observing similar effects on EEG slow waves recorded during anesthesia, a condition in
which both bursts and single action potentials of thalamocortical neurons are almost exclusively dependent on T-type calcium channels.
Thalamic inactivation more strongly reduces spindles than slow waves during both anesthesia and natural sleep. Moreover, selective
excitation of thalamocortical neurons strongly entrains EEG slow waves in a narrow frequency band (0.75–1.5 Hz) only when thalamic
T-type calcium channels are functionally active. These results demonstrate that the thalamus finely tunes the frequency of slow waves
during non-REM sleep and anesthesia, and thus provide the first conclusive evidence that a dynamic interplay of the neocortical and
thalamic oscillators of slow waves is required for the full expression of this key physiological EEG rhythm.

Introduction
Slow waves and their neuronal counterpart, the cortical and tha-
lamic oscillations between depolarized UP states and hyperpolar-
ized DOWN states (Steriade et al., 1993a; Contreras and Steriade,
1995; Petersen et al., 2003; Sirota and Buzsáki, 2005; Crunelli et
al., 2012), are the main EEG hallmark of non-rapid eye move-
ment (non-REM) sleep (Crunelli and Hughes, 2010; Brown et al.,
2012) and are also observed during anesthesia (Chauvette et al.,
2011). The physiological importance of these waves of natural
sleep is emphasized by their ability to group together other EEG
rhythms of non-REM sleep (Steriade, 1997) and by their putative
role in the consolidation of recently acquired memories (Tononi
and Cirelli, 2001; Marshall et al., 2006; Ji and Wilson, 2007).

The mechanisms underlying the generation of EEG slow
waves, however, remain controversial. Because (1) lesions of tha-
lamic nuclei do not suppress slow waves in anesthetized cats (Ste-
riade et al., 1993b) and (2) UP and DOWN states are recorded in
neocortical slices (Sanchez-Vives and McCormick, 2000; Cossart
et al., 2003) and in an isolated cortical gyrus in vivo during anes-
thesia (Timofeev et al., 2000), these EEG slow waves are exclu-
sively and consistently viewed as a cortically generated rhythm
(Sanchez-Vives and McCormick, 2000; Timofeev et al., 2000;
Chauvette et al., 2011; Brown et al., 2012). However, (1) increas-
ing thalamic inhibition alters EEG slow waves in anesthetized rats
(Doi et al., 2007) and suppresses whisking-induced cortical UP
states in head-restrained mice (Poulet et al., 2012); (2) UP and
DOWN states, and associated slow waves, can be recorded in
thalamic slices (Hughes et al., 2002, 2004; Blethyn et al., 2006);
and (3) selective thalamic degeneration modifies slow waves of
non-REM sleep in humans (Gemignani et al., 2012). These find-
ings, together with other mechanistic in vitro studies and investi-
gations in anesthetized animals (for review, see Crunelli and
Hughes, 2010), question the current corticocentric view of slow
wave generation and led us to suggest that the full expression of
these EEG waves of natural sleep requires a dynamic interplay of
cortical and thalamic oscillators (Crunelli and Hughes, 2010).
Unfortunately, the resolution of this controversy is still ham-
pered by the lack of any study that has directly and systematically
addressed this issue in unrestrained, naturally waking-sleeping
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animals. Moreover, our current mechanistic knowledge of slow
waves of natural sleep continues to be clouded by the speculative
extrapolations of findings obtained in anesthetized conditions.

Using a combination of neuronal ensemble recordings,
thalamus-selective pharmacological inactivation, and optoge-
netic activation of thalamocortical (TC) neurons in naturally
sleeping or anesthetized rats, here we show, for the first time, that
the thalamus is required for finely tuning the frequency of slow
waves during non-REM sleep and anesthesia. Moreover, we dem-
onstrate that the entrainment of EEG slow waves by selective
thalamic activation is dependent on T-type calcium channels.
Together, these results provide the first conclusive evidence that
cortical and thalamic oscillators are necessary for the full expres-
sion of slow waves of non-REM sleep.

Materials and Methods
All experimental procedures were performed in accordance with the
United Kingdom Animals (Scientific Procedure) Act 1986 and local eth-
ics committee guidelines. All efforts were made to minimize animal suf-
fering and the number of animals used. Experiments were performed on
male adult Wistar rats (260 – 400 g, Harlan Laboratories), maintained on
a normal diet and under a 8:00 A.M. to 8:00 P.M. light-on regimen.

Experiments in anesthetized rats
Surgery. After anesthesia induction with 5% isoflurane, rats received an
intraperitoneal injection of ketamine (120 mg/kg) and xylazine (20 mg/
kg). Anesthesia was then maintained with a constant flow of ketamine
(42 mg/kg/h) and xylazine (7 mg/kg/h) delivered via an intraperitoneal
catheter connected to a pump (NewEra NE-300 syringe pump). Body
temperature was maintained at 37°C with a heating pad and rectal probe.
Rats were implanted with gold-plated skull screws (diameter 1 mm,
length 3 mm) for EEG recordings in S1: anteroposterior (AP) � �2.2
mm, mediolateral (ML) � �5.5 mm from bregma (Paxinos and Watson,
2007). An additional screw (ground electrode) was placed anterior to the
bregma, and two other screws above the cerebellum were used as refer-
ence electrodes for EEG and thalamic recordings.

For measuring the spatial extent of the action of 3,5-dichloro-N-[1-(2,2-
dimethyl-tetrahydro-pyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-

benzamide (TTA-P2), a potent and selective T-type channel antagonist
(Uebele et al., 2009; Dreyfus et al., 2010), or of the sodium channel blocker
TTX in the thalamus (i.e., see experiments illustrated in Fig. 3), a 1 mm hole
was drilled unilaterally above the ventrobasal thalamic nucleus (VB), the
dura was carefully removed, and a 32-channel silicone probe (10 mm length,
0.6 mm width, 1–4 M�) with four shanks (200 �m recording point distance,
15 �m thickness) (NeuroNexus Technologies) was slowly lowered in the VB
(dorsoventral [DV] � �4.5 to �5.5 mm). A second hole in the same hemi-
sphere was used to slowly lower (200 �m every 5 min) a microdialysis probe
(CMA 12 Elite, 2 mm dialysis membrane length, 20 kDa cutoff, with a 16°
angle with respect to the vertical axis; see Fig. 3A) to a final position that was
between 0.05 and 1 mm away from the silicone probe. The 16° angle posi-
tioning of the dialysis probe was dictated by the space constraints of the
silicone and dialysis probes connecting devices on the animal skull.

For measuring the effect of TTX and TTA-P2 (applied by microdialysis
in the VB) on slow and spindle waves during anesthesia (i.e., see experi-
ments illustrated in Fig. 4), EEG electrodes were implanted as above, and
two microdialysis probes (one in each VB) were slowly lowered fully
vertically until their tips rested 6.5 mm below the skull (i.e., in the most
ventral part of the VB). In some rats, a silicone probe was also inserted
unilaterally in the VB with a 16° angle with respect to the vertical axis.

For measuring the effect of systemic TTA-P2 injection (i.e., see exper-
iments illustrated in Fig. 5), rats were implanted with EEG electrodes and
a unilateral silicone probe in the VB (as described above).

Systemic and microdialysis solutions. For intraperitoneal injection, TTA-P2
was dissolved in saline containing 4% DMSO and the pH adjusted with
potassium hydroxide (1 mM). Control intraperitoneal injections contained
4% DMSO in saline. For reverse microdialysis injection, TTA-P2 was dis-
solved in aCSF with 4% DMSO. Tetrodotoxin citrate (TTX) was dissolved in
aCSF. Flow rate of the microdialysis injection was set at 1 �l/min.

Injections. For the systemic injections, once stable EEG slow waves
were recorded for at least 30 min and high amplitude well isolated units
were present in some of the silicone probe channels, a control period of at
least 40 min was recorded before injecting intraperitoneally either saline/
DMSO or TTA-P2 while continuing recording for at least another 2 h.
For intrathalamic drug application, reverse microdialysis injection of
aCSF was initiated as soon as the microdialysis probes were in position,
and continued for at least 1 h before electrical recordings commenced.
Once stable, high-amplitude, well-isolated units could be recorded from

Figure 1. Properties of high-frequency bursts in VB TC neurons during ketamine-xylazine anesthesia and natural sleep. A, B, Local field potential in VB during anesthesia (A) and natural sleep (B).
*Bursts. C, Burst properties of a representative TC neuron in the VB during anesthesia: ISIs for different burst lengths (left), and distribution of interburst intervals (IBI) (right) (n � 5102 bursts). D,
Same as C for a different representative TC neuron in the VB during natural sleep (n � 825 bursts). C, D Insets, Representative bursts. E, F, Population data, as in C and D, for n � 85 and n � 9 TC
neurons from n � 18 anesthetized and n � 3 naturally sleeping rats, respectively.
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some of the silicone probe channels, recording of a control period of at
least 40 min was initiated. This was followed either by continuation of
aCSF application or the inlet tubing was switched to a solution contain-
ing either TTX or TTA-P2. Recordings and dialysis application then
continued for at least 1 h. At the end of the recording session, rats were
transcardially perfused.

Recordings. Thalamic signals were amplified with an Omnetics pream-
plifier (gain 20, bandwidth 0.8 Hz to 54 kHz) and a Plexon recorder/64
channel amplifier (gain 7500 –12,500, bandwidth 1– 6000 Hz, Plexon).

The EEG signal was amplified with a combination of SuperTech Bio-
AMP (Pecs) pre- (bandwidth 0.1–500 Hz) and main-amplifiers (band-
width DC to 500 Hz). When combined unit and EEG recordings were
made, signals were digitized with a Plexon recorder/64 system at 20 kHz
with 16-bit resolution. EEG recordings were digitized using the Plexon

recorder input via the IP16 event input break-
out panel. The digitized data were converted to
Spike2 format (version 5.13, CED). For all fur-
ther analyses, data were converted to a raw bi-
nary format using tools of the freely available
Klusters, Neuroscope, and NDManager soft-
ware suite (Hazan et al., 2006). EEG data were
low-pass filtered with a windowed sinc filter
at 100 Hz and downsampled to 200 Hz.

Experiments in freely moving rats
Surgery. Rats were anesthetized and implanted
with EEG electrodes, as described above, and an
EMG electrode was positioned in the neck mus-
cle. Two or four microdialysis guide cannulae
(one or two in each VB, respectively) (i.e., see
experiments illustrated in Fig. 6 for two probes in
each VB) were slowly lowered fully vertically so
their tip was just above the VB (DV � �4.4 mm)
(Paxinos and Watson, 2007). When two guide
cannulae were inserted in each VB, their AP co-
ordinates were as follows: �2.6 and �3.8 mm
(Paxinos and Watson, 2007). Both EEG elec-
trodes and guide cannulae were fixed to the skull
with dental acrylic cement. Rats were allowed at
least 7 d to recover from surgery (single housed)
and to habituate to the recording cage (4 h/d). At
the end of the recording sessions, rats were tran-
scardially perfused.

Injections. For the systemic injections, on the
day of the experiment rats were transferred to
the recording cage, connected to the electrical
recording and microdialysis apparatus (as ap-
propriate), and allowed to move freely in their
cage for at least 1 h before any recording com-
menced. A control period of 1.5 h was then
recorded before an intraperitoneal injection of
either saline or TTA-P2 was made while con-
tinuing recording for at least another 2 h. Four
days were allowed between two consecutive
recording days in each rat. For intrathalamic
drug application, 24 h before recording, mi-
crodialysis probes were slowly inserted into
the brain to replace the dummy probe in the
guide cannulae. On the day of the experi-
ments, rats were transferred to the recording
cage and connected to the dialysis probes and
electrical recording apparatus. aCSF dialysis
was initiated immediately while the rats were
allowed to habituate for 1 h. A control period
of 2.5 h was then recorded while administer-
ing aCSF (same conditions as described for
the anesthetized condition). Animals were
then recorded for an additional 2 h while
receiving either aCSF or drug-containing
aCSF (in a random order on consecutive re-

cording days, each separated by at least 4 d). Video recording was
performed simultaneously with electrical recordings in all experi-
ments in freely moving rats.

TTA-P2 levels in the VB. The concentration of TTA-P2 in samples
taken from the inlet and outlet dialysis tubes was measured, following
protein precipitation with acetonitrile, by liquid chromatography-mass
spectrometry under a validated analytical protocol (Shipe et al., 2008;
Uebele et al., 2009). TTA-P2 concentration in the brain tissue outside the
dialysis membrane was estimated according to the equilibrium equation
described previously (Chan and Chan, 1999).

Optogenetics
Viral injection. pAAV-CaMKII�-hChR2(H134R)-mCherry plasmids (K.
Deisseroth laboratory, Addgene plasmid 26975) were packaged into recom-

Figure 2. Detection of slow and spindle waves. A, Representative EEG wavelet power spectrum of slow wave frequency band
(0.2– 4.5 Hz) during ketamine-xylazine anesthesia. B, Representative EEG broadband power spectrum. Dashed lines indicate the
frequency band shown in A. C, Expanded EEG trace (black) (from time period marked in A with arrow) illustrating the identification
of slow waves (green circles) by means of negative to positive zero-crossing detection on the 0.2– 4.5 Hz bandpass-filtered signal
(green trace). Waves with peak-to-peak amplitude (red triangles to blue triangles) of �60% of the mean peak-to-peak amplitude
were discarded. D, Autocorrelogram of EEG slow waves detected as shown in C from the first 20 min of data shown in A. E,
Representative raw (middle), 5–12.5 Hz bandpass-filtered (bottom) EEG traces showing spindle waves (black arrows) and wavelet power
spectrum (top) with detected spindle wave episodes (green lines) during anesthesia. F, Average frequency distribution of spindles during
anesthesia (n�7 rats). G, H, Data for spindles during natural sleep are illustrated in the same format as E and F, respectively (n�6 rats).
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binant AAV2 vectors and serotyped with AAV1
coat proteins. Viral suspensions were titered to
1.14 � 1013 genome copies/ml (GC) (University
of Pennsylvania Vector Core). Concentrated
stock virus was diluted with 0.1 M PBS tinted with
Fast Green FCF (Sigma), giving a final viral con-
centration of 5.70 � 108 to 2.28 � 109 GC/�l for
injection. The dorsal surface of the skull was ex-
posed, a small craniotomy made over one VB
(AP��3.14 mm, ML�2.80 mm from bregma)
(Paxinos and Watson, 2007), and the dura re-
flected. A 10 �l Gastight Hamilton syringe and 34
Ga needle were front filled with mineral oil and
diluted virus. Needles were then lowered slowly
into the thalamus (DV � �5.75 mm from the
pia) and left in place for 10 min. A 1 �l virus
(5.70 � 108 to 2.28 � 109 infectious units) was
injected at a rate of 100 nl/min using a program-
mable micro-pump (UMP3–1, WPI) and al-
lowed to disperse for a further 10 min before the
needle was slowly retracted. Rats were then indi-
vidually housed and allowed to recover with ad
libitum access to food and water for a minimum
of 3 weeks to allow viral gene expression.

Optical stimulation and recording. Rats pre-
viously injected with rAAV-CaMKII�-hChR2
(H134R)-mCherry were anesthetized and EEG
screws and two microdialysis probes (one in
each VB) were implanted (as above) with a 16°
angle with respect to the vertical axis. A 200 �m
multimode (0.39 NA) optic fiber (CFM12L20;
Thorlabs) was custom-glued to a 32-channel
silicone probe, with the fiber tip �400 �m
above the top recording sites. The fiber ferrule
was connected to a compatible patch-cord and
473 nm laser diode (70 mW Stradus; Vortran
Laser Technology), and the silicon probe and
EEG wires connected to a Digital Lynx 10SX
recording system (with Hybrid Input Boards;
Neuralynx) via HS-36 unity gain preamplifiers.
One optrode was slowly lowered to just above
one VB, 300 �m posterior and medial to the
virus injection site (AP � �3.44 mm, ML �
2.50 mm from bregma) (Paxinos and Watson, 2007), and DV � �4.60
mm from the pia, and then moved in small steps to locate light-
responsive ChR 2	 cells exhibiting characteristic TC neuron bursts (see
experiments illustrated in Figs. 9 and 10). Extracellular action potentials
(sampling frequency: 32 kHz per channel, filtered from 600 Hz to 9 kHz),
continuous extracellular signal (sampling frequency: 32 kHz per channel
and broadband filtered from 0.1 Hz to 9 kHz), EEG signals (sampling
frequency: 4 kHz, filtered from 0.1 Hz to 1 kHz), and light stimulation
events were simultaneously recorded using Cheetah 5 Data Acquisition
software (Neuralynx). Digital laser modulation was controlled with
pClamp software and a 1322A Digidata (Molecular Devices), synchro-
nized with the Digital Lynx 10SX. Laser output power for 5, 20, and 100
ms pulses was 40 mW, which equated to �10 mW at the fiber tip (de-
pendent on stimulation frequency), quantified with a digital power me-
ter and photodiode sensor (PM120D; Thorlabs).

Data analysis
Spike sorting and data preprocessing were performed with the Klusters,
Neuroscope, NDManager software suite (Hazan et al., 2006). All other
analyses were performed with routines based on the free toolboxes SciPy
0.8 (Jones et al., 2001), OpenElectrophy 0.2 (Garcia and Fourcaud-
Trocmé, 2009), running under Python 2.6.6 and MATLAB (R2010b,
MathWorks) on a 64-bit Linux computer.

Data preprocessing and spike sorting. To extract spikes from the extracellu-
lar field potential, the signal was high-pass filtered with median filter (0.5 ms
window half-length). Spikes were detected by thresholding at 1.2 SD and

clustered by an expectation maximization algorithm (Klustakwik; Harris et
al., 2000) on the basis of their first three principal components. All results of
the automatic clustering were verified post hoc by visual inspection. Units
were excluded from further analyses if more than one high amplitude cell
was present on a single channel, if their autocorrelogram did not show a
refractory period of at least 2 ms, and if their spike amplitude markedly
changed during the experimental session.

Burst analysis. Bursts were defined as two or more spikes that were pre-
ceded by at least 100 ms of silence and had interspike intervals (ISIs) �10 ms,
and were visually examined post hoc. For each burst, the following parame-
ters were calculated (Fig. 1): (1) ISI, (2) interburst interval, (3) number of
spikes per second in 5 min windows (spike rate), (4) number of bursts per
second in 5 min windows (burst rate), (5) ratio of all spikes taking part in a
burst, (6) number of spikes in each burst, and (7) ISI as a function of the ISI
number within a burst (i.e., burst signature). Units with a decelerando burst
signature (Fig. 1C,D) were classified as TC neurons, whereas those with a
burst signature and spike autocorrelogram typical of thalamic reticular neu-
rons (Huguenard and Prince, 1992) were discarded.

Detection of slow waves and spindles under anesthesia. To quantify EEG
slow waves beyond power spectral analysis, a slow wave detection algo-
rithm similar to those described previously (Mölle et al., 2009; Nir et al.,
2011) was implemented (Fig. 2A–D). On the 0.2 to 4.5 Hz bandpass-
filtered signal, all negative to positive zero-crossings were detected as
slow waves. To discard spurious slow waves, the local minimum and
maximum around a crossing were determined. If the difference between
these was �60% of the mean maximum-to-minimum distance, the slow

Figure 3. Block of TC neuron firing by TTA-P2 directly applied by reverse microdialysis in the thalamus under anesthesia. A,
Coronal brain section showing the position of a microdialysis (DP) (inserted with a 16° angle with respect to the vertical axis, see
Materials and Methods) and a silicone probe (SP) in the VB, both stained with a red fluorescent dye. B1, Distance–response curve
of TTA-P2-elicited block of high-frequency bursts in VB TC neurons (n � 533 neurons from 37 rats). Burst rate was measured
between 50 and 60 min from the start of TTA-P2 or TTX dialysis. Data are normalized to the burst rate measured during the last 10
min of the preceding 1 h of aCSF dialysis (see Materials and Methods). Different TTA-P2 concentrations are color-coded as illus-
trated and refer to the drug concentration in the inlet dialysis tube. There is similarity in the action of 1 and 3 mM TTA-P2. The effect
of TTX is also depicted (n � 33 neurons from 11 rats). B2, Same as B1, but for total TC neuron firing (i.e., high-frequency bursts plus
single action potentials). C, Distance dependence of time of half-block of high-frequency bursts by VB microdialysis of 300 �M

TTA-P2 (top) and of time of half-block of total firing by VB microdialysis of 50 �M TTX (bottom). Black lines indicate the best fit of
a fourth-order parabolic function. D, Schematic brain drawing (from Paxinos and Watson, 2007) showing that the area of burst
firing block achieved with the dialysis of 300 �M TTA-P2 (green) (calculated from the data shown in B2) covers almost the entire
VB. Only a small increase in the area of block (which now covers a small portion of the NRT) is achieved with 3 mM TTA-P2 (red). This
drawing assumes a fully vertical position of the dialysis probe as it was used for all the experiments described in Figures 4, 5, 6, and
7. E, In vivo recovery of TTA-P2 applied by dialysis (n � 6 rats for both concentrations), which was estimated using the formula
([X]in � [X]out)/[X]in, where [X]in and [X]out are the TTA-P2 concentration in the inlet and outlet dialysis tubes, respectively (Chan
and Chan, 1999).
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wave was discarded. For the analysis of UP and DOWN state duration,
the periods above and below the midpoint of the DOWN to UP transi-
tions in the bandpass-filtered signal were labeled as UP and DOWN
states, respectively. States with a magnitude of �25% of the average
magnitude during the control period were discarded and the neighboring
states of equal type (UP or DOWN) merged. Spindle waves were detected
in the frequency range 5–12.5 Hz (Fig. 2 E, F ).

Spectral analysis. Power spectral densities were estimated with Welch’s
average periodogram method using a Hanning window with length of
4096 data points. Total power in a frequency band was determined as the
integral over that frequency band.

Detection of non-REM sleep epochs. The power of the EEG signal be-
tween 0.5 and 4 Hz was computed for every 10 s of recording. If the
calculated power was higher than twice the power calculated during a
period of active wakefulness, the 10 s epoch was classified as non-REM
sleep. To ensure detection reliability and behavioral state stability over
the selected periods, only consecutive epochs of sleep lasting at least 60 s
were included in further analysis.

Detection of slow waves and spindles during natural sleep. The EEG
signal was convolved with complex Morlet wavelets of 2.5 cycles for sleep

spindles and 1.0 cycle for slow waves at a fre-
quency resolution of 0.1 Hz for spindles and
0.01 Hz for slow waves (Kronland-Martinet et
al., 1987). Using a wavelet ridge extraction
method, each oscillatory epoch of the EEG was
extracted with an energy threshold to detect its
beginning and end (see Figs. 2G, 6A, and 7A)
(Roux et al., 2007; Garcia and Fourcaud-Trocmé,
2009). The boundary frequencies of wave detec-
tion were chosen as from 0.5 to 4 Hz for slow
waves (see Fig. 6B) and from 6 to 14 Hz for spin-
dle oscillations (see Fig. 2G,H). The threshold
was defined as 3 times the average energy during a
non-REM sleep period during the control
session. Slow and spindle waves with �2 and
3 cycles, respectively, were discarded. When
overlapping oscillations were detected, the wave
with the highest energy was selected.

Statistical analysis. Group comparisons were
performed using the Mann–Whitney U test.
Paired data were tested with Wilcoxon’s signed
ranks test. All quantitative data in figures and
text are given as mean � SEM.

Histology
Electrode and microdialysis probe tracking.
Before insertion, silicone and microdialysis
probes were immersed for 1/2 h and 5 min,
respectively, in a 1% Vybrant Dil (Invitrogen)
dye solution. At the end of the experiment, rats
were injected with a lethal dose of urethane
(40%), and the brains were removed and
placed in a 4% PFA solution for 48 h. The
brains were then transferred and stored in a 0.1
M PBS. Sections (100 �m thick) containing the
VB were cut with a vibratome (Leica VT1000S)
and mounted on coverslips to measure the rel-
ative position of microdialysis and silicone
probes, which were visualized using a fluores-
cent microscope (Leica).

Immunofluorescence. Rats were given an over-
dose of ketamine-xylazine and transcardially per-
fused with 4% PFA. Brains were fixed in 4% PFA
and then cryoprotected in 20% (w/v) sucrose in
0.1 M PBS. Each brain was blocked to give coronal
sections, mounted onto a freezing microtome
(Leica), and cut into 50 �m sections. Free-
floating sections were processed for NeuN and
RFP immunofluorescence. Briefly, sections were
washed 3 � 10 min with fresh 0.1 M PBS and

blocked for 1.5 h in 1 � PGT [0.1 M PBS, 3% NGS, and 0.2% Triton X-100
(Sigma-Aldrich)]. Sections were gently shaken at room temperature for 2 h,
then overnight at 4°C with primary antibodies against both NeuN (1:500
mouse monoclonal, Millipore), and RFP (1:1000 Living Colors DsRed rabbit
polyclonal, Clontech) in 1 � PGT. Sections were rinsed 3 � 10 min with
fresh 0.1 M PBS and incubated for 2 to 3 h at room temperature with 1:200
goat anti-mouse AlexaFluor-488 (Invitrogen) and 1:200 goat anti-rabbit
AlexaFluor-594 (Invitrogen) secondary antibodies in 1 � PGT. Sections
were washed 3 � 10 min in fresh 0.1 M PBS and mounted onto gelatin-
subbed Superfrost Plus microscope slides (Thermo Scientific). Slides were
coverslipped with VectaShield fluorescent mounting medium (Vector Lab-
oratories) and visualized using a fluorescence microscope (Leica).

Results
Effect of thalamic inactivation on slow waves
during anesthesia
We first abolished the somatosensory thalamic output to the cor-
tex by bilateral reverse microdialysis of TTX in the ventrobasal thal-
amus (VB) of ketamine-xylazine anesthetized rats, while

Figure 4. Block of thalamic firing decelerates EEG slow waves during anesthesia. A, Spike raster plots (top three traces; *bursts)
from 3 VB TC neurons and EEG from S1 (bottom trace) show the effects of 50 �M TTX and 300 �M TTA-P2 dialysis in the VB. The
predominant burst firing during aCSF is virtually abolished by TTX and TTA-P2, an effect accompanied by slowing of the EEG
rhythm. B, Event-triggered averages of raw EEG traces centered on the middle point of DOWN to UP state transitions were
calculated after 1 h of aCSF, TTX, and TTA-P2 dialysis (n � 438, 243, and 222 transitions, respectively). C, Normalized (to predrug
period), time-dependent decrease of slow waves by TTX (n�5) and TTA-P2 (n�5) (drug dialysis starts at 0). D, EEG power spectra
60 min after start of drug dialysis. E, Normalized (to predrug period), time-dependent reduction of spindle waves by TTX and
TTA-P2. C–E, Solid lines indicate the mean; color shadings indicate SEM. In this and the following figures, illustrated drug concen-
trations during microdialysis are those of the inlet dialysis tube (for brain concentration delivered by dialysis probes, see Fig. 3E). In
this experiment and those depicted in Figures 5, 6, and 7, the dialysis probes were inserted in a fully vertical position.
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simultaneously recording slow waves from
primary somatosensory cortex (S1) and the
firing of different single TC neurons in the
VB. TTX abolished action potentials in TC
neurons around the VB injection site (pre-
drug: 2.51 � 0.11 spikes/s, TTX: 0.001 �
0.002, n � 11 rats, n � 33 neurons, p � 107,
Wilcoxon signed-rank test) (Fig. 3B1,B2,
blue lines, C, bottom plot; see also Fig. 4A,
unit recordings). This effect led to a con-
comitant marked reduction (45 � 1.4%) in
the number of EEG slow waves after 1 h of
drug dialysis (Fig. 4A,B) and thus to a fre-
quency decrease from 1.19 � 0.02 to 0.63 �
0.03 slow waves/s (n � 5, p � 0.0017, Man-
n–Whitney U test compared with aCSF, n�
6) (Fig. 4A–D). The duration of both UP
and DOWN states was increased by TTX
from 0.40 � 0.01 (UP) and 0.42 � 0.03 s
(DOWN) to 0.68 � 0.07 and 0.58 � 0.06 s,
respectively (p � 0.006, Mann–Whitney U
test compared with aCSF) (Fig. 4B). In the
same rats, the simultaneously recorded
spindle waves, which are a thalamically gen-
erated rhythm (Morison and Bassett, 1945;
Steriade et al., 1985; De Gennaro and Fer-
rara, 2003; Astori et al., 2011), were abol-
ished by TTX (predrug: 0.13 � 0.02
spindles/s, TTX: 0.009 � 0.008, p � 0.0016)
(Fig. 4E), indicating the effectiveness of our
thalamic inactivation by microdialysis ad-
ministration of TTX.

Because T-type calcium channels play
a key role in the thalamic output to cortex
(Llinás and Jahnsen, 1982; Crunelli et al.,
1989; Deleuze et al., 2012) and underlie
TC neuron UP states (Hughes et al.,
2002), we next investigated the effect on
slow waves of the potent and selective
T-type calcium channel antagonist, TTA-P2
(Uebele et al., 2009; Dreyfus et al., 2010),
directly applied in the VB by reverse micro-
dialysis. This drug produced a block of high-
frequency bursts of TC neurons, which was
dependent on its concentration in the dial-
ysis inlet tube and on the distance between
the recorded neuron and the dialysis probe
(Fig. 3B1; see also unit recordings in Fig.
4A). Interestingly, single action potential firing (which accounted for
�18.4 � 1.2% of the total firing) was also markedly decreased by
TTA-P2 (Fig. 3B2) (see Fig. 4A, unit recordings) so that, at a distance
of 500 �m from the dialysis probe, only 3.3 � 2.1% of total spikes
(i.e., in bursts and as single action potentials) remained after 1 h of
TTA-P2 application. We chose a microdialysis inlet tube concentra-
tion of 300 �M TTA-P2 because: (1) it virtually abolished the total
TC neuron firing in a region that almost fully covered the mediolat-
eral extent of the VB (Fig. 3C,D), and (2) it resulted in a tissue con-
centration around the probe of �42 �M (based on a 14% recovery
rate) (for explanation, see Fig. 3E), which is well in the range of
concentrations that we previously showed to be required to abolish
intrinsic and synaptically driven TC neuron firing in the VB in vitro
(Dreyfus et al., 2010, their Fig. 1C). Thus, TTA-P2 applied in the VB
at 300 �M elicited a clear reduction (25 � 3%, n � 5, p � 0.02

compared with aCSF, n � 6) of slow waves (Fig. 4A,B), leading to a
frequency decrease from 1.00 � 0.02 to 0.69 � 0.03 slow waves/s
(p � 0.020) (Fig. 4A,C,D). The durations of UP and DOWN states
were both prolonged from 0.59 � 0.04 (UP) and 0.58 � 0.02
(DOWN) to 0.77 � 0.06 and 0.70 � 0.03 s, respectively (p � 0.05,
Mann–Whitney U test compared with aCSF) (Fig. 4B). Moreover, in
the same experiments, spindle waves were markedly suppressed
(88 � 5%) by microdialysis injection of TTA-P2 in the VB (aCSF:
0.15 � 0.01 spindles/s; TTA-P2: 0.019 � 0.008; p � 0.02) (Fig. 4E),
indicating the effectiveness of our thalamic inactivation by microdi-
alysis administration of TTA-P2.

TTA-P2 also elicited a dose-dependent decrease in slow waves
when applied systemically (Fig. 5A–D), with a similar ED50 on
burst (0.18 � 0.05 mg/kg) (Fig. 5E) and total firing (0.26 � 0.06
mg/kg) (Fig. 5F). In particular, at a dose (3 mg/kg) that abolished

Figure 5. Systemic injection of TTA-P2 markedly decreases the frequency of slow and spindle waves during anesthesia. A, Spike
raster plots (top three traces; *bursts) from 3 different TC neurons in the VB and EEG (bottom trace) from S1 show the effect of two
doses of intraperitoneally injected TTA-P2 on neuronal firing and slow waves. B, Time-dependent block of slow waves after 0.3 and
3 mg/kg intraperitoneally of TTA-P2 injected at time 0. C, Power spectra calculated 1 h after TTA-P2 injection. D, Summary data
showing the percentage reduction in slow and spindle waves produced by different doses of TTA-P2 (measured 1 h after intraperi-
toneal injection). Number of animals for saline (Sal) and TTA-P2 0.3, 1, 3, and 10 mg/kg injections are 4, 3, 3, 3, and 1, respectively.
Error bars indicate SEM. *p � 0.01 compared with saline injection (Mann–Whitney U test). E, F, Dose–response curve of burst and
total spike rate measured 40 min after systemic intraperitoneal injection of TTA-P2 (logistic regression fits, p � 0.05) (ED50 for
bursts: 0.18 � 0.05 mg/kg; ED50 for total spikes: 0.26 � 0.06 mg/kg). The 3 and 10 mg/kg TTA-P2 abolish bursts ( p � 10 �6

compared with saline injection, Mann–Whitney U test, n � 40 TC neurons). B, C, Solid lines indicate the mean; color shadings
indicate SEM. Color code in C also applies to B and to the traces in A.
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burst firing in the VB (Fig. 5E), TTA-P2 produced a stronger
decrease (63 � 1%, n � 3, p � 0.018) of slow waves (Fig. 5B) than
an equipotent (on burst firing) intra-VB application (compare
with Fig. 3B1), indicating that T-type calcium channels in other
thalamic nuclei and brain regions effectively contribute to the full
expression of EEG slow waves in S1 during anesthesia.

Effect of thalamic inactivation on slow waves during
natural sleep
Because anesthesia does not fully reproduce the spatiotemporal
dynamics of slow waves during non-REM sleep (Chauvette et al.,
2011; Nir et al., 2011; Vyazovskiy et al., 2011), we then applied
TTX and TTA-P2 by reverse microdialysis in the thalamus of
naturally sleeping-waking rats. The same inlet dialysis concentra-
tion of TTA-P2 (300 �M) and one-probe-per-VB configuration
that was effective during anesthesia had no effect on slow waves of
natural sleep, nor did 1 and 3 mM TTA-P2, most likely because
the volume of tissue where a firing block was achieved with these
higher TTAP-2 concentrations was not much bigger than the
region affected by 300 �M (Fig. 3B1,B2,D). We therefore enlarged
the thalamic area affected by microdialysis application by im-
planting a group of rats with four dialysis probes, so that in each
VB one probe was close to its rostral and one to its caudal end (see
Materials and Methods). In these animals, TTA-P2 (3 mM) in-

duced a significant decrease (23 � 7.8%, n � 7, p � 0.0095,
Mann–Whitney U test compared with aCSF, n � 12) in the peak
of the instantaneous frequency distribution of slow waves during
non-REM sleep (predrug: 2.19 � 0.09 Hz; TTA-P2: 1.72 � 0.13
Hz), as did TTX (50 �M) (TTX: 0.92 � 0.13 Hz, 50 � 13%
reduction, n � 5, p � 0.0061) (Fig. 6A–D). As expected, in the
same animals, sleep spindles were more potently decreased by
TTX and TTA-P2 (94 � 7% and 48 � 6%, respectively) than slow
waves (predrug: 0.36 � 0.02 spindles/s; TTX: 0.05 � 0.03, TTA-
P2: 0.19 � 0.02; p � 0.001 for both compared with aCSF) (Fig.
6D,E).

Figure 6. Block of thalamic firing decreases slow wave frequency during natural sleep. A,
Non-REM sleep EEG (bottom) and corresponding wavelet spectra (top) during VB microdialysis
of aCSF, 3 mM TTA-P2, and 50 �M TTX. Transient slow waves (white lines) were detected as
ridges in the wavelet spectra (see Materials and Methods). B, Slow wave frequency density
distribution during aCSF, TTA-P2, and TTX dialysis, 1 h after the start of drug dialysis (arrows
indicate the measured peaks). C, Time dependence of TTA-P2 (n � 7 rats) and TTX (n � 5 rats)
effects on the normalized peak of the slow wave frequency distribution. D, Raw non-REM EEG
power spectra show TTA-P2- and TTX-elicited decrease of power in sleep spindle frequency
range and increase of power in slow wave frequency range. E, Time dependence of TTA-P2 and
TTX effects on sleep spindles normalized count. B, D, Solid lines indicate the mean; color shading
indicates SEM. C, E, Error bars indicate SEM. Figure 7. Systemic injection of TTA-P2 markedly decreases the frequency of slow waves and

abolishes spindles during natural sleep. A, Non-REM sleep EEG (middle), corresponding wavelet
spectra (top), and EMG (bottom) after intraperitoneal injection of saline (left) and 10 mg/kg
TTA-P2 (right). Transient slow waves (white lines) were detected as ridges in the wavelet
spectra as in Figure 2. B, Slow wave frequency distribution after saline and TTA-P2 injection.
There is a shift of the peak (arrows) from �2 Hz to �0.7 Hz. C, Time dependence of TTA-P2
(n � 4 rats) and saline (n � 6 rats) effects on the normalized peak of the slow wave frequency
distribution. D, Raw non-REM sleep EEG power spectra show TTA-P2-elicited decrease of power
in sleep spindle frequency range and increase of power in slow wave frequency range compared
with saline injection. E, Time dependence of TTA-P2 effects on sleep spindles normalized count.
F, G, Dose–response curve of burst (F ) and total spike (G) rate measured 40 min after systemic
intraperitoneal injection of TTA-P2 (logistic regression fits, p � 0.05) (ED50 for bursts: 0.55 �
0.03 mg/kg; ED50 for total spikes: 1.71 � 0.11 mg/kg). The 3 and 10 mg/kg TTA-P2 abolish
bursts recorded during natural sleep ( p � 10 �6 compared with saline injection, Mann–Whit-
ney U test, n � 42 TC neurons). B, D, Solid lines indicate the mean; color shading indicates SEM.
C, E–G, Error bars indicate SEM.
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As it was observed during anesthesia,
also in naturally sleeping rats systemic in-
jections of TTA-P2 dose-dependently
blocked burst and total firing in VB TC
neurons during non-REM sleep (with an
ED50 of 0.55 � 0.03 and 1.71 � 0.11 mg/
kg, respectively) (Fig. 7F,G), as well as
slow waves and sleep spindles (Fig. 7A–E).
In particular, a dose of 10 mg/kg of
TTA-P2 markedly reduced slow wave
(saline: 1.94 � 0.13 Hz, n � 6; TTA-P2:
0.8 � 0.01 Hz, n � 4 rats) and sleep
spindle frequencies (saline: 0.32 � 0.13
spindles/s, TTA-P2: 0.05 � 0.01) by
73 � 5% ( p � 0.0095) and 86 � 4%
( p � 0.00031), respectively (Fig. 7E).

Entrainment of EEG slow waves by
optogenetic stimulation of TC neurons
during anesthesia
Because thalamic inactivation by either
TTX or by selective block of thalamic
T-type calcium channels with TTA-P2 de-
creased the frequency of slow waves dur-
ing anesthesia and natural sleep, the
thalamic input to the neocortex should be
able to entrain these EEG waves. Because
electrical stimulation of the thalamus
leads to antidromic excitation of the so-
matotopic cortical region, which may in
turn affect the cortical slow wave oscil-
lator, we addressed this question using
selective optogenetic activation of
channelrhodopsin2-expressing TC neurons
(Fig. 8) with short (5, 20, or 100 ms) 473 nm
light pulses at stimulation frequencies that
ranged from 0.75 to 4 Hz (n � 7 rats) (Fig.
9). At the cellular level, each light pulse elicited a single high-
frequency burst of action potentials, which was invariably followed
by a 100–250 ms period of electrical silence before firing resumed
(Fig. 9C). For stimulation frequencies from 0.75 to 1.5 Hz, this pat-
tern of TC neuron activation elicited a clear peak in the EEG wavelet
(Fig. 9A) and FFT power spectrum (Fig. 9D) at the respective stim-
ulation frequency, which had higher amplitude than the peak of the
control EEG (i.e., with no light stimulation) (Fig. 9D, black line). As
seen from the light-pulse triggered averages (Fig. 9B), light stimula-
tion for frequencies 
1.5 Hz not only failed to entrain EEG slow
waves but also markedly flattened the power spectra eliminating the
peak present at �1 Hz during the control condition (i.e., without
light stimulation; Fig. 9D, black line). When T-type calcium chan-
nels in VB were blocked by microdialysis of 300 �M TTA-P2 (n � 3
rats) (Fig. 10A), the cellular burst response during light stimulation
was strongly reduced (burst reduction: 89 � 4%, n � 1056 pulses,
n � 11 neurons, p � 0.0020, Wilcoxon signed-rank test), the TC
neuron firing between stimulations was virtually abolished (Fig.
10B), and no entrainment of slow waves occurred for stimulation
frequencies between 0.75 and 1.5 Hz (Fig. 10C1,D). Moreover, a
similar block of EEG slow wave entrainment was observed after sys-
temic injection of TTA-P2 (3 mg/kg) at these stimulation frequen-
cies (data not shown). Finally, no significant effect of TTA-P2
injected locally (Fig. 10C2,D) or systemically (data not shown)
was observed at stimulation frequencies � 1.75 Hz.

Discussion
Our results conclusively demonstrate that the full manifestation of
EEG slow waves during non-REM sleep in freely moving, naturally
waking-sleeping rats requires a dynamic interplay of cortical and
thalamic neuronal ensembles because inactivation of the thalamic
output to the neocortex brings about a marked deceleration of slow
waves and selective excitation of TC neurons entrains EEG slow
waves.

Contribution of thalamic oscillators to sleep rhythms
There is a general consensus that an isolated neocortex can generate
and maintain the UP and DOWN state dynamics that underlie EEG
slow waves of natural sleep via an intricate balance of excitation and
inhibition that is mostly generated by synaptically driven cortical
slow wave oscillators (Sanchez-Vives and McCormick, 2000;
Timofeev et al., 2000; Bazhenov et al., 2002; Cossart et al., 2003; Shu
et al., 2003; Le Bon-Jego and Yuste, 2007; Beltramo et al., 2013). In
line with this interpretation, the cortical firing (during UP states)
and the electrical silence (during DOWN states) impose similar UP/
DOWN state transitions on thalamic neurons, making the thalamus
fully subservient to corticofugal activity. Over the last 10 years, how-
ever, this view has been challenged by solid experimental evidence
demonstrating that an isolated thalamus as well as single TC and
nucleus reticularis thalami (NRT) neurons in vitro can sustain slow
waves and an intrinsic UP/DOWN states dynamics, respectively,
which are similar to those observed during natural sleep (Crunelli

Figure 8. Channelrhodopsin-2 expression in VB TC neurons. A, Immunostaining of channelrhodopsin-2-mCherry (red) showing
that the expression of the channelrhodopsin-2 protein is restricted to VB TC neurons and some TC axons passing through the NRT
(top). Arrow indicates the putative site of the virus injection. NeuN staining (green) is evident in both VB and NRT somata (middle).
Merged images (bottom) demonstrate colocalization of channelorhodopsin-2 and NeuN in TC, but not NRT, neurons. B, Higher
magnification of a portion of the respective panels in A. Scale bars, A, B: 300 �m.
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and Hughes, 2010). This thalamic activity only occurs when the
metabotropic glutamate receptors (which are present postsynapti-
cally to the corticofugal terminals) of TC and NRT neurons (Godwin
et al., 1996) are active, making these neurons “conditional oscilla-
tors” for slow waves (Crunelli and Hughes, 2010).

The present findings strongly support this hypothesis: re-
moval of the thalamic input to cortex reduces the frequency of
slow waves of non-REM sleep, demonstrating, for the first time, a
necessary role for the thalamus in this physiological rhythm. The
generation of slow waves during natural sleep, therefore, derives
from cortical networks as primary oscillators with the thalamic
oscillator providing a fine-tuning by imposing its faster fre-
quency and phase properties to the cortical slow wave rhythm.
The full physiological rhythm might, indeed, be the result of two
competing oscillators (Gutierrez et al., 2013), with the thalamus
being able to reset the phase of the slower cortical networks, as
indicated by the ability of selective optogenetic excitation of
thalamofugal fibers to entrain EEG slow waves (this work) and to
induce isolated UP states in awake, head-restrained rats (Poulet
et al., 2012). Importantly, the ability of the thalamus to modulate
cortical UP states depends on thalamic T-type calcium channels,
and in particular on the high-frequency burst of action potentials
that invariably marks the start of TC neuron UP states (Contreras

and Steriade, 1995, their Fig. 9; Slézia et
al., 2011; Ushimaru et al., 2012). The ef-
fect of this thalamic modulation will also
be important in determining the slight ac-
celeration of slow waves observed from
sleep Stage 2 to 4 (Crunelli and Hughes,
2010; Brown et al., 2012) because the in-
trinsic slow wave thalamic oscillator in-
creases its frequency with the progressive
hyperpolarization that accompanies non-
REM sleep deepening (Hughes et al.,
2002; Crunelli and Hughes, 2010). Sup-
port to the thalamic modulation of EEG
slow waves also comes from data showing
that an acceleration of these waves is ac-
companied by a phase shift of the TC neu-
ron firing toward the start of an UP state
(Slézia et al., 2011).

In the same animals where slow waves
of non-REM sleep were decreased in fre-
quency, the simultaneously recorded
sleep spindles, which are a thalamically
generated rhythm (Morison and Bassett,
1945; Steriade et al., 1985; De Gennaro
and Ferrara, 2003; Astori et al., 2011),
were abolished by inactivation of the same
thalamic region. This demonstrates that,
whereas both cortex and thalamus are re-
quired for the full expression of slow
waves and spindles of natural sleep, the
relative contribution of these brain areas
to these oscillations is markedly different,
reflecting the diverse cellular/network
generators that underlie these two EEG
rhythms.

By comparing, for the first time, slow
waves during natural sleep and anesthesia
under the same laboratory conditions, we
could identify that a larger area of tha-
lamic inactivation was necessary to obtain

a significant effect on slow waves during non-REM sleep com-
pared with anesthesia. This indicates that the thalamic modula-
tion of slow waves during anesthesia is very different from that
during natural sleep, stressing the diverse nature of the cortical
and thalamic neuronal dynamics underlying these behavioral
states, the limitations associated with extrapolating results from one
experimental condition to the other, and a potentially different in-
volvement of the “core” and “matrix” thalamic projection systems
(Jones, 2001).

Thalamic T-type calcium channels and the slow rhythm
Our investigation is the first to provide direct evidence that the
T-type calcium channels of thalamic (i.e., TC and NRT) neurons
are required for the full expression of slow waves during natural
sleep, although we could not distinguish between TC and NRT
neuron contribution because of TTA-P2 spread to the latter neu-
ronal population at the highest concentrations. A previous study
reported an increased number of awakenings in mice carrying a
supposedly thalamic-selective deletion of CaV3.1 T-type chan-
nels expression (Anderson et al., 2005). However, the presence of
recombination in piriform cortex, some hypothalamic nuclei,
and other brain areas questions the selectivity of this genetic ap-
proach and weakens its conclusions. Another study in anesthe-

Figure 9. Thalamic entrainment of EEG slow waves during anesthesia. A, EEG trace (bottom) and wavelet transform (top) showing the
effectof20ms,473nmlightpulsesat1,1.5,and2Hz.Dashedwhitelineindicatesthestartofthefirstpulse.B,Event-triggeredEEGaverages
centered on the 20 ms light pulses (blue vertical bars) for the illustrated stimulation frequencies. Gray areas indicate SEM. A total of 10 s of
EEGwasusedforeachaverage.C,Rasterplotsoffiringof4VBTCneuronsinresponsestotwoconsecutive20mspulses(at1Hz)(bluevertical
lines). *Bursts. The corresponding EEG trace is superimposed as a black line. D, EEG power spectra in response to 20 ms light pulses at the
illustrated frequencies (indicated by arrows). There are frequency-dependent amplification and the shift of the peak of the power spectra
compared with control (i.e., without light stimulation, black line).
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tized CaV3.1 T-type calcium channel KO
mice (Lee et al., 2004) suggested a contri-
bution of these channels to � waves (de-
fined as power in the 1– 4 Hz frequency
band) but not to slow waves (defined as
power in the �1 Hz frequency band). Our
results in anesthetized rats instead indi-
cate that slow waves peaking at �1 Hz are
decreased in number by TTA-P2, leading
to a slowing down in frequency to �0.6
Hz. Although these contradictory data
may be the result of the use of different
species or anesthetics, they may also result
from the different wave classifications. In-
deed, it is debatable (Luczak and Barthó,
2012) whether EEG waves occurring at the
upper end of the � frequency range (2– 4
Hz) in naturally sleeping rats do represent
a separate entity from slow (�2 Hz) waves
because the underlying UP and DOWN
state firing dynamics of slow waves in the
2– 4 Hz band is similar to that in 0.5–2 Hz
band (Ji and Wilson, 2007, their Fig. 2).

It is not surprising that the vast major-
ity of the total TC neuron firing (i.e., high-
frequency bursts plus single action
potentials) depends on T-type calcium
channels (i.e., it is blocked by TTA-P2).
Indeed, although these channels are clas-
sically viewed as underlying only high-
frequency bursts of TC neurons, recent
evidence has indicated that the continu-
ous opening of a very small number of
T-type channels that occurs at ��60 mV
generate a depolarizing window current
(Dreyfus et al., 2010, their Fig. 2) that is
crucial for the maintenance of the UP
state (Hughes et al., 2002; Crunelli and
Hughes, 2010). This strong reliance of the
thalamic output on T-type channels also indicates that during
slow waves synaptic activity, and in particular cortical inputs to
the thalamus, are not sufficient to drive a TC neuron output in
the absence of these channels.

Resetting and entrainment of EEG slow waves can be achieved
by whisker stimulation (Civillico and Contreras, 2012) or by op-
togenetic activation of cortical neurons in anesthetized rats (Kuki
et al., 2013), whereas long (
4 s) optogenetic stimulation of TC
neurons in head-restrained mice can induce UP states in neocor-
tical neurons that do not outlast the light stimulus (Poulet et al.,
2012). Our results show that short (5 ms) optogenetic stimuli, which
evoke high-frequency bursts in TC neurons, strongly entrain EEG
slow waves, and that this response is only present when thalamic
T-type calcium channels are functionally active. This strength-
ens the suggestion that thalamic T-type channel-mediated bursts
may critically control UP states in related cortical territories during
non-REM sleep by finely tuning the frequency of the EEG slow waves
that occur during this behavioral state (Crunelli and Hughes, 2010).
In contrast, a recent imaging study has reported that thalamic slow
waves always follow cortical slow waves during anesthesia (Stroh et
al., 2013). However, these results shed little light on the relative con-
tribution of thalamic and cortical neuronal ensembles to slow waves
of natural sleep, because, as indicated by Wester and Contreras
(2013), they may be confounded by the experimental conditions, in

particular the use of an anesthetic agent that is known to markedly
block T-type calcium channels (Joksovic and Todorovic, 2010; Eckle
et al., 2012).

In conclusion, these findings provide conclusive demonstra-
tion of our hypothesis (Crunelli and Hughes, 2010) that both
cortical and thalamic population activities are required for the
full manifestation of EEG slow waves of natural sleep, and suggest
that a decreased thalamic output to the neocortex resulting from
thalamic pathologies (Schmahmann, 2003; Kopelman et al.,
2009; Parnaudeau et al., 2013) will bring about a slowing down of
slow waves during non-REM sleep with deleterious consequences
for memory processes.
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Sirota A, Buzsáki G (2005) Interaction between neocortical and hippocam-
pal networks via slow oscillations. Thalamus Relat Syst 3:245–259.
CrossRef Medline
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