
Transactional CSP Processes

Gail Cassar and Patrick Abela

Ixaris Systems (Malta) Ltd
{gail.cassar|patrick.abela}@ixaris.com

Abstract. Long-lived transactions (LLTs) are transactions intended to
be executed over an extended period of time ranging from seconds to
days. A long-lived transaction is normally organized as a series of activ-
ities, with each activity being a discrete transactional unit of work that
releases transactional locks upon its execution. The long-lived transac-
tion commits if all its activities complete successfully. Unless an activity
requires the result of a previously committed activity, there is no con-
straint which specifies that the various activities belonging to a long
lived transaction should execute sequentially. In this paper we present
a solution that combines long-lived transactions and CSP such that in-
dependent activities execute in parallel to achieve flexibility and better
performance for long-lived transactions. We introduce two composition
constructs SEQ LLT and PAR LLT. Very much as the occam CSP-based
constructs, SEQ and PAR, allow processes to be executed sequentially
or concurrently, the proposed SEQ LLT and PAR LLT constructs can
be used to specify the sequential or concurrent execution of transac-
tions. Transactional CSP Processes is a framework that makes use of
these composition constructs, providing an API through which the ap-
plication developer can define long-lived transactions. Concurrency and
transaction handling are managed by the framework transparently from
the application developer.

1 Introduction

An atomic transaction is a unit of interaction between two or more parties
which must be either entirely committed (completed) or aborted (fails) as a
unit. Transaction integrity is supported through the ACID properties, which
are:

– Atomicity : ensures that all of the tasks in a transaction complete successfully
and a transaction commits its changes. However, if any of the tasks fail, the
transaction is aborted and all its effects are rolled back.

– Consistency : refers to having a legal state before a transaction begins and
after it terminates. Integrity constraints of the database should be adhered
to and a transaction is aborted if any of these constraints is aborted.

– Isolation: a transaction should be treated independently from any other
transaction. Other transactions should not be aware of the intermediate
states produced by the transaction before it commits.



Transactional CSP Processes 111

– Durability : when a transaction commits, its effects are not lost.

A transactional platform makes use of locks on rows or tables to guarantee such
ACID properties. The short-duration of such transactions allows other transac-
tions competing for the same resources to be queued seamlessly until locks are
released.
A long-lived transaction (LLT) also referred to as a long-running transaction, is
a transaction of long duration, generally ranging from minutes to hours or even
days. For this reason, it is impractical to use locks throughout the duration of
the long-lived transaction to prevent concurrent access from other transactions
(which would violate the ACID properties). To address this issue, transaction
models for LLTs relax the ACID properties by organizing a long-lived transac-
tion as a series of activities. Each activity is a discrete transactional unit of work
which releases locks upon its execution. Activities are executed in sequence and
can commit, rollback or suspend execution of the transaction. The long-lived
transaction commits if all its activities complete successfully. If any of the activ-
ities fail, the long-lived transaction should roll back by undoing any work done
by the already completed activities. This is normally achieved through compen-
sating activities that essentially reverse changes which, under a normal setup,
would have been handled implicitly by the underlying transactional model. As
described in the JSR95 model [Com06], a transactional model proposed as part of
the Java Community Process which can be used to model long-lived transactions,

“In the event of failures, to obtain reliable execution semantics
for the entire long-lived transaction, compensation transactions are
required in order to perform forward or backward recovery” [Com06].

One limitation of traditional long-lived transactions is that activities are exe-
cuted in sequence — the flow of execution continues upon the successful com-
pletion of an activity to the next. There might be cases when an activity may
require a third party service and so it will be suspended, blocking other activities.
This results in the long-lived transaction taking a long time to complete. There
is also the possibility that after waiting for a long time to resume execution, the
activity may fail causing any committed activities to undo their work. This leads
us to the motivation of our research, which will be described in section 1.1.

1.1 Motivation

We shall now describe the motivation to develop a model which combines con-
current processes and long-lived transactions through an example. Consider a
travel agent system which is used by clients to reserve resources such as a flight,
a room and appropriate transport arrangements between the airport and the
client’s accommodation.
It is rather critical that the booking of such disparate resources is synchronized
— it would be useless to reserve an accommodation unless we manage to reserve
also a suitable flight. Traditional ACID transactions are not suitable to model
such a transaction, as typically each of the flight reservation, accommodation



112 Gail Cassar and Patrick Abela

reservation and travel arrangement operations are done through different third
parties and each takes a substantial amount of time. A long-lived transaction
with a series of activities would be more suitable.

Fig. 1: Travel Agent LLT consisting of three activities to reserve a flight, a hotel room
and a taxi, and a number of compensating activities to cancel each reservation in case
of failure.

Typically we would model each of the various tasks as activities (refer to figure
1). If any of them fails, then any committed activities are compensated and the
entire transaction is rolled back. A typical compensating action might involve
canceling a committed room reservation as no suitable flight could be booked.
It is evident that there is no constraint which specifies that the various activities
described in such scenario need to be executed sequentially. On the contrary,
the booking is more likely to be more successful if we clear the reservations as
quickly as possible. A solution would be to define a long-lived transaction that
can have independent activities running in parallel without the need for them
to wait for each other to start executing. Having concurrent activities would



Transactional CSP Processes 113

eliminate the case where activities in suspended state will block the following
activities.
Transactional CSP Processes is a framework implemented to achieve this objec-
tive. This framework extends on SmartPay LLT (refer to section 2) by introduc-
ing composition flow constructs similar to the sequential and parallel operators
defined in the CSP calculus which allow an application developer to define the
desired method of activity execution in a long-lived transaction.

1.2 Paper Overview

The paper is organised as follows: Section 2 provides a brief introduction to
SmartPay LLT, an implementation by Ixaris Systems (Malta) Ltd. We will then
present the Transactional CSP framework, which extends on SmartPay LLT
in Section 3. This section presents details about the elements comprising the
framework including activities, how the framework handles failure, as well as the
composition constructs SEQ LLT and PAR LLT to be used in order to define
the desired execution of activities in a long-lived transaction. In Section 4 we
will highlight a possible extension to the framework which can be carried out as
future work.

2 SmartPay LLT

In 2005, Ixaris Systems (Malta) Ltd developed a Java implementation loosely
based on the JSR95 Model [Com06]. This implementation forms part of a generic
SmartPay platform implemented by the same company.
The motivation for such a model was brought about by the inadequacy of tra-
ditional ACID transactions to address the company’s specific circumstances.
Generally financial transactions involve a mix of local database updates (fully
within a transactional context) as well as external communication with third
parties. The communication with such third parties cannot be done within a
normal transactional context; if the third party communication falls through, it
takes a period of time for the connection to timeout; during such a period all lo-
cal resources participating in the transaction are locked. Long-lived transactions
allow for the separation of remote interactions and local transactional updates.
The SmartPay LLT implementation extends the long-lived transaction model
proposed in the JSR95 with the possibility of suspending execution between one
activity and another. There exist situations when one needs to consult with a
remote system before continuing with the transaction (for example, if we are not
sure whether we have acquired funds from a client, then we need to suspend the
transaction until we check with the remote system before depositing funds in
the user’s local account).
SmartPay LLT is implemented on standard Java technologies namely Java Tran-
sation API (JTA) and Enterprise Java Beans (EJBs). JTA provide the Java Plat-
form with standards-based closed, top-level transaction support. EJBs provide
a persistence model for persisting intermediate transactional state. SmartPay



114 Gail Cassar and Patrick Abela

LLT 1.0 has been deployed on a live system setup (on a JBoss application server
with a MySQL backend) for the past two years, processing thousands of financial
transactions.

3 Transactional CSP Processes Framework

Transactional CSP Processes is a framework which allows the application devel-
oper to define the desired method of activity execution (sequential, concurrent
or a combination of both) in a long-lived transaction. This framework extends
on SmartPay LLT by introducing composition flow constructs similar to the
sequential and parallel operators defined in the CSP calculus. The model also
allows for the suspension and resuming of activities and addresses failure of
activities in terms of compensating activities. The application developer simply
determines the activities to be performed and specifies their method of execution
by using the appropriate composition constructs. Concurrency and transactional
issues are managed by the framework implementation, transparently from the
application developer.
A long-lived transaction in Transactional CSP Processes framework is defined
in terms of activities and their composition structures, using the proposed se-
quential and parallel composition flow constructs SEQ LLT and PAR LLT. In
the following sections we will present the various elements that comprise the
Transactional CSP framework.

3.1 Activities

Similar to the SmartPay LLT, the application developer must implement ac-
tivities to define the units of work of a Transactional CSP LLT. The method
of execution for each activity is defined by adding the activity to the desired
composition flow construct SEQ LLT or PAR LLT. In the Transactional CSP
Processes framework, the long-lived transaction is modeled using a tree structure
in which a branch determines the concurrent execution of the elements belonging
to it. Activities are to be added as child elements to the required composition
structures:

– SEQ LLT for sequential composition
– PAR LLT for parallel composition

3.2 Compensating Activities

This framework adopts backward recovery so when an activity fails, all previously
committed activities are compensated through their corresponding compensat-
ing activities. A compensating activity essentially reverses changes which, under
a traditional atomic setup, would have been handled implicitly by the under-
lying database model. The application developer specifies the course of action
to be taken for each committed activity to undo its changes in a corresponding
compensating activity.



Transactional CSP Processes 115

It is our understanding that all activities related via SEQ LLT and PAR LLT
constructs belong to the same transaction. The failure of any activity brings
about the compensation of all committed activities participating in the same
LLT. Compensating activities will be executed in the same order and under
the same constraints as the activities being compensated. When compensating
activities in a SEQ LLT, their corresponding compensating activities are exe-
cuted sequentially but in reverse order, while those activities in a PAR LLT are
compensated concurrently.

3.3 Composition Flow Constructs: SEQ LLT and PAR LLT

Very much as the occam CSP-based constructs SEQ and PAR allow processes to
be executed sequentially or concurrently, the proposed SEQ LLT and PAR LLT
constructs can be used to specify the sequential or concurrent execution of ac-
tivities in a long-lived transaction.
Two activities that are coordinated with the SEQ LLT construct (Figure 2)
are evaluated in such a way that the second activity is executed only after the
first activity commits. This corresponds to the SEQ construct which, from a
concurrency perspective, executes in such a way that the second process starts
its execution after the first process is complete. Therefore, SEQ LLT requires a
single thread of execution for its elements to execute in sequence.

Fig. 2: SEQ LLT construct is used to specify the sequential execution of activities in
a long-lived transaction, with each activity executing one after the other on the same
thread of execution.

Similar to occam’s PAR construct, the PAR LLT construct (Figure 3) specifies
that activities can start their execution, independently from whether any other
activities have committed their transaction or not. PAR LLT will spawn a thread
for each of its elements so that they will execute in parallel. PAR LLT will then
wait for all child threads to return a result to their original parent thread. In
other words, PAR LLT will wait for all child threads to join back to their original
parent thread.



116 Gail Cassar and Patrick Abela

Fig. 3: PAR LLT construct is used to specify the concurrent execution of activities in
a long-lived transaction, with each activity being executed on a separate thread.

SEQ LLT and PAR LLT can be combined in very much the same way that SEQ
and PAR in occam can. For example, if two activities B and C can run in parallel
but require activity A to successfully commit first, the setup of SEQ LLT and
PAR LLT as shown in Figure 4 is to be used.
In the case where a PAR LLT construct is to be followed by a SEQ LLT construct
sequentially, like that depicted in Figure 5, the nested SEQ LLT activities start
execution after all activities in the PAR LLT have committed. PAR LLT will first
spawn threads for each of its activities. PAR LLT will wait for all its threads
to join back to their original parent thread before the enclosing SEQ LLT can
proceed to execute the following element in sequence.

3.4 Suspending and Resuming Activities

An activity can commit its updates, rollback any updates or suspend execution
such that it is resumed later on. Any updates done up to that point by the
activity can be committed or rolled back, as specified by the activity.
An activity which suspends execution in a SEQ LLT construct, indirectly delays
the execution of any subsequent SEQ LLT activities. Such activities cannot start
their execution until the activity commits.
On the other hand, an activity which suspends execution in a PAR LLT con-
structs, does not have any effect on other activities executing in the same
PAR LLT construct. Any activities which are synchronized to start their execu-
tion after the PAR LLT activities commit will wait until the suspended activity
is resumed and completed.



Transactional CSP Processes 117

Fig. 4: A long-lived transaction made up of a nested composition of constructs in which
Activities B and C first wait for Activity A to commit successfully, and then they are
executed in parallel.

Fig. 5: Another example of a long-lived transaction made up of a nested composition
of constructs, with a number of activities (C and D) to be executed in sequence, after
a number of activities (A and B) have been executed successfully in parallel.



118 Gail Cassar and Patrick Abela

4 Future Work

Transactional CSP Processes framework could be extended to support communi-
cation between concurrent activities, using the same synchronization mechanisms
provided by CSP.
An activity which waits on a channel for communication with another concurrent
activity would be automatically suspended and its transactional locks released.
Subsequently, it is resumed after it synchronizes. Effectively a received message
on a channel causes the activity to resume its execution and to restart the
transaction.

5 Conclusion

One can conclude that through the implementation of the Transactional CSP
Processes framework, we have achieved the main objective of providing a solu-
tion that allows a long-lived transaction to have independent activities running
concurrently. Support for concurrent activities provides more flexibility and bet-
ter performance for long-lived transactions since activities running in parallel do
not affect each other, thus avoiding scenarios where suspended activities cause
a long-lived transaction to take a considerable amount of time to complete. The
composition constructs SEQ LLT and PAR LLT, introduced and implemented
by the Transactional CSP Processes framework, allow an application developer
to define the desired method of execution for the activities in a long-lived trans-
action. Synchronization and transactional issues are managed by the framework
transparently from the application developer, allowing more dedicated time to-
wards the business logic of the transactional application.

References

[BHF05] M. Butler, T. Hoare, and C. Ferreira. A trace semantics for long-running
transactions. In Proceedings of 25 Years of CSP, 2005.

[Cas07] G. Cassar. Transactional CSP Processes. Department of Computer Science
& AI, University Of Malta, 2007.

[Com06] Java Community. JSR 95: J2EE Activity Service for Extended Transactions.
2006.

[GMS87] H. Garcia-Molina and K. Salem. SAGAS. In Proceedings of the 1987 ACM
SIGMOD International Conference on Management of Data, 1987.

[GR03] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, 2003.

[Hoa87] C. A. R. Hoare. Communicating Sequential Processes. In Proceedings of the
ACM Programming Techniques, 1987.

[LMP04] M. Little, J. Maron, and G. Pavlik. Java Transaction Processing Design and
Implementation. Prentice Hall, 2004.

[Ros89] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1989.


