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5-Hydroxytryptamine 2A receptors (5-HT2A-Rs) are G-protein coupled receptors. In
agreement with their location in the brain, they have been implicated not only in
various central physiological functions including memory, sleep, nociception, eating
and reward behaviors, but also in many neuropsychiatric disorders. Interestingly, a
bidirectional link between depression and epilepsy is suspected since patients with
depression and especially suicide attempters have an increased seizure risk, while a
significant percentage of epileptic patients suffer from depression. Such epidemiological
data led us to hypothesize that both pathologies may share common anatomical and
neurobiological alteration of the 5-HT2A signaling. After a brief presentation of the
pharmacological properties of the 5-HT2A-Rs, this review illustrates how these receptors
may directly or indirectly control neuronal excitability in most networks involved in
depression and epilepsy through interactions with the monoaminergic, GABAergic and
glutamatergic neurotransmissions. It also synthetizes the preclinical and clinical evidence
demonstrating the role of these receptors in antidepressant and antiepileptic responses.
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The 5-HT2A-Rs: Distribution in Brain Areas Releted to
Depression and Epilepsy and their Pharmacological
Properties

Serotonin is an important modulator of a plethora of physiological functions in the brain. The
diverse 5-HT effects are mediated by seven classes of 5-HT receptors (5-HT-Rs) and, at least,
15 subtypes (Barnes and Sharp, 1999). Pharmacological and genetic studies have highlighted an

Abbreviations: AAP, atypical antipsychotic; AD, after discharge; 5-HT, 5-hydroxytryptamine or serotonin; 5-HT2A-Rs, sero-
tonin 2A receptors; ASs, absence seizures; BLA, basolateral amygdala; CORT, corticosterone; DA, dopamine; DG, dentate
gyrus; DOI, 2,5-dimethoxy-4-iodoamphetamine; DRN, dorsal raphe nucleus; eGABA, extrasynaptic GABAA; FST, forced
swim test; GAD, glutamic acid decarboxylase; GAERS, Genetic Absence Epilepsy in Rats from Strasbourg; GPCRs, G protein-
coupled receptors; LC, locus coeruleus; MD, major depression; MDA, maximal dentate activation; mPFC, medial prefrontal
cortex; MRN, medial raphe nucleus; NE, norepinephrine; PAG, periaqueductal gray; PFC, prefrontal cortex; SERT, serotonin
transporter; SSRI, selective serotonin reuptake inhibitor; SUDEP, sudden unexpected death in epilepsy; SWDs, spike and
wave discharges; TLE, temporal lobe epilepsy; TST, tail suspension test; VB, ventrobasal thalamus; VTA, ventral tegmental
area.
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important role for 5-HT2A-Rs in specific CNS pathologies
including depression and epilepsy. 5-HT2A-Rs are members
of the metabotropic seven transmembrane-spanning receptors
superfamily frequently referred to as GPCRs. In particular,
5-HT2A-Rs belong to the 5-HT2 subfamily consisting, with
5-HT2B and 5-HT2C, of three Gq/G11-coupled receptors, which
mediate excitatory neurotransmission (Millan et al., 2008). Using
in situ hybridization, western blot and immunohistochemical
analyses in rodents, 5-HT2A-R mRNA or the protein have been
identified in various brain regions involved in emotionality and
epilepsy, such as the amygdala, the hippocampus (Bombardi,
2012; Tanaka et al., 2012), the thalamus (Li et al., 2004) as well
as in several cortical areas (entorhinal, cingulate, piriform,
and frontal cortices Pompeiano et al., 1994; Santana et al.,
2004; Amargos-Bosch et al., 2005; de Almeida and Mengod,
2007; Figure 1A). 5-HT2A-Rs have also been detected in all
monoaminergic brainstem levels; i.e., the MRN/DRN, the LC
and the VTA (Cornea-Hebert et al., 1999; Doherty and Pickel,
2000; Nocjar et al., 2002; Quesseveur et al., 2012; Figure 1A),
which also strongly suggests their indirect role in mood and

depression by regulating the monoaminergic systems. Indeed,
5-HT2A-Rs act at the monoaminergic somatodendritic or nerve
terminals levels either through a direct or indirect action involv-
ing glutamatergic and/or GABAergic neurons (Di Giovanni,
2013).

A major feature of the 5-HT2A-Rs lies in their interactions
with β-arrestin. Previous work showed that the 5-HT2A-Rs colo-
calize with β-arrestin-1 and -2 in cortical neurons (Gelber et al.,
1999). Interestingly, it has been shown in β-arrestin-2 KO mice
(β-Arr2−/−), in which 5-HT2A-Rs were predominantly localized
to the cell surface, that 5-HT was no longer capable of inducing
behavioral responses (i.e., head-twitch). These observations sug-
gested that β-arrestin-2 mediates intracellular trafficking of the
5-HT2A-Rs (Figure 1B), and that the cellular events play a role
in the induction of head-twitch in response to elevated 5-HT
levels. Alternatively, the authors found that the preferential 5-
HT2A-R agonist DOI still produces the head-twitch in β-Arr2−/−
mice thereby suggesting that β-arrestins are not required for
DOI-mediated response (Abbas and Roth, 2008; Schmid et al.,
2008). These data emphasize the contribution of the nature of the

FIGURE 1 | Anatomical and pharmacological properties of the
5-HT2A receptors in the brain. (A) 5-HT2A receptors (5-HT2A-Rs) are
located in brain regions involved in emotionality and epilepsy.
(B) Interactions between 5-HT2A-Rs and beta-arrestin 2. According to
the nature of the 5-HT2A-Rs agonist (endogenous/exogenous),

5-HT2A-Rs-mediated signaling may recruit beta-arrestin2-dependant or
-independent pathways (signaling phases). Such a beta-arrestin2 is also
involved in the down regulation/internalization of the 5-HT2A-Rs (arresting
phase). (C) Dimerization of the 5-HT2A-Rs with GPCRs is necessary to
activate signaling pathway.
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ligand in determining the receptor signaling pathway and, ulti-
mately, the physiological responses induced by the compound.
5-HT2ARs coupling to the intracellular scaffolding proteins β-
arrestins can either dampen or facilitate GPCRs signaling, and
therefore, represent a key point at which receptor signaling may
diverge in response to particular ligands (Figure 1B).

There is another mechanism by which the 5-HT2-Rs sub-
types can regulate their signaling. Recent evidence demonstrates
that these receptors can form stable homo- (Herrick-Davis et al.,
2005; Brea et al., 2009) and heteromeric complexes with other
types of GPCRs including the mGluR2 and D2-DA Rs
(González-Maeso et al., 2008; Albizu et al., 2011; Fribourg et al.,
2011; Lukasiewicz et al., 2011; Moreno et al., 2011; Delille et al.,
2012; Moreno et al., 2012; Figure 1C). The in vivo functional
consequences of such oligo-dimerization of 5-HT2A-Rs has yet
to be determined but this process is likely responsible for
changes in binding and coupling properties of the receptors.
Supporting this hypothesis, it has been reported that head-twitch
induced by the preferential 5-HT2A-R agonists lysergic acid
diethylamide (LSD) and DOI is completely abolished in mGlu2
knock-out (mGlu2−/− KO) mice (González-Maeso et al., 2007;
Moreno et al., 2011, 2012; González-Maeso, 2014).

Both examples illustrate the fact that the functional activ-
ity of the 5-HT2A-Rs is finely regulated, notably through its
interactions with β-arrestin-2 or other GCPRs at the cell mem-
brane. A better knowledge of the physiological relevance of
such interactions may help identify new strategies to modulate
5-HT2A-Rs-mediated transmission.

The 5-HT2A-Rs in the Modulation of
Neurotransmission

GABA/Glutamate
Serotonergic neurotransmission and more particularly activa-
tion of post-synaptic 5-HT2A-Rs in the PFC play a pivotal
role in the regulation of the neuronal activity of this brain
region. As mentioned in the first part of this review, a sub-
stantial proportion of excitatory pyramidal neurons express the
5-HT2A-R mRNA (Santana et al., 2004; Amargos-Bosch et al.,
2005; de Almeida and Mengod, 2007), while these mRNAs are
also present in ∼25% of GAD-containing cells (Santana et al.,
2004). Functional in vitro studies showed that 5-HT increased
glutamatergic spontaneous excitatory post-synaptic currents
(EPSCs) in pyramidal neurons in layer V of the PFC and this
effect was mediated by 5-HT2A-Rs (Aghajanian and Marek, 1999;
Celada et al., 2013). Interestingly, intracellular recordings from
pyramidal neurons in layers V and VI of the rat mPFC indicated
that the application of the 5-HT2A/2C-R agonist DOB produced a
biphasic modulation of N-methyl-D-aspartate (NMDA)-induced
responses, e.g., membrane depolarization, bursts of action poten-
tials and inward current (Arvanov et al., 1999). Indeed, DOB
facilitated and inhibited NMDA responses at low and higher
concentrations, respectively while these effects were blocked by
the 5-HT2A-R antagonist MDL100907 (Aghajanian and Marek,
1997; Arvanov et al., 1999). These results confirmed a previ-
ous report showing that iontophoretic application of DOI at

low and high ejecting currents facilitated and inhibited, respec-
tively, glutamate-evoked firing rates of pyramidal cells in the
mPFC (Ashby et al., 1990) thereby demonstrating the complex
regulation of these cells by 5-HT2A-Rs. In vivo, the systemic
administration of DOI has been shown to affect the firing rate
of pyramidal neurons, since it produced both cell excitation
and inhibition (Puig et al., 2003). It is possible that the inhibi-
tion of pyramidal neurons by DOI concerns a sub-population of
cells innervated by 5-HT2A-Rs-expressing GABAergic interneu-
rons. Consistent with this hypothesis, the intra-cortical injection
of DOI dose-dependently increased local extracellular GABA
levels in rats while systemic DOI administration resulted in
Fos protein expression in GAD67-immunoreactive interneurons
of the PFC (Abi-Saab et al., 1999). It has also been demon-
strated that the local application of DOI in the mPFC increased
5-HT release (Martin-Ruiz et al., 2001; Bortolozzi et al., 2003;
Amargos-Bosch et al., 2004). Such elevation in cortical 5-HT
outflow produced local glutamate release (Mocci et al., 2014)
and subsequent activation of α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA)/NMDA receptor located on
the 5-HT nerve terminals. In agreement with this hypothe-
sis the DOI-induced increase in cortical 5-HT outflow was
reversed by NBQX (an AMPA-KA antagonist) but not by MK-
801 (a NMDA antagonist; Martin-Ruiz et al., 2001). Altogether,
these findings indicate that 5-HT and glutamate positively inter-
act in the PFC and both have a tendency to become self-
reinforcing.

If the activation of the 5-HT2A-Rs mainly stimulates the
activity of excitatory pyramidal neurons, an interaction with
inhibitory GABAergic neurons is also possible not only in the
PFC but also in other serotonergic nerve terminal regions reg-
ulating mood-related behavior.

rs. For example, in the PAG area, the stimulation of 5-
HT2A-Rs was shown to cause a panicolytic-like effect that
is mediated by facilitation of GABAergic neurotransmis-
sion (de Oliveira Sergio et al., 2011). In the amygdala, double
immunofluorescence labeling demonstrated that the 5-HT2A-Rs
are primarily localized to parvalbumin-containing interneurons
suggesting that 5-HT primarily acts via 5-HT2A-R to facili-
tate BLA GABAergic inhibition (Jiang et al., 2009). Accordingly,
alpha-methyl-5-HT, a 5-HT2-Rs agonist, enhanced frequency
and amplitude of spontaneous inhibitory post-synaptic currents
(sIPSCs) recorded on the BLAneurons in vitro, and this effect was
blocked by selective 5-HT2A-R antagonists (Jiang et al., 2009). In
the hippocampus, the activation of 5-HT2A-Rs has also been pro-
posed to increase GABAergic synaptic activity in the CA1 region
(Shen and Andrade, 1998).

Monoamines
As mentioned earlier, immunoreactivity for the 5-HT2A-Rs
has been identified in the DRN and more particularly on
GABAergic interneurons (Xie et al., 2002; Serrats et al., 2005). It
should be noted that serotonergic raphe nuclei receive a promi-
nent GABAergic input via distant sources as well as interneu-
rons (Harandi et al., 1987; Bagdy et al., 2000; Gervasoni et al.,
2000; Varga et al., 2001; Vinkers et al., 2010), and functional
evidence suggests that the activation of GABA release in the
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FIGURE 2 | Regulation of serotonin neuronal activity by the 5-HT2A

receptors in the dorsal raphe. (A) The dorsal raphe nucleus (DRN)
contains GABAergic interneurons expressing the 5-HT2A receptors
(5-HT2A-Rs) and which project on serotonergic neurons cell bodies to
regulate their firing activity. (B) In response to the activation of 5-HT2A-Rs
by preferential agonists such as DOI, the neuronal activity of GABAergic

interneurons is increased leading to an accumulation of GABA in the
synaptic cleft. Such an elevation of GABAergic tone contributes to inhibit
DRN 5-HT neurons discharge. (C) In response to the administration of
SSRIs, endogenous serotonin activates the 5-HT1A autoreceptors and the
5-HT2A heteroreceptors thereby producing additional inhibitory influences
onto DRN 5-HT neurons to silence their activity.

DRN may be under the control of the 5-HT2A-Rs (Figure 2).
Indeed, it has been reported that the activation of these recep-
tors increased Fos expression in GAD-positive DRN neurons
(Boothman and Sharp, 2005; Quérée et al., 2009). Accordingly,

in vitro studies demonstrated that the local application of DOI
in this brain region induces a dose-dependent increase in the
frequency of inhibitory post-synaptic currents (IPSCs; Liu et al.,
2000; Gocho et al., 2013). In vivo recordings in the DRN showed
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that the systemic administration of DOI attenuated the firing
rate of 5-HT neurons (Wright et al., 1990; Garratt et al., 1991;
Martin-Ruiz et al., 2001; Boothman et al., 2003; Bortolozzi et al.,
2003; Boothman and Sharp, 2005; Quesseveur et al., 2013). In a
recent study, we extended these observations to the fact that
the 5-HT2A-Rs also played an important role in the acute elec-
trophysiological response to SSRIs. Indeed, since it has long
been recognized that the inhibitory effect of SSRI on 5-HT
firing rate was mediated by the overactivation of somatoden-
dritic 5-HT1A autoreceptor in the DRN (Gardier et al., 1996),
we blocked this mechanism by using the 5-HT1A-R antagonist
WAY100635 (Quesseveur et al., 2013). In these conditions, the
inhibitory effects of SSRI escitalopram on DRN 5-HT neuronal
activity remained intact while this residual response was reversed
by MDL100907, a potent and selective 5-HT2A-Rs antagonist.
Together, these findings emphasize the fact that the pharmaco-
logic inactivation of the 5-HT1A autoreceptor is necessary but
likely not sufficient to fully prevent the acute inhibitory effects of
SSRI on DRN 5-HT neuronal activity. The concomitant blockade
of the 5-HT1A and 5-HT2A-Rs is therefore required to prevent
the undesired negative effects of SSRI on the serotonergic system
(Figure 2).

There are alternative mechanisms by which the activa-
tion of the 5-HT2A-Rs might reduce the firing rate of DRN
5-HT neuronal activity. For example, it has been proposed
that such an inhibitory action may also result from the acti-
vation of the 5-HT2A-Rs located on GABA interneurons in
the LC (Szabo and Blier, 2001, 2002). In keeping with these
data, evidence also suggested that the sustained administra-
tion of SSRI produced similar electrophysiological effects while
antipsychotics displaying 5-HT2A-R antagonistic activity such
as risperidone, reversed this attenuation in noradrenergic neu-
ronal activity (Pandey et al., 2002; Dremencov et al., 2007). In
light of the prominent excitatory NE innervation of the DRN
(Baraban and Aghajanian, 1980; Vandermaelen and Aghajanian,
1983; Mongeau et al., 1997), the impairment of DRN 5-HT neu-
ronal activity induced by DOI could be secondary to its inhibitory
effect on LC NE neurons. In support of this latter hypothesis,
we recently demonstrated in mice that the lesion of noradren-
ergic neurons with the neurotoxin DSP4 significantly atten-
uated DOI-induced decrease in DRN 5-HT neuronal activity
(Quesseveur et al., 2013). Finally, it is important to note that 5-
HT2A-Rs located in the PFC may also play a prominent role in
the regulation of the DRN notably given the reciprocal anatom-
ical and functional interactions between both regions. However,
as mentioned above, evidence suggested that activation of corti-
cal 5-HT2A-Rs increased the firing rate of DRN 5-HT neurons
(Martin-Ruiz et al., 2001; Bortolozzi et al., 2003). To reconcile
these findings with the fact that the systemic administration of
DOI decreased 5-HT neuronal activity, it has been proposed
that the 5-HT2A-R agonist would activate cortical pyramidal
neurons projecting on GABAergic interneurons in the DRN
(Serrats et al., 2005). Insomuch as the activation of 5-HT2A-Rs
modulates the firing rate of DRN 5-HT, such activation could
also result in changes in 5-HT release at the nerve terminals.
In agreement with the fact that activation of the 5-HT2A-Rs
reduces the firing activity of DRN 5-HT neurons, it has been

demonstrated that the systemic administration of DOI to chloral
hydrate-anesthetized rats reduced the extracellular 5-HT con-
centrations in the mPFC, an effect antagonized by MDL100907
(Martin-Ruiz et al., 2001).

It should be also noted that 5-HT2A-Rs might also partic-
ipate in the regulation of the dopaminergic system through
either direct or indirect mechanisms. In the VTA, 5-HT2A-
Rs have also been identified in GABAergic interneurons, and
their activation lead to the inhibition of dopaminergic activ-
ity (Doherty and Pickel, 2000; Nocjar et al., 2002). On the other
hand, 5-HT2A-Rs might also be expressed directly onto DA VTA
neurons and their activation would stimulate dopaminergic activ-
ity (Bubar et al., 2011; Howell and Cunningham, 2015). Hence, it
has been shown that the systemic administration or local appli-
cation of DOI increased the firing rate and burst firing of DA
neurons as well as DA release in both the VTA and mPFC
(Bortolozzi et al., 2005).

These electrophysiological and neurochemical data provide, at
least in part, explanations of the fact that AAPs with 5-HT2A-
R antagonistic activity, display antidepressant properties and are
effective adjuncts in depressed patients responding inadequately
to SSRIs (Blier and Szabo, 2005; Blier and Blondeau, 2011). There
is indeed compelling clinical evidence for antidepressant efficacy
of AAPs (Ghaemi and Katzow, 1999; Ostroff and Nelson, 1999;
Hirose and Ashby, 2002; Shelton et al., 2005; Thase et al., 2007)
and in the last few years, aripiprazole, olanzapine, and quetiapine
have obtained FDA approvals for treatment of resistant depres-
sion in combination with SSRIs (DeBattista and Hawkins, 2009).
Accordingly, it might be hypothesized that the progressive thera-
peutic activity of chronic treatment with SSRIs would be accom-
panied by a downregulation of 5-HT2A-Rs (Meyer et al., 2001).
However, this assumption is still cause for debate (Massou et al.,
1997; Zanardi et al., 2001; Muguruza et al., 2014).

The 5-HT2A-Rs in the Regulation of
Mood Related Behaviors and
Antidepressant Response

Preclinical Studies
A multitude of studies have associated 5-HT2A-Rs activation
with depressive-like phenotypes. In behavioral paradigms rel-
evant to depression, DOI significantly increased immobility
time in the mouse FST, and this effect was abolished by a
pre-treatment with MDL100907 (Diaz and Maroteaux, 2011).
These results raised the possibility that 5-HT2A-R antagonists
might produce antidepressant-like activities. Consistent with this
hypothesis, it was shown that antisense-mediated downregu-
lation of the 5-HT2A-Rs decreased the immobility of mice in
the FST (Sibille et al., 1997) or that the 5-HT2A-R antagonists
EMD281014 or MDL100907 produced similar antidepressant-
like effects in rats (Zaniewska et al., 2010). More recently, a
novel 5-HT2A-R antagonist BIP-1 has been synthesized and
its acute or sustained administration was also shown to pro-
duce antidepressant-like activities not only in basal conditions
but also in bulbectomized rats (Pandey et al., 2010) suggesting
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that the inactivation of 5-HT2A-Rs may also produce beneficial
effects in animal models of depression. In order to confirm these
results, we recently investigated whether the genetic ablation
of 5-HT2A-Rs (5-HT2A

−/− mice) prevented chronic CORT-
induced stress-related behavioral anomalies. Unexpectedly, the
time of immobility in the TST was higher in 5-HT2A

−/− than
in 5-HT2A

+/+ wild-type (WT) in response to CORT adminis-
tration (Petit et al., 2014). These results can therefore be inter-
preted as an exaggerated despair in 5-HT2A

−/− exposed to
CORT. In this study, we did not find any basal modifica-
tions of despair in 5-HT2A

−/− mice as previously reported
(Weisstaub et al., 2006) but our results suggested that the genetic
inactivation of the 5-HT2A-R subtype is an important process to
potentiate the depressive-like effects of chronic CORT admin-
istration. In agreement with this hypothesis, preclinical studies
reported that chronic treatment with CORT desensitized the
5-HT2A-Rs within the paraventricular nucleus of the hypotha-
lamus (Lee et al., 2009), whereas repeated stress decreased their
density in the hippocampus (Schiller et al., 2003; Dwivedi et al.,
2005). The mechanism by which glucocorticoids might have a
repressive role on the 5-HT2A-R subtype is presently unclear,
but recent investigations propose that glucocorticoids receptors
may act directly as transcription factors at critical site of the
HTR2A gene promoter (Falkenberg et al., 2011). Further stud-
ies exploring the reciprocal relationships between the HPA and
the 5-HT2A-Rs are clearly required to provide a better under-
standing of how their interactions relates to the development of
depression.

Clinical Studies
Genetic association studies have focused on the genetic vari-
ants at the gene encoding for the 5-HT2A-Rs (Anguelova et al.,
2003; Serretti et al., 2007). The association between MD and
three single nucleotide polymorphisms (SNPs), G-to-A substitu-
tion at nucleotide -1438 (rs6311, -1438G/A), C-to-T substitution
at nucleotide 102 (rs6313, 102C/T) and C-to-T substitution at
nucleotide 1354 (rs6314, His452Tyr, 1354C/T) has been inves-
tigated, showing inconsistent results for the C allele of rs6313
(association: Zhang et al., 1997; Du et al., 2000; Arias et al.,
2001a,b no association: Tsai et al., 1999; Minov et al., 2001;
Zhang et al., 2008; Illi et al., 2009; Kishi et al., 2009; Wang et al.,
2009), for the A allele of rs6311 (association: Enoch et al., 1999;
Jansson et al., 2003; Lee et al., 2006; Christiansen et al., 2007;
Kamata et al., 2011, opposite association: Choi et al., 2004, no
association: Ohara et al., 1998; Illi et al., 2009; Kishi et al., 2009;
Tencomnao et al., 2010), and for rs6314 which has been poorly
studied (no association: Minov et al., 2001). Moreover, the func-
tional consequences of these SNPs on 5-HT2A-R function and/or
HTR2A expression remain poorly studied (Serretti et al., 2007),
especially the C allele of rs6313, which could be submitted
to methylation, a process known to prevent gene expression
(Polesskaya et al., 2006) and for the T allele of rs6314 which could
be associated with a decreased 5-HT2A-R-mediated intracellu-
lar signaling (Ozaki et al., 1997). We recently reported genetic
arguments supporting an association between specific HTR2A
SNPs and both susceptibility and severity of major depressive
episodes in MD. Indeed, depressed patients with allelic variants

suspected to decrease the expression/function of the 5-HT2A-
Rs, i.e., the C allele of rs6313 and the rare TT variant of
rs6314, have an increased severity of major depressive episodes
(Petit et al., 2014). In this sample of depressed patients, the
over-representation of rs6313 C carriers suggests that this allele
was associated with MD. Moreover, a higher severity of major
depressive episodes observed in CT/CC patients as compared
to TT patients further supports the association of 5-HT2A-Rs
and MD. Interestingly, in this sample of depressed patients, two
patients carrying the rare TT genotype (452Tyr/Tyr) of rs6314
had severe melancholic major depressive episodes, but such asso-
ciation has not been reproduced in a recent study (Gadow et al.,
2014). This might be related to the fact that the TT geno-
type has reduced ability to activate G proteins, downstream of
5-HT2A-Rs (Hazelwood and Sanders-Bush, 2004). Interestingly,
the association of 5-HT2A-Rs and MD has been mainly reported
in severe forms of suicide, notably such with suicidal attempts
(Du et al., 2000; Giegling et al., 2006; Li et al., 2006; Saiz et al.,
2008; Vaquero-Lorenzo et al., 2008) or melancholic features
(Akin et al., 2004). The latter clinical results are also in line
with those showing a greater 5-HT2AR binding in post-mortem
brain tissue (Yates et al., 1990; Hrdina et al., 1993; Arranz et al.,
1994; Pandey et al., 2002; Shelton et al., 2009) or in platelets
(Hrdina et al., 1995, 1997; Sheline et al., 1995) from individuals
with MD, and those evidencing that 5-HT2A-Rs mediated phos-
phoinositide synthesis was reduced in fibroblasts from patients
with melancholic depression compared to controls (Akin et al.,
2004).

It is noteworthy that variations in the gene encoding for the
5-HT2A-R have also been associated with the treatment out-
come of SSRIs in MD (Choi et al., 2005; McMahon et al., 2006;
Kato et al., 2009; Peters et al., 2009;Wilkie et al., 2009; Kishi et al.,
2010; Lucae et al., 2010; Viikki et al., 2011). In particular, a recent
pharmacogenetic study also pointed out that specific SNPs related
with 5-HT2A-R signaling pathways might influence the therapeu-
tic activity of SSRIs in Chinese patients with MD (Li et al., 2012).
Unfortunately, in most cases the consequences of these poly-
morphisms on 5-HT2A-R expression and/or function are lacking
knowledge and evidence.

The 5-HT2A-Rs in the Regulation of
Epilepsy and Antiepileptic Response

As we have highlighted in the previous paragraphs, 5-HT is
an important neurotransmitter in the brain as it is involved in
many neurological and psychiatric diseases including epilepsy.
Serotonin receptors may directly or indirectly depolarize or
hyperpolarize neurons by changing the ionic conductance and/or
concentration within the cells (Barnes and Sharp, 1999). It is
thus not surprising that 5-HT is able to change the excitabil-
ity in most networks involved in epilepsy (Bagdy et al., 2007;
Jakus and Bagdy, 2011; Gharedaghi et al., 2014).

Conventionally, epilepsy syndromes are classified into two
distinct categories, focal and generalized, according to the
seizure onset (arising from a specific brain area or from
both hemispheres), the electroencephalogram and behavioral
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characteristics and the brain circuitry sustaining the paroxysms
(Berg et al., 2010). Focal and generalized epilepsy differ also in
the pathological neurochemical imbalance observed in the brain
areas with a decrease and an increase of GABA function, respec-
tively (Cope et al., 2009). This lead to a different therapeutic
approach, indeed drugs that increase GABA concentration are
first choice in focal/convulsive epilepsy and exacerbate absence
epilepsy seizures. For instance, gabapentin, a structural GABA
analog which increases GABA synthesis, is not indicated in gen-
eralized epilepsy syndromes (especially absence epilepsies), which
it may exacerbate (Manning et al., 2003).

The majority of the focal and generalized seizures are con-
vulsive (60%) while the remaining seizures are generalized non-
convulsive. Moreover, since an obvious cell death or other tissue
pathology is often absent, these epilepsies are idiopathic and typ-
ically associated with genetic abnormalities, an example of which
is ASs (Crunelli and Leresche, 2002).

Here, we will focus on the focal TLE and the idiopathic
generalized absence epilepsy. TLE is traditionally associated to
many disorders localized to the cortex (neocortex and entorhinal
cortex) and the hippocampal formation or both. Moreover, his-
tological reports of TLE patients and animal models of epilepsy
have consistently demonstrated that pathology is not limited to
these areas but also to the thalamus, therefore the epileptogenic
network in TLE is broad (Bernhardt et al., 2013). Typical ASs of
idiopathic generalized epilepsies consist in sudden, brief periods
of loss of consciousness which are accompanied by synchronous,
generalized SWDs in the EEG (Crunelli and Leresche, 2002).
SWDs originate from abnormal firing in thalamic and cortical
networks and GABAA inhibition is integral to their appearance
(Crunelli and Leresche, 2002; Cope et al., 2009).

The involvement of the serotonergic system in epilepsy was
suggested in the late 1950s (Bonnycastle et al., 1957) and all
the areas involved in epilespy receive 5-HT innervetion and
express different 5-HT-Rs including 5-HT2A-Rs (Figure 1A).
Furthermore, 5-HT is known to regulate a wide variety of focal
and generalized seizures, including absence epilepsy both in
human and in animal models (Favale et al., 2003; Bagdy et al.,
2007; Lorincz et al., 2007; Jakus and Bagdy, 2011). In gen-
eral, agents that elevate extracellular 5-HT levels, such as 5-
hydroxytryptophan and 5-HT reuptake blockers, inhibit both
focal (limbic) and generalized seizures (Prendiville and Gale,
1993; Yan et al., 1994). Conversely, depletion of brain 5-HT
lowers the threshold to audiogenically, chemically, and electri-
cally evoked convulsions (Statnick et al., 1996). More recently,
increased threshold to kainic acid-induced seizures was observed
in mice with genetically increased 5-HT levels (Tripathi et al.,
2008). These findings are corroborated by data showing that mice
lacking the 5-HT1A- (Sarnyai et al., 2000; Parsons et al., 2001),
5-HT2C- (Applegate and Tecott, 1998), 5-HT4- (Compan et al.,
2004) and, 5-HT7-Rs (Witkin et al., 2007), but also rats knocked-
down for the 5-HT2A-Rs by antisense oligonucleotide treatment
(Van Oekelen et al., 2003) are extremely susceptible to chemi-
cal and electrical-induced seizures. Nevertheless, since only 5-
HT2C-R KO mice are prone to spontaneous death from seizures
(Tecott et al., 1995), and seizures have not been reported with
pharmacological blockade of different 5-HT-Rs, adaptive changes

involving different mechanisms may play a role in the low seizure
thresholds observed in 5-HT-R KO mice. In general, there-
fore, it seems that serotonergic neurotransmission by activating
different 5-HT-Rs suppresses neuronal network hyperexcitabil-
ity and seizure activity (Bagdy et al., 2007), although opposite
effects have also been reported, especially for 5-HT3−4−6−7-Rs
(Gharedaghi et al., 2014).

The role of pharmacological activation of 5-HT2A-Rs in
epilepsy modulation is far from being well-established, however,
it might be an important potential target in light of the recent
evidence that their activation might be not only be anticonvul-
sant but also capable of reducing seizure-related mortality due
to SUDEP (Buchanan et al., 2014), the leading cause of death in
patients with refractory epilepsy (Shorvon and Tomson, 2011).
In addition, we have recently shown that mCPP and lorcaserin,
two preferential 5-HT2C-R agonists with different pharmaco-
logical profiles (Fletcher and Higgins, 2011; Higgins et al., 2013),
stop the elongation of MDA and AD induced by repetitive per-
forant path stimulation recorded at the level of the granular
cells of the hippocampal DG acting in urethane-anesthetized
rats, an effect that was not blocked by SB242084, a selective 5-
HT2C-R antagonist (Orban et al., 2014). The elongation of the
MDA has been considered an electroencephalographic represen-
tation of epileptogenic phenomena occurring after the first elec-
tric insult (Stringer et al., 1989; Orban et al., 2013). Interestingly,
preliminary results from our laboratory seem to indicate that
mCPP and lorcaserin effects on MDA elongation might be due
to the activation of 5-HT2A-rather than 5-HT2C-Rs since they
were blocked by 5-HT2A-R antagonists while the 5-HT2A-R
agonist TCB-2 mimicked mCPP and lorcaserin effects (unpub-
lished observations). Conversely, evidence from other groups
showed that DOI strongly facilitated kindling development and
reduced the number of stimulations needed to produce general-
ized seizures in the amygdaloid kindled rats (Wada et al., 1997)
while it was ineffective in any parameters on hippocampal par-
tial seizures generated by low-frequency electrical stimulation
of the hippocampus in rats (Watanabe et al., 1998). Similarly,
Wada et al. (1992) showed that in the feline hippocampal kin-
dled seizures, DOI had no effect displaying only a tendency to
be anti-epileptic, decreasing the duration of AD and general-
ized tonic–clonic convulsions, although not significantly. In the
same model, the selective 5-HT2A-R antagonist MDL100907,
had no effect on seizure thresholds, secondary AD duration or
latency of secondary AD (Watanabe et al., 2000). However, the
1 mg/kg dose of MDL100907 significantly increased the pri-
mary AD duration, suggesting that at this dose MDL100907
increased seizure severity in this model, although high AD
control levels might have invalidated the 5-HT2A-R antago-
nist effect (Watanabe et al., 2000). The 5-HT2A/2C-R antagonist
ketanserin and themore selective 5-HT2A-R antagonist ritanserin
decrease the threshold for seizures maximal electroshock thresh-
old (MEST) test in mice (Przegaliński et al., 1994). In other
experimental models, 5-HT2A-R antagonists have failed to be
effective in seizure control. Ritanserin was ineffective on kainic
acid-induced seizures (Velisek et al., 1994) and ketanserin did not
affect the seizure threshold for picrotoxin in mice (Pericic et al.,
2005) or on ethanol withdrawal seizures (Grant et al., 1994), but
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TABLE 1 | Role of the 5-HT2A receptors in temporal lobe epilepsy.

Model Effect Reference

Antiepileptic role of the 5-HT2A receptors in temporal lobe epilepsy

Antagonists MDL 11,939 (5-HT2A ) MEST test in Lmx1bf/f/p mice Blocked DOI-TCB-2 effect in
preventing seizure-induced
respiratory arrest and death

Buchanan et al. (2014)

Ketanserin (5-HT2A ) MEST test in mice Decreases the threshold for
seizures

Przegaliński et al. (1994)

Ritanserin (5-HT2A/2B/2C) MEST test in mice Decreases the threshold for
seizures

MDL 100907 (5-HT2A ) Electroshock-induced hippocampal
partial seizures in rats

Increases primary AD duration Watanabe et al. (2000)

Agonists DOI (5-HT2A/2C) TCB-2
(5-HT2A )

MEST test in Lmx1bf/f/p mice Prevented seizure-induced
respiratory arrest and death

Buchanan et al. (2014)

mCPP (5-HT2A/2B/2C) MDA in rats Stop MDA elongation (not blocked
by SB242084)

Orban et al. (2014)

Lorcaserin (5-HT2B/2C) MDA in rats Stop MDA elongation (not blocked
by SB242084)

DOI (5-HT2A/2C) Hippocampal kindled seizures in rats Reduces AD duration Wada et al. (1992)

Pro-epileptic role of the 5-HT2A receptors

Antagonists Antisense oligonucleotide
designed to inhibit 5-HT2A

expression

Tryptamine-induced serotonergic
syndrome-associated convulsions

Inhibited tryptamine-induced
bilateral convulsions and body
tremors

Van Oekelen et al. (2003)

MDL100907 (5-HT2A ) Feline hippocampal kindled seizures No effect on seizure thresholds,
secondary AD duration, or latency
of secondary AD

Watanabe et al. (2000)

Ritanserin (5-HT2A/2B/2C) Kainic acid-induced seizures in rats Has no effect Velisek et al. (1994)

Ketanserin (5-HT2A ) Cocaine-induced convulsions in mice Dose-dependently inhibits seizures Ritz and George (1997)

Hippocampal kindled seizures in cats Increases latency to generalized
convulsions

Wada et al. (1992)

Amygdala kindling in rats Delays the development of kindling Wada et al. (1997)

Picrotoxin-induced seizures in
stressed and unstressed mice

Has no effect on seizure thresholds Pericic et al. (2005)

Ethanol-withdrawal seizures in mice Has no effect on seizure severity Grant et al. (1994)

Cinanserin (5-HT2A/2C) Cocaine-induced convulsions in mice Dose-dependently inhibits seizures Ritz and George (1997)

Pirenperone (5-HT2A/2C) Cocaine-induced convulsions in mice Dose-dependently inhibits seizures

Dotarizine (5-HT2A/2C) Electroshock-induced seizures in rats Increases the threshold for seizures Lazarova et al. (1995)

PTZ-induced seizures in rats Has no effect on seizure thresholds

Agonists DOI (5-HT2A/2C) Hippocampal kindled seizures in cats Decreases latency to generalized
convulsions

Wada et al. (1992)

Amygdala kindling in rats Facilitates kindling and reduces the
number of stimulations needed to
elicit generalized convulsions

Wada et al. (1997)

Picrotoxin-induced seizures in
stressed and unstressed mice

Has no effect on seizure thresholds Pericic et al. (2005)

MEST, maximal electroshock threshold; PTZ, pentylenetetrazole; SE, status epilepticus.

antagonized cocaine-induced convulsions in a dose-dependent
manner (Ritz and George, 1997). The 5-HT2A/2C-R and cal-
cium antagonist dotarizine inhibited electroconvulsive shock
(ECS)-induced seizures but had no effect on pentylenetetra-
zole (PTZ)-induced convulsions in rats (Lazarova et al., 1995)
(Table 1).

As far as the 5-HT control of generalized ASs is concerned,
most of the limited available evidence has been obtained in
WAG/Rij rats, with 5-HT1A-, 5-HT2C-, and 5-HT7-Rs appear-
ing as the most critical for the expression of this form of epilepsy
(Bagdy et al., 2007). Briefly, activation or inhibition of 5-HT1A-
and 5-HT7-Rs increases or decreases ASs, respectively, while

5-HT2C-R agonists are effective in inhibiting epileptiform activ-
ity and 5-HT2C-R antagonism lacks any effects (Jakus et al., 2003;
Jakus and Bagdy, 2011). In agreement with this evidence, fluoxe-
tine, and citalopram caused a moderate increase in SWDs; poten-
tiated or inhibited by pre-treatment with SB-242084 and the 5-
HT1A-R antagonist WAY-100635, respectively (Jakus and Bagdy,
2011). The role of 5-HT2A-Rs has not instead been investi-
gated in WAG/Rij rats yet. In another genetic animal model of
absence epilepsy, the groggy (GRY) rats, increasing 5-HT levels
by treatment with the 5-HT reuptake inhibitors fluoxetine and
clomipramine, inhibits SWD generation, an effect mimicked by
DOI and blocked by ritanserin pre-treatment (Ohno et al., 2010).
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Consistently, in atypical ASs induced by AY-9944, DOI reduced
the total duration and number of SWDs, and ketanserin exac-
erbated the number of SWDs. On the other hand, in contrast
to the evidence obtained in WAG/Rij rats, 5-HT2C-R activa-
tion by mCPP had no effect on total duration or number of
SWD in this model of atypical absence epilepsy (Bercovici et al.,
2007).

In contrast to these findings, however, earlier evidence had
shown that serotonergic neurotransmission and 5-HT2A-Rs do
not appear to be involved in the pathogenesis or control of
ASs in the most widely used rat model of absence epilepsy,
the GAERS (Danober et al., 1998) (Table 2). Although this dis-
crepancy could be simply due to differences between the two
experimental models, it is more likely explained by the lack of
selectively of the serotoninergic drugs that were used in the earlier
study in GAERS. The role of 5-HT, and especially the differ-
ent areas in which the modulation of ASs might occur, has not
been examined thoroughly and it is currently object of investi-
gation in our laboratories. Since we have recently shown that an
aberrant eGABA function in VB neurons is a necessary factor in
the expression of SWDs associated with typical absence epilepsy
(Cope et al., 2009; Di Giovanni et al., 2011; Errington et al., 2011,
2014), it is conceivable that some of the systemically injected
5-HT ligand effects on ASs (Danober et al., 1998; Isaac, 2005;
Bagdy et al., 2007; Bercovici et al., 2007; Ohno et al., 2010) occur
via a modulation of tonic GABAA inhibition. This hypoth-
esis is based also on the evidence that DA and especially
the activation of D2-Rs decreases both ASs (Deransart et al.,
2000) and eGABA current in GAERS VB neurons (Yague et al.,
2013; Crunelli and Di Giovanni, 2014). Indeed, our preliminary
results show that 5-HT2A-R ligands lack any effect on pha-
sic synaptic GABAA inhibition in VB thalamocortical neurons
of Wistar rats (Cavaccini et al., 2012), while 5-HT2A-R selec-
tive agonists significantly enhanced the tonic eGABAA con-
ductance. This enhancement of eGABAA tonic current was
blocked by co-application of 5-HT2A-R antagonists which were
devoid of any effect per se. Strikingly, 5-HT2A-R antagonists
were instead effective in decreasing the aberrant GABAA tonic
current in GAERS. From these findings, we can speculate that
the activation of the 5-HT2A-Rs would have a pro-epileptic

activity, although this evidence has not been obtained yet in
vivo.

There is evidence indicating that 5-HT2A-R activation
potentiates the inhibitory effect of lamotrigine, a widely
used antiepileptic agent, on voltage-gated sodium channels
(Than et al., 2007). Lamotrigine is the only other antiepilep-
tic drug (AED) with clear benefit for bipolar disorder, and is
approved by FDA for maintenance treatment (Bowden et al.,
2003). Interestingly, a study in Long-Evans rats with spontaneous
SWDs has indicated that chronic lamotrigine treatment can ben-
efit patients with absence epilepsy via suppression of seizures and
amelioration of comorbid anxiety and depression (Huang et al.,
2012).

Further, some ligand-binding studies in animals have shown
that the antiepileptic valproate increases 5-HT2A-R expression
(Green et al., 1985; Sullivan et al., 2004), although an in vivo
imaging study has not confirmed it in acute mania (Yatham et al.,
2005). This study, however, cannot exclude the possibility that
valproate improves mood symptoms by altering second mes-
senger signaling cascades linked to 5-HT2A-Rs. Indeed, brain
5-HT2A-Rs are coupled via G-proteins to phosphoinositol path-
way, and there is a growing body of evidence which suggests that
both valproate and lithium have multiple effects on this pathway
(Brown and Tracy, 2013).

The abovementioned studies show that generally 5-HT has an
anticonvulsant effect in both generalized and focal epilepsy and
the 5-HT2-Rs appear to play a major role, although contrasting
evidence also exists. In particular, the anti- versus pro-epileptic
effects of the 5-HT2A-Rs might depend on the dose of the lig-
ands used, with pro-convulsive effects when the receptors are
excessively activated, the experimental model investigated and
different populations of receptors. Moreover, at high doses, the
selectivity of these ligands is lost and other mechanisms cannot
be ruled out.

More research is needed to clarify the role of 5-HT2A-Rs
in seizures especially in absence epilepsy. Thus, increasing our
understanding of the role of 5-HT2A-Rs and their modulation
of other neurotransmitter systems such as GABA might reveal a
new possible therapeutic mechanism with potential translational
significance.

TABLE 2 | Role of the 5-HT2A receptors in absence epilepsy.

Model Effect Reference

Typical absence epilepsy Agonists DOI (5-HT2A/2C) GRY rats Inhibits SWDs Ohno et al. (2010)

m-CPP (5-HT2A/2B/2C) WAG/Rij rats Decreases the duration and
frequency of SWDs

Jakus et al. (2003)

Antagonists Ritanserin (5-HT2A/2B/2C) GRY Increases SWDs Ohno et al. (2010)

Ritanserin (5-HT2A/2B/2C) GAERS Has no effect Marescaux et al. (1992)

Ketanserin (5-HT2A ) GAERS Has no effect

Atypical absence epilepsy Agonists DOI (5-HT2A/2C) AY-9944 rats Reduces the frequency and
duration of slow SWDs

Bercovici et al. (2007)

Antagonists m-CPP (5-HT2A/2B/2C) AY-9944 rats Has no effect Bercovici et al. (2007)

Ketanserin (5-HT2A ) AY-9944 rats Increases the frequency and
duration of slow SWDs

Bercovici et al. (2007)

GRY, groggy, WAG/Rij, Wistar Albino Glaxo rats from Rijswijk; SWD, spike-wave discharge; GAERS, Genetic Absence Epilepsy in Rats from Strasbourg; AY-9944, trans-N,
N-bis[2-chlorophenylmethyl]-1,4-cyclohexanedimethanamine dihydrochloride. Modified from Gharedaghi et al. (2014).
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Do the 5-HT2A-Rs Play a Role in the
Comorbidity between Epilepsy and
Depression?

It is estimated that between 15 and 30% of people with epilepsy
develop several psychiatric disorders, such as anxiety, depression,
and different levels of cognitive impairments (Stafford-Clark,
1954; Kanner and Balabanov, 2002; Kanner, 2003). The patients
with partial complex epilepsy, such as TLE, or who have
poorly controlled epilepsy have the highest frequency rate
of comorbid affective disorders (Kanner et al., 2012). Besides,
depression-like behavior has also been found in generalized
epilepsy such as childhood absence epilepsy (Vega et al., 2011).
This clear link between epilepsy, comorbid psychiatric disorders
and monoaminergic and specifically serotoninergic dysfunction
has been also observed in humans (Harden, 2002) and dif-
ferent animal models of epilepsy (Sarkisova and van Luijtelaar,
2012; Epps and Weinshenker, 2013). Moreover, the animal and
human evidence has revealed that the relationship between
depression and epilepsy is in reality bidirectional. Indeed
patients with depression and especially suicide attempters have
an increased seizure risk compared to the normal popula-
tion (Hesdorffer et al., 2006). Thus, the fact that epilepsy and
depression may share common pathogenic mechanisms and
dysfunction of the serotonergic system is an obvious expla-
nation for this bidirectional comorbidity, since defects in the
serotonergic system are linked to both conditions (Epps et al.,
2012; Epps and Weinshenker, 2013). In agreement, we have
showed further evidence of the involvement of both sero-
tonergic and dopaminergic systems in the pathogenesis of
epilepsy (Cavaccini et al., 2012; Orban et al., 2013; Yague et al.,
2013; Connelly et al., 2014; Crunelli and Di Giovanni, 2014;
Orban et al., 2014), in depression and its pharmacological treat-
ments (Di Giovanni, 2008; Esposito et al., 2008). Compelling evi-
dence for the involvement of 5-HT1A- and 5-HT7-Rs in epilepsy

and depression has been described, therefore it is possible to
infer that agonists at these receptors might have both antiepileptic
and antidepressant activity with also cognitive enhancer efficacy
(Orban et al., 2013). On the other hand, the role of the other
5-HT2A-Rs has been less investigated, and this field is still in
its infancy with many issues that still need to be addressed.
Regarding the 5-HT2A-R as a drug target for treating depression
and epilepsy, it has recently been shown in WAG/Rij rats that
sub-chronic treatment with aripiprazole, a new antipsychotic
with antagonism at 5-HT2A/5-HT6-Rs and also partial agonism
at D2 DA and 5-HT1A and 5-HT7-Rs, has an anti-AS effect, and
positive modulatory actions on depression, anxiety, and mem-
ory which might also be beneficial in other epileptic syndromes
(Russo et al., 2013). Nevertheless, this study did not identify
which receptor subtype underlined these promising aripipra-
zole therapeutic properties. Perhaps, the 5-HT-Rs more directly
linked with the antidepressant and antiepileptic effects of arip-
iprazole might be the 5-HT1A/7-Rs, in light of the well-known
effects of clozapine on seizures. Clozapine, the first AAP to
be developed with some 5-HT2A-R antagonist effects, increases
seizure risk even at therapeutic serum levels (Hedges et al., 2003)
and it is indeed the only psychotropic drug to have received a
FDA black box warning regarding seizures.

Improved seizure control has also been observed in epileptic
patients treated for psychiatric disorders with antidepressants ele-
vated extracellular serotonin in the epileptic foci can lead to an
anticonvulsant effect (Specchio et al., 2004), but the contribution
of the single 5-HT-Rs has not yet been revealed.

As far as cognitive impairments are regarded, preclinical stud-
ies have shown that the 5-HT2A-R activation also has some ther-
apeutic benefits. For instance, ketanserin inhibited the impair-
ment of short-term memory which is seen after seizures stud-
ied by spontaneous alternation rat behavior in the Y-maze task
(Hidaka et al., 2010). In addition, ketanserin inhibited ECS-
induced retrograde amnesia in the step-down passive avoidance
task, suggesting that 5-HT2A-Rs impede consolidation and/or

TABLE 3 | 5-HT2A receptors in comorbidity between epilepsy and depression.

Model Effect Reference

Lamotrigine Chronic pain
states in rats

+ m-CPP (5-HT2A/2B/2C) increased the reflex inhibitory action of lamotrigine Than et al. (2007)

Lamotrigine Chronic pain
states in rats

Decreased the reflex inhibitory action of + Ketanserin (5-HT2A ) lamotrigine

Lamotrigine Humans Bipolar disorders Bowden et al. (2003)

Lamotrigine WAG/Rij rats Suppression of AS and amelioration of comorbid anxiety and depression Huang et al. (2012)

Aripiprazole
(5-HT2A/5-HT6 antagonist)

WAG/Rij rats Suppression of AS amelioration of comorbid anxiety depression and memory impairment Russo et al. (2013)

Valproate Humans Increases 5-HT2A-R expression Green et al. (1985);
Sullivan et al. (2004)

Valproate ECS Inhibited impairment of spontaneous alternation behavior Hidaka et al. (2011)

SSRIs (5-HT-R?) Different
models

Anticonvulsant Specchio et al. (2004)

Ketanserin (5-HT2A

antagonist)
ECS Inhibited the impairment of short-term memory Hidaka et al. (2010)

Ketanserin (5-HT2A

antagonist)
ECS Inhibited electroconvulsive shock-induced retrograde amnesia Genkova-Papazova et al.

(1994)

WAG/Rij, Wistar Albino Glaxo rats from Rijswijk; ECS, electroconvulsive shock.
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retrieval of memory after seizures (Genkova-Papazova et al.,
1994) (Table 3).

Summarizing, both agonists and antagonists appear to be
useful in epilepsy treatment (Tables 1 and 2). These paradoxical
actions of 5-HT2A antagonists and agonists can be reconciled tak-
ing in to consideration that both agonism and antagonism induce
5-HT2A-Rs desensitization or downregulation (Gray and Roth,
2001). The main hindrance for the development of 5-HT2A-
R agonists is the hallucinogenic effects (Krebs-Thomson et al.,
1998). New 5-HT2A compounds with higher selectivity andwhich
lack these aversive side effects are needed.

Conclusion

Together, the observations reviewed here support an impor-
tant role for 5-HT2A-Rs in both affective disorders and normal
and pathologic neuronal excitability. The available literature sug-
gests that the antagonism at 5-HT2AR might have beneficial
effects on both disorders. Moreover, 5-HT2A-R antagonists might

represent a new therapeutic strategy in epileptic patients with
comorbid depression and cognitive dysfunctions. In addition,
5-HT2A-R antagonism may improve the effectiveness of med-
ical therapy with respect to seizure control for both focal and
generalized seizures if they are combined with existing AEDs
and/or SSRIs. The pathophysiology of depression and epilepsy
might result, at least in part, directly from a dysregulation of
brain serotonin 2A neurotransmission or indirectly from the
dysfunction of other neurotransmitter systems (i.e., dopaminer-
gic, glutamatergic, GABAergic) that are under 5-HT2A control.
Needless to say, it remains to be determined whether epilepsy and
its comorbid psychiatric disorders are instead mere epiphenom-
ena of the primary alteration of 5-HT2A-R signaling.
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