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Abstract. Model checking has been used in various domains, to enable
automatic verification of properties for a given model. Especially in cases
when the correctness of the the model is not evident due to the complex
nature of the description, model checking can be an indispensable tool.
One such domain is the use of concurrent assembly algorithms for low-
level synchronisation, which can be notoriously difficult to check their
correctness or even test. In this paper we look at this domain, and explore
the use of model-checking in verifying a number of such algorithms, such
as barrier synchronisation and wait-free CSP channel communication.
We tackle the state explosion problem inherent in model checking by
making use of abstraction techniques to remove rendundant information
in the the model, and partial-order techniques to remove redundant in-
terleavings of actions. Finally, we also investigate the use of structural
induction to reason about families of systems of arbitrary size. Making
use of symmetry and induction, we verify algorithms with an unbounded
number of identical participating tasks.

1 Introduction

Model checking has been extensively used in the verification of complex systems.
In critical systems, analysis of properties along all possible execution paths makes
it an attractive alternative to testing and simulation. In the field of asynchronous
concurrent algorithms, building testing suites with high state-space coverage can
be particularly challenging, since concurrency may introduce different interleav-
ings which are difficult to control through the testing suite. In this paper, we
present our recent results in the verification of concurrent wait-free assembly
algorithms through the use of standard model checking techniques.

We look into algorithms running on three different shared memory archi-
tectures: Single Processor, Symmetric Multi-Processor (SMP) and Asymmetric
Multi-Processor (ASMP), with the main focus on the ASMP. In the SMP ar-
chitecture, the processors are identical and share the same clock so they are
synchronised [HP02]. On the other hand the ASMP architecture does not have
such a constraint and thus we cannot know how long an instruction will take to
execute on different processors.

In particular, we look into wait-free algorithms used in the core of the KRoC
Occam compiler [WW96], to handle communication between different threads.
As with most real-life applications of model checking, the main challenge is



primarily that of controlling the state explosion problem. Due to the multiple
interleavings that are possible in such algorithms, the state space grows very
quickly. The second challenge is that of reasoning about parametrised systems.
Rather than the verification of a stand-alone program, most of the algorithms
used may interact with any number of other programs. For example, the reso-
lution of channel synchronisation in a CSP-like domain may have any number
of readers trying to take the data provided by the writer. We present struc-
tural induction techniques to reason about such families of systems using model
checking.

In this paper we present the application of these techniques for the verification
of the algorithms used internally by KRoC to handle thread barrier synchroni-
sation and channel communication using wait-free algorithms [Vel98]. In both
cases, we use inductive reasoning with model checking to prove the correctness
of the algorithms for any number of processes taking part in the synchronisation.

2 Background

A Kripke structure is a tuple M = 〈Q, I, t, v〉, where Q is a finite set of states,
I ⊆ Q is a set of initial states, t ⊆ Q × Q is a total transition relation between
states and v ∈ Q → 2A is a valuation function over a set of atomic propositions A.
The valuation function v corresponds to which propositions hold in which states.
We say that proposition p ∈ A holds in state q ∈ Q in M , written q |=M p, if
p ∈ v(q). We extend this notation for boolean expressions. q |=M e ∧ f holds if
both q |=v e and q |=v f . Similarly, we define the other boolean operators.

The set of valid paths in a Kripke structure M are infinite sequences of states
σ ∈ seq(Q) such that σ0 ∈ I and for all i, (σi, σi+1) ∈ t, where the subscript is
the index of the path.

Linear Time Logic (LTL) is used to reason about properties along such paths.
An LTL formula is either a boolean expression over atomic variables, or uses the
temporal operators G, F, X and U. The semantics of LTL over a path σ, are
defined as follows (σ+i corresponds to the path identical to σ but dropping the
first i initial items):

σ |=M e
df
= σ0 |=M e

σ |=M X p
df
= σ+1 |=M p

σ |=M F p
df
= ∃i · σ+i |=M p

σ |=M G p
df
= ∀i · σ+i |=M p

σ |=M p U q
df
= ∃i · σ+i |=M q and ∀i′ < i · σ+i′ |=M p

A Kripke structure M is said to satisfy LTL formula e, written as M |= e, if
all valid paths in M satisfy e.

Linear Time Logic without next-time operator (LTL/X) is identical to LTL,
except that X may not appear in properties.



3 Modelling
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Fig. 1: Part of the Kripke structure
of the mutual exclusion algorithm.
The dotted transitions correspond
to the other external process.

We model concurrent algorithms running
on any of three different shared memory
architectures: Single Processor, Symmet-
ric Multi-Processor (SMP) and Asymmet-
ric Multi-Processor (ASMP). In the SMP
architecture, the processors are identical
and share the same clock so they are syn-
chronised [HP02]. On the other hand the
ASMP architecture does not have such a
constraint and thus one cannot know how
long an instruction will take to execute on
different processors. This can be modelled
by giving each instruction the possibility
to stutter so in this way an instruction
may take any amount of time to finish.
This also resolves the problem of knowing
how many cycles each instruction takes,
since the model will cover any number of

cycles. In our model, the data and code will be assumed to reside in different
memory areas. Furthermore, the programs will not have access to write to the
code memory areas — in other words, we will be looking at static (non-self
modifying) algorithms.

Algorithms are given a semantics in terms of a Kripke structure, with the
states consisting of the data stored in the registers (including program coun-
ters) and the memory. The transition relation is based on the semantics of the
assembly instruction found in memory at the location pointed to by the pro-
gram counter. To reduce the model to a reasonable magnitude, only the memory
locations used in the algorithms will be modelled.

1 spin : cmp [1] 0; spin : cmp [1] 1;

2 jne spin ; jne spin ;

3 noop ; // Crit .Sec. noop ; // Crit .Sec.

4 mov [1] 1; mov [1] 0;

5 jmp spin ; jmp spin ;

Listing 1.1: Mutual exclusion try

For instance, consider the two concurrent programs shown in listing 1.1. Both
processes use memory location 1 in order to provide mutual exclusion. The state
space will be made up of all the possible values of the memory location 1 and
the value of the registers used (the program counters of the two processes pc1

and pc2 and their equality, or zero flags). Figure 1 shows a small part of the
reachable states of the Kripke structure derived from this program.



3.1 Formal Semantics of Assembly Programs

Based on the model we derive, one can try to verify that the algorithm actually
guarantees mutual exclusion between the two concurrent processes — it is never
the case that both processes will be in the critical section at the same time. This
can be specified as the LTL property as G(¬(pc1 = 3 ∧ pc2 = 3)).

In table 1, one can find the operational semantics given to some typical as-
sembly instructions. The transitions are between triples (r , lm , gm) — with
the information stored in the registers, local memory and global memory re-
spectively. All transitions are labelled by two parameters (−→M

prg), the program
being given a semantics, and the set of locations in global memory that are
updated by the instruction. We call transitions with M = ∅, local transitions.
In the case of parallel composition, the global memories are merged based on
this latter parameter. Based on these semantics, we can give a Kripke structure
interpretation to a program prg, with q −→ q′ being defined as ∃M · q −→M

prg q′.
We refer to this as [[prg]].

Lemma 1. Any sequence of local transitions does not change the global memory
component of the state: If (r, lm, gm)(−→∅

prg)∗(r′, lm′, gm′), then gm = gm′.

The proof follows by induction on the number of transitions taken, and the
basic definitions of instruction semantics.

The state explosion problem unfortunately limits the size of the model which
can be model checked in a tractable amount of time [EMCJ99]. Many techniques
have been devised in order to be able to enable model checking of larger systems.
We will now explain some domain specific optimisation we performed on the
models produced.

The state space described in the semantics is simply far too big to handle
using model checking. One of the main culprits is the fine-grain instructions,
introducing far too many interleavings. Despite the fact that unless the global
memory is modified, there is no interaction between concurrent programs, the
semantics keeps account of all the individual instructions carried out in each
thread. To relieve this problem, we introduce a less fine grained semantics, giv-
ing an abstraction of the original system, which collapses redundant individual
instructions together.

We define =⇒M
prg to be defined for sequential programs for any sequence of

instructions not communicating with the global memory, followed by a single
instruction that does or a loop which does not modify the global state:

(r , lm, gm) =⇒M
prg (r ′, lm ′, gm ′)

df
=

(r (pc) = r ′(pc) ∧ M = ∅ ∧ (r , lm, gm)(−→∅
prg)∗(r ′, lm ′, gm ′))

∨ (r , lm, gm)(−→M
prg ◦ (−→∅

prg)∗)(r ′, lm ′, gm ′)

Furthermore, we constrain the states of the automata to the initial states, the
destinations of global transitions and jump instruction locations which enable
a local loop. We can use this rule to induce more compact sequential program



Sequential program semantics:

prg[r(pc)] = noop

(r , lm, gm) −→∅
prg (r [pc := r [pc + 1]], lm, gm)

prg[r(pc)] = mov [m] n

(r , lm, gm) −→
{m}
prg (r [pc := r [pc + 1]], lm, gm[m := n])

prg[r(pc)] = jmp n

(r , lm, gm) −→∅
prg (r [pc := n], lm, gm)

prg[r(pc)] = jeq n ∧ r(eq)

(r , lm, gm) −→∅
prg (r [pc := n], lm, gm)

prg[r(pc)] = jeq n ∧ ¬r(eq)

(r , lm, gm) −→∅
prg (r [pc := r [pc + 1]], lm, gm)

Stuttering:

(r , lm, gm) −→∅
prg (r , lm, gm)

Parallel composition:

(r1, lm1, gm) −→M1

prg
1

(r ′
1, lm′

1, gm ′
1
)

(r2, lm2, gm) −→M2

prg
2

(r ′
2, lm′

2, gm ′
2
)

((r1, r2), (lm1, lm2), gm) −→M1∪M2

prg
1
‖prg

2

((r ′
1, r

′
2), (lm′

1, lm
′
2), merge((gm ′

1
, M1), (gm

′
2
, M2))

Table 1: Semantics of assembly programs



semantics, using the stuttering and composition rules to define a more compact
semantics for concurrent programs. We will refer to such semantics of a program
prg, as [[prg]]A.

Theorem 1. Given a program prg, and an LTL/X formula π in which basic
propositions refer only to the global memory, [[prg]] |= π if and only if [[prg]]A |= π.

The proof follows in a straightforward manner using structural induction on
the temporal properties, and the fact that the leaf properties change only after
a global transition (lemma 1). Furthermore, local loops are maintained in the
abstract system, ensuring that deadlocks are not lost. The result of this theorem
can be extended to allow the LTL/X formula to refer to program counter values
at the end of a global memory access.

In practice, the abstraction reduces the reachable state space drastically. Fur-
thermore, after collapsing such chains of instructions, we can also syntactically
look at the program and identify registers and local memory locations which no
longer have an affect on the execution of the program. Since we use a symbolic
model checker, we prune out such state variables to reduce the state space of
the resulting system even further.

3.2 Reasoning about Families of Processes using Induction

One problem with most algorithms at the core of a compiler, is that the inter-
action is not strictly between a fixed number of processes. For instance, if one
looks at a multi-way synchronisation algorithm, it should work regardless of the
number of participating entities. Similarly, in the case of channel communication
in Occam, one can have one single writer, and multiple reader competing for the
channel. In both these examples, the problem is to prove that a system satisfies a
property for any number of processes. For a property π, the property one would
like to verify is of the form:

∀n · [[Q‖Pn]] |= π

To prove this property for any number of copies of P , one can use an inductive
approach, by taking the weakest process α satisfying π, and proving that (i)
Q |= π; and (ii) α‖P |= π. The first property can be easily verified using the
techniques already presented. The second is more difficult to prove, since we
need to be able to generate α. One possibility is to consider the system with a
chaotic system for α (chaotic in that it can perform any action), and constrain
the model checking tool to work on paths for which α satisfies π. In general
this is not straightforward to do, but by limiting ourselves to safety properties
expressed as observers [HLR94], which take the input and output of the system
and return one output stating whether or note the system is running correctly,
we can reason about the weakest system directly, proving that if the observer
running on the chaotic system has always been true in the past, the observer of
the global system will also be true. In this manner, we enable reasoning about
whole families of systems.

chaos‖P |= G (observer(chaos) ⇒ observer(chaos‖P ))



4 Case Studies

In this section we will look into a number of case studies we will verify using the
techniques described in this paper.

4.1 Thread Barrier Synchronisation

Barrier synchronisation algorithms are widely used when a job is split between a
number of processes which then wait for each other to finish in order to agglom-
erate the results. This algorithm makes use of two semaphores and two different
threads to do the synchronisation. With k threads to synchronise, k − 1 threads
will signal on a semaphore A followed by waiting on semaphore B. The remain-
ing thread (referred to as the asymmetric thread) tries to cancel the effect of the
other threads by waiting for k − 1 times on A then signaling semaphore B for
k − 1 times freeing the other threads waiting on this semaphore.

Using this model we model check that all the threads eventually reach the
barrier before any continue any further. Applying abstraction meant a reduction
of state variables by an average of 18%, enabling us to verify the algorithm for
up to 10 processes taking less than 15 minutes.

4.2 Generalised Thread Barrier Synchronisation

Induction cannot be applied directly to the model just described, since the
semaphore location needs to be to hold a value of up to k, for a general value
k. The solution we adopt, is that we encode the semaphore location and the
asymmetric thread into a single module.

When, in the algorithm, one adds a new thread, one also has to add a new
wait to the asymmetric thread and a new signal at the end.

In order to model this we are going to create a number of components.
Module SemA will take two signals as input which outputs true once both have
been received. SemA models the part of the asymmetric thread which waits on
semaphore A. Module SemB models semaphore B and the part of the asymmetric
thread which signals on semaphore B in order to free the symmetric threads. The
symmetric thread is modelled as module P and has three states: the signaling
state where it signals semaphore A; the waiting state where the thread waits on
semaphore B; and the ready state.

Figure 2 shows the interaction between the modules. In order to add another
thread, one needs to add more symmetric threads and cascade the semaphore
modules. Here, the ready signal from the first SemA is directed to Signal1 of the
second thus the final SemA module will issue the ready only when signals have
been sent to all the semaphores. This is then directed to the SemAReady of the
SemB modules.

For this proof, a number of observers are used. One observer checks that it
receives all the signals before receiving the wait requests. Furthermore, another
observer checks that each signal/wait is received only once.
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inductive assumption.

With these observers in place, for the base case, all one needs to model check
is that their output is always true.

For the inductive case (Figure 3), we leave the modules to work in a non-
deterministic manner (representing the behaviour of the k processes), and add
another unit (as the (k + 1)th process). Two instances of the observers will be
used to monitor the behaviour of the blocks inside (outputting okk), and that of
the overall system (outputting okk+1. By thus need to show that restricting the
behaviour of the k processes to satisfy the property, the global system still sat-
isfies the property: G (always okk ⇒ okk+1) (where always okk checks whether
okk was always true in the past).

Using this approach, we model check the correctness of thread barrier syn-
chronisation for any number of communicating processes.

4.3 Wait-Free CSP Channel Communication

In this case study we look at, and model check Vella’s wait-free CSP channel
algorithm for shared memory multiprocessors [Vel98]. This algorithm is used
in the kernel of the KRoC [WW96] Occam compiler. Wait-free algorithms offer
various advantages over locking algorithms but they are typically intricate algo-
rithms, difficult to develop and to confirm their correctness under all possible
interleavings.

We first present simple channel communication in order to get a grasp of
the basic algorithm followed by alternate channel communication. In the CSP
model of concurrency two processes may communicate only through blocking
and uni-directional channels.

Simple Channel Communication In the simple channel communication the
inputting and outputting tasks have three shared memory locations; the chan-
nel word, input workspace and output workspace. The channel word will store
the workspace’s address of the task which has committed itself to the com-
munication. The output workspace will store the output value whilst the input



workspace is where the value is stored once received. The output task will behave
similarly to the input task seen in listing 1.2.

Swap InputWorkspace location into the channel word ;

if channel word was 0 {

Sleep; (wait for output task to arrive to same point)

} else (output task is already waiting ) {

Reset the channel word to 0;

Copy value from OutputWorkspace to InputWorkspace ;

Wake the output task ;

}

Listing 1.2: Pseudocode of channel communication (input task)

This algorithm can be modelled directly using the translation we have given,
and we verify that (i) the algorithm never deadlocks (the tasks always finish);
and (ii) that channel communication is always successful (the correct value is
transferred from the output to the input workspace).

Alternate Channel Communication In the alternate channel communica-
tion, a single inputting task receives an input from a number of channels —
corresponding to

(a1.P1 + a2.P2 . . . + an.Pn) | ā1.Q1 | ā2.Q2 . . . | ān.Qn

An additional memory location which in [Vel98] is referred to as a Pointer is
used to hold the state of the input task. An outputting task will behave mainly
like in the single channel communication except that when it finds the address of
the inputting workspace it has to inform the inputting task by swapping READY

into the Pointer (listing 1.3).

Swap OutputWorkspace location into the channel word

if channel word was 0 {

Sleep (wait for input task to arrive to same point)

}

else (input task is waiting or still enabling ) {

Swap READY into Pointer

if pointer was WAITING (input task is sleeping ) {

Wake input task ;

}

Sleep;

}

Listing 1.3: Pseudocode of alternate channel communication (output task)

The input task (listing 1.4) starts by enabling the channels. Once the enabling
is ready it will swap WAITING into the pointer. If the value was still ENABLING
it can safely go to sleep. If on the other hand it was READY, it means that an
output task has committed itself so the disabling phase will follow. Since we have
already swapped WAITING into the pointer, we need to set it back to READY. This



for every channel (Enabling phase) {

Swap InputWorkspace location into channel;

if channel was not 0 {

set Pointer to READY;

restore channel word to previous value;

}

}

Swap WAITING into Pointer ;

if Pointer was Ready {

Swap READY back into Pointer;

if Pointer had become Ready anyway {

Sleep;

}

}else it is ENABLING {

Sleep;

}

for every channel (Disabling phase) {

Swap 0 into channel

if channel was not InputWorkspace location {

restore channel word to previous value;

store channel id in order to read from this channel;

}

}

Reset the channel word to 0;

Copy value from chosen OutputWorkspace to InputWorkspace ;

Wake the corresponding output task;

Listing 1.4: Pseudocode of alternate channel communication (input task)



is not done atomically thus an output task may mistakenly read that the input
task was in the WAITING state. We can identify such a situation by swapping
READY into the pointer. If it is still WAITING it means that no output task has
read this value, so we can continue normally. If not, we simply go to sleep and
leave it up to the output task to reawaken the inputting task.

Once the communication occurs the input task will disable the channels and
then obtain the value directly from the output workspace and then wake the
output task.

Modeling the algorithm Abstractions are used to simplify the algorithm thus
making the problem tractable. Rather than storing the workspace address in the
channel word it is sufficient to store a single value storing one of three possible
values: (i) the input task has committed; (ii) an output task committed; (iii) no
task has yet committed.

Despite the abstractions used, the model obtained was still too large to reason
about. The solution we adopted was to abstract further from the implementation,
reducing the state variables by an extra 80%, but separately model check that
this abstraction is correct. Using the abstracted model we verified the following
properties for up to six output tasks running in parallel:

1. If the processes loop, to input (and output) repeatedly, the input process
will terminate infinitely often, implying that the algorithm introduces no
deadlock.

2. It is never the case that every task is sleeping.
3. Every output task may output — although the algorithm does not deal

about starvation, and an output process may never manage to output, there
is always a possibility (path in the state graph in which) it manages to do
so.

4. The communication is sound — once an output task is chosen, the correct
value will be transferred to the input task.

5. No output is lost.

4.4 Wait-Free CSP channel Communication with an Arbitrary

Number of Output Processes

Induction was approached in a similar manner as in Section 4.2. We first identify
elements (both memory and code) that need to be replicated for every output
task that is added. The main issues was the enabling and disabling of channels
and the shared access to the pointer value since we will have an unknown num-
ber of channels. These were defined recursively as a number of communicating
modules thus abstracting away from threads and processors.

Using this model we proved that given any number of outputting processes
(i) the input task will repeatedly receive inputs from the output tasks and will
never end up in a deadlock; and (ii) an output task may eventually perform
an output even when running in parallel with an unbounded number of output



tasks (an output task may never be chosen to output since the algorithm does
not ensure fairness).

We made use of a number of assumptions in order to prove these properties:
(i) both the enabling and disabling phase terminate; and (ii) the tasks will even-
tually gain access to the pointer value. These assumptions were needed since we
generalise how many output processes are running.

5 Conclusions and Future Perspectives

In this paper, we have looked into the application of model checking techniques
for the analysis of compiler-kernel wait-free algorithms used in the KRoC Oc-

cam compiler. We have presented different techniques for state space reduction
including abstraction and partial-order analysis. We have also used structural
induction techniques for the verification of families or networks of processes, to
ensure that the compiler-kernel algorithms work well for any number of interact-
ing processes. These techniques have been developed into a tool, which uses SMV
as a back-end for verification. It has been applied on a number of algorithms used
in the core of the KRoC compiler, which have been verified correct.

Leven et al [LME04,Meh06] look into the model checking of assembly code
where instead of creating a model they make use of a virtual processor to avoid
any potential errors in the translation. A similar approach to ours was taken by
Basin et al [BFG03] in order to model check bytecode instructions. There is also
a great deal of work concerning abstraction in order to prove properties over
larger systems [CGL94]. We made use of symbolic methods of abstractions but
another type of abstraction is abstract model checking as in [CC99,Gra94,Gra99].
Partial-order abstraction similar to the one employed here is also employed in
StEAM [Meh06]. Structural induction, as used in our approach, has also em-
ployed in a in [McM92] and is discussed in [Jha96] as employing symmetry.

In our case studies, we have looked at LTL properties of these systems.
Clearly, concurrency introduces various issues which require a branching time
logic to express. Certain properties, such as ‘whenever the algorithm is at loca-
tion start, with register r being zero, the other thread may eventually reach
location critical’, cannot be expressed in a linear time logic. We plan to look
into the use of other temporal logics such as CTL and µ-calculus, to verify more
properties of our systems.

We have used modular verification techniques to verify networks of processes.
These techniques were also useful in the abstraction of assembly code to reduce
the complexity of the model checking task. However, the use of modular verifi-
cation techniques was rather ad hoc, and we plan to extend our verification tool
to enable management of module properties to support this form or reasoning.
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