
Embedding a Hardware Description Language in

a Functional Meta-Programming Language

Gordon J. Pace and Christian Tabone

Department of Computer Science, University of Malta
{gordon.pace|christian.tabone}@um.edu.mt

Abstract. General purpose functional languages such as Haskell, have
been widely used as host languages for the embedding of domain specific
languages. In particular, various hardware description languages have
been successfully embedded in Haskell and other functional languages.
More recently, meta-programming languages have also started being used
for the embedding of such languages, where the meta-language features
allow us to access the structure of data objects in a shallow-style em-
bedding, while retaining the characteristics of a deep-embedding. In this
paper, we discuss the application of meta-functional languages for the
embedding of a hardware description language, based on reFLect, a func-
tional meta-language which provides an alternative approach for embed-
ding a hardware description language by means of built-in reflection fea-
tures. Through the use of code quotation and pattern matching, we use
reFLect to build a framework through which we can access the structure
of our circuits by means of reflection.

1 Introduction

Designing and developing a new language for a specific domain, presents various
challenges. Not only does one need to identify the basic underlying domain-
specific constructs, but if the language will be used for writing substantial pro-
grams, one has to enhance the language with other programming features, such
as module definition and structures to handle loops, conditionals and composi-
tion. Furthermore, one has to define a syntax, and write a suite of tools for the
language — parsers, compilers, interpreters, etc — before it can be used. One al-
ternative technique that has been explored in the literature is that of embedding
the domain-specific language inside a general purpose language, borrowing its
syntax, tools and most of the programming operators. The embedded language
is usually developed simply as a library in the host language, thus effectively
inheriting all its features and infrastructure.

Modern functional languages have been shown to excel as host languages for
the embedding of specific domain languages. Features such as strong typing, lazy
evaluation, pattern matching and higher-order functions, all make them ideal for
the development of small languages within them [Hud96]. One domain for which
functional languages have been extensively used to embed languages in is that of
hardware description and design [BCSS98,LLC99,BWAH97,O’D06,ACS05]. An

2 Gordon J. Pace and Christian Tabone

overview of the use of functional languages in hardware design can be found in
[She05].

The need for hardware description languages (HDL) emerged as the size and
complexity of circuits increased beyond the point where the manual design of cir-
cuit systems became unfeasible, creating a need for an infrastructure to describe
circuits textually and enable reuse and instantiation. This led to the development
of languages such as VHDL [LMS86]. Since various large circuits have regular
structures, various extensions and tools for these HDLs appeared, providing fea-
tures such as iterative descriptions, and static (compile-time) recursion in the
description of circuits. These extensions provided a simple meta-language, sit-
ting above the basic HDL, enabling the algorithmic generation of regular circuits
through a two-stage language. One main advantage in embedding a HDL in a
general purpose programming language, is that these meta-language features es-
sentially comes for free — it is simply the host language. Furthermore, having a
full meta-language enables the analysis and transformation of circuits, enables
general manipulation of circuits as with any other data objects. Therefore we can
not only generate circuits, but also analyse (such as static information gather-
ing, simulation, testing, verification), transform (such as retiming) and interpret
(such as netlist generation).

Functional programming languages have proved to be excellent vehicles for
embedding languages in a two-stage language approach, enabling allowing ac-
cess to the HDL description, but do not offer access to the host language code
creating the domain-specific objects. This may be useful since certain struc-
turing information inherent in the control structure of the code generating the
domain-specific program may be useful in its analysis. Recently, the use of meta-
programming techniques for the embedding of HDLs has started to be explored
[MO06,Tah06,O’D04]. A meta-programming language enables the development
of programs that are able to compose or manipulate other programs or even
themselves at runtime, through reflection.

In this paper, we explore the use of reFLect, a meta-programming language,
to embed a hardware description language in such a manner that we can not only
access and manipulate the circuit descriptions, but also the circuit generators
themselves. We plan to use these features to access and control the structure of
the circuit generated. In particular, in the future, we plan to use this to optimise
circuits produced by hardware compilers, maintaining a compositional view of
the compiler, but at the same time having access to information as to which
parts of the circuits resulted from which features of the compiled language.

2 Functional Meta-Programming in reFLect

reFLect [MO06] was developed by Intel, based on the functional language FL,
but extended with reflection features. reFLect is the main programming language
used with the Forte tool [SJO+05]; a hardware verification system used by Intel.
Forte together with reFLect was purposely developed for the development of
applications in hardware design and verification, and is mostly used for access

Embedding a HDL in a Functional Meta-Programming Language 3

to model checking, decision making algorithms and theorem provers for hardware
analysis.

The reFLect language is a strongly-typed functional language with added
meta-programming features, such as quotaion and antiquotation constructs used
to compose or decompose expressions written in the reFLect language itself. This
provides a form of reflection within a typed functional paradigm setting. The
reFLect meta-programming constructs provides the developer with an access to
the structure of programs written in the whole of the reFLect language itself
as data objects. Quoted program expressions are considered to be of a special
type term, representing the abstract syntax tree of the program expression.
Traditional pattern matching can be applied on the type term, allowing uneval-
uated expressions to be inspected and interpreted according to the developer’s
requirements. By combining the pattern matching mechanism with the quotation
features, the developer is also able to modify or transform the quoted expression
at runtime before evaluation. An in-depth overview of reFLect can be found in
[GMO06].

2.1 Reflection Operators in reFLect

Expressions in reFLect are quoted by enclosing them between {| and |}. The
whole expression is typed as a term, denoting the abstract syntax tree for the
enclosed expression. For instance, consider the expression 1 + 2. Normal func-
tional features would evaluate this expression resulting to be semantically equal
to 3, and there is no way one can distinguish between the two. However, the
application of quotation marks around the expression, {| 1 + 2 |}, halts the
evaluation by capturing its syntax tree. Note that, the expression {| 1 + 2 |}

is therefore semantically, and not just syntactically, different from {| 3 |}.

The antiquotation construct is expressed by the prefix operator 8. The an-
tiquotation mechanism essentially raises its operand one level outside the quo-
tation marks. Antiquoted terms always appear within quotations, and have two
main applications. Firstly, it is usually to embed a quoted term within another
term. To avoid nested quotations, one uses the antiquotation operator to splice
one abstract syntax tree into another, thus allowing the construction of terms.
For example, given a term, the function below constructs a new term, represent-
ing the addition of the the original term with 1.

let incTerm a = {| 1 + 8a |};

A typical functional call would be as follows, where the input should also be
of type term.

incTerm {| 2 + 3 |};

In reFLect, this term would reduce to the expression to {| 1 + (2 + 3) |}.

Another application of antiquotation is term decomposition, and used to
enable pattern matching on the abstract syntax tree. For example, the function
below decomposes the given term into the two operands applied to the addition

4 Gordon J. Pace and Christian Tabone

operator, binding the left term to the variable x and the right term to the variable
y.

let decompose {| 8x + 8y |} = (x, y);

Consider, for example, pattern matching with {| 5 * 4 + 2 * 3 |} — x

would be bound to {| 5 * 4 |} and y to {| 2 * 3 |}. Note how the antiquote
is needed to extract the sub-expression as a term. If the function had to be defined
without antiquotes using the pattern {| x + y |}, the variables x and y would
be non-binding, thus this would match the expression {| x + y |} literally.

The reFLect language offers a number of built-in evaluation functions, to allow
total control over the evaluation of the terms being constructed. The most ele-
mentary is the eval function, which is used to evaluate a given term, and returns
the result as a quotation. The value function is similar, since it also evaluates
the given term, but the result is returned as the specified type. A lift function
is also available, and it can be applied to any reFLect expression. This works
by first evaluating the given expression and then by applying quotation marks
around the resulting expression, conclusively lifting the evaluated expression to
a higher level of quotations.

2.2 Embedding Languages in reFLect

The reFLect language, together with the meta-functional features that it offers,
provides interesting grounds for the implementation of hardware description lan-
guages. Typically, when embedding a language, a deep-embedding is required,
since one would want not only to generate programs, but given them different
interpretations as may be required, and have access to the underlying syntax of
the domain-specific language.

Since, in a meta-programming language, one may quote language constructs,
and antiquote terms, one has access to the actual programs as data objects. In
reFLect, the possibility to pattern match over programs also gives the possibility
to look at the structure of an expression. Consequently, in a language like reFLect

one can build a deep embedding mechanism, simply by using quotations and
antiquotations to represent the embedded language using the term datatype,
over a simple shallow embedding of the embedded language. Term manipulation
is easily achieved through the use of quotations and antiquotations. The ability
to directly control the terms of quoted expression, can be applied to expressions
representing elements within a circuit model.

Furthermore, using this style of embedding and nested quotations, one can
actually reason about marked (quoted) blocks of code hence giving access to
the structure of generator of the domain-specific program, effectively enabling
reasoning about the embedded language itself at a higher level of abstraction.

Embedding a HDL in a Functional Meta-Programming Language 5

3 Embedding a HDL in reFLect

3.1 Shallow Descriptions

The simplest way to develop an embedded hardware description language is to
define a number of functions that represent the circuits’ behaviour. If one uses
the boolean values true and false to represent the circuit constant streams high

and low, the description of the primitive and-gate will simply be an application
of the built-in conjunction, thus modelling the logical behaviour of the hardware.
The evaluation of such functions, when applied to a set of inputs, would result
in the simulation of the circuit. Such a shallow embedding can be implemented
in a straightforward manner in reFLect. For the sake of simplicity, we consider
two basic gates, and-gates, and inverters.

let and2 (x, y) = x AND y;

let inv x = NOT x;

In a shallow embedding approach the circuits are represented as programs
within the host language, thus circuits can be described using the more simple
functions that have already been defined. Note that the use of the in-built and-
gate is no different from the use of the user-defined components:

let or2 (x, y) = inv (and2 (inv x, inv y));

let xor2 (x, y) = or2 (and2 (x, inv y), and2 (inv x, y));

let mux (s, (x, y)) = or2 (and2 (s, y), and2 (inv s, x));

The shallow embedding approach offers a straightforward technique for the
implementation of a hardware description language. There is no need for the pro-
grammer to learn new syntax or programming paradigm since these are inherited
directly from the host language, and the default interpretation of the embedded
programs, in this case that of simulation, is achieved directly through the in-
terpreter of the host language itself. Nevertheless, as already discussed, through
such a shallow embedding one loses all information about the structure of the
circuit, and unless the basic gates are overloaded with other interpretations, one
loses the option to apply non-standard interpretations of a circuit.

3.2 Using Reflection for a Deep Embedding

Usually, in a language without reflection, to achieve a deep embedding of an
embedded language, one creates a datatype to which descriptions are reduced.
Using the reflection features, one can take a shallow embedding, as described
in the previous section, and quote the circuit descriptions, thus maintaining
the structure of the circuit using the structure use of the shallow embedding in
reFLect. Thanks to pattern-matching on terms in reFLect, one can inspect and
traverse such circuit descriptions within the language.

Signals can thus consist of either (shallow) values, corresponding to booleans,
or (deep) structures, corresponding to terms. In the following datatype definition,
Value corresponds to the raw boolean value, while Structure represents the whole

6 Gordon J. Pace and Christian Tabone

structure of the circuit operations given as a term. Note that the latter can be
evaluated to result in the actual simulation style interpretation of a boolean
value.

lettype signal = Value bool | Structure term;

The primitive gates now have two possible behaviours — the shallow simula-
tion semantics, and the deep quoted version of the shallow interpretation. Using
pattern matching one can distinguish between boolean values and structures:

forward_declare {inv :: signal -> signal};

let inv (Value a) = Value (NOT a)

/\ inv (Structure a) = Structure {| inv 8a|};

forward_declare {and2 :: (signal, signal) -> signal};

let and2 (Value a, Value b) = Value (a AND b)

/\ and2 (Structure a, Structure b) = Structure {| and2 (8a, 8b) |};

Other primitive gates are defined using functions similar to the above, which
can be presented to the end user to be used for other circuit descriptions. The
constant expressions high and low are defined for Value T and Value F respec-
tively. Additional constants are also defined to hide quotation constructs from
the end user.

let high = Value T;

let low = Value F;

let shigh = Structure {| high |};

let slow = Structure {| low |};

The structure embedded in the above manner enables circuits to be described
in a functional style. Furthermore, the use of user-defined blocks is identical
to the use of the basic primitive gates. Consider the following definition of a
multiplexer:

let mux (s,(a,b)) = or2 (and2 (s, b), and2 (inv s, a));

Such a description can be interpreted in different ways. Passing a boolean
value, one obtains the result of simulating the circuit, while passing a structure,
one obtains the internal structure of the multiplexer circuit.

: mux (high, (low, high));

: high;

: mux (shigh, (slow, shigh));

: Structure {| or2 (and2 (high, high), and2 (inv high, low)) |}

An alternative approach, which we are also considering is the overloading of
high and low, then adding simulation, and structure creation functions, which
would enforce one, or the other interpretation of high and low.

Embedding a HDL in a Functional Meta-Programming Language 7

3.3 Representing Signals

A crucial design decision that is needed when developing a HDL is the way cir-
cuits inputs and outputs are considered to be structured [CP07]. In the previous
section, we have presented the signals used by the circuit descriptions as struc-
ture of signals, similar to how signals are represented in Lava [BCSS98]. In other
words, an and-gate takes a pair of two wires as input, each carrying a boolean
signal. Another form of representation, the one adopted in Hawk [LLC99], is to
consider only circuits with one input and output wire, but carrying a signal of
structures upon it. Contrast the Lava and Hawk types of a two-input and-gate
below:

// Signals in Lava

and2 :: (Signal bool, Signal bool) -> Signal bool

// Signals in Hawk

and2 :: Signal (bool, bool) -> Signal bool

Currently, we are using the signal of structures representation, primarily
since it simplifies language design (although not necessarily language usage).
An advantage of this representation is that all circuits defined in a language
using this representation will always have the same type — taking a single input
and producing a single output. This makes the design much cleaner, and the
interpretations work seamlessly even when describing complex circuits built from
smaller circuit descriptions. On the other hand, the user has to to handle the
wrapping and unwrapping of the signal type whenever the inner vector values
are required. For this we provide functions to convert the signal structure back
and forth to the structure values.

// From signal values to signal structure

zipp :: (Signal bool, Signal bool) -> Signal (bool, bool)

// From signal structure to signal values

unzipp :: Signal (bool, bool) -> (Signal bool, Signal bool)

3.4 Marking Blocks in Circuits

In reFLect, as in most other HDLs, one views and defines circuits as functions.
As a circuit description is unfolded, all the internal structure is lost, and all
that remains is a netlist of interconnected gates. To enable marking such sub-
components inside a circuit, we introduce the concept of a block, which a hard-
ware designer may use at will. Such blocks are used in netlist generation, and
are planned to be used also in other non-functional features of circuits we plan
to implement, including modular verification, placement and local circuit op-
timisation. For example, one may mark a halfAdder as a block, and then use
two instances to define a fullAdder, which may itself be marked as a block (thus
containing two sub-blocks inside).

8 Gordon J. Pace and Christian Tabone

When the abstract circuit description corresponds to a good layout, or de-
scribes together related components, preserving such information can be useful.
Adding block information to the whole structure of the circuit, adds a higher
level of abstraction over the circuit description, enabling not only the possibility
to reason about the structure in terms of primitive gates, but also in terms of
blocks. For instance, information gathering functions could be defined to count
full-adders or half-adders, or any other block. The placement of circuits will also
benefit, since this can be organised into blocks, hence decreasing the level of
complexity.

Block information is handled by the meta-programming features of reFLect

by using nested quotations to represent levels of a blocked circuit structure. A
function block is defined to create a lambda expression equivalent to the given
function, which is then lifted with a higher level of quotation marks, marking
the lambda expression as a block.

let multiplexer = block mux;

The circuit multiplexer can now be used in the same manner as mux, but
with a extra level of nesting being automatically added to enable us to identify
blocks as we traverse a circuit. One can also name a block through an extra
string parameter which is used in netlist generation.

3.5 Circuit Interpretations

Although the underlying interpretation of a circuit, as we develop it in our HDL
is that of simulation one can provide various other interpretations of a circuit
description.

Simulation: The simulation interpretation works similar to how a shallow-style
embedding operates. Since reflection is used to maintain control over the
structure, the simulation is achieved by the reFLect interpreter, thus an in-
terpretation function is not required. Therefore, a quick simulation can be
achieved by evaluating a circuit description using raw values as inputs. How-
ever, if the structure is retained by the use of structured inputs an evaluation
function is required to simulate the structure. This simulation function does
not interpret the structure but rather it handles the signal structure before
applying the built-in evaluation function of reFLect.

Information gathering: Information (such as a gate or block count) can easily
be gathered about a circuit using pattern matching functions, which follow
through quoted circuits to identify sub-circuits and evaluate the information
accordingly.

Netlist generation: To enable outputting a circuit description in a format
which can be used by external tools, it is of utmost importance to be able to
generate a netlist of a circuit description in reFLect. The default description
is a flat netlist, which does not take into account blocks. One way blocks
may be used is to modularise descriptions, giving a separate description of
sub-circuits marked as blocks, and referring to that description when used.

Embedding a HDL in a Functional Meta-Programming Language 9

In the future we also plan to use blocks to mark primitive components for
reducing the description into a netlist for a particular gate technology.

Postscript generation: Descriptions of circuits can also be translated into ba-
sic Postscript figures, marking labelled blocks for reference. We are currently
exploring the use of placement operators in the language, which would also
affect the presentation in Postscript. Furthermore, sharing of circuits creates
additional complications which still have to be resolved.

3.6 A Illustrative Example: Serial Carry Adders

In this section, we will present, the development of an n-bit serial carry adder.
We start off by defining a half-adder. Note that, since the signal carrying pairs
is passed on to the underlying gates, the the unzipping of the inputs into two
separate signals is not required in this case.

let halfAdder a_b =

let sum = xor2 a_b in

let carry = and2 a_b in

zipp (sum, carry);

Next we declare the function halfAdder as a block, using the function named-

Block :

let halfAdder = namedBlock "halfAdder" halfAdder;

Based on the description of the half-adder, we can now define a full-adder
circuit structurally, also declaring it as a block. Note that in this case, the circuit
designer has to handle the wrapping and unwrapping of the signal structure
explicitly.

let fullAdder inps =

val (carryIn, a_b) = unzipp2 inps in

val (sum1, carry1) = unzipp2 (halfAdder a_b) in

val (sum, carry2) = unzipp2 (halfAdder (zipp (carryIn, sum1))) in

let carryOut = xor2 (zipp (carry1, carry2)) inv

zipp (sum, carryOut);

let fullAdder = block "fullAdder" fullAdder;

Finally, we can define an n-bit adder is defined as a recursive function:

letrec nBitAdderAux (carryIn, ([], [])) = ([], carryIn)

/\ nBitAdderAux (carryIn, (a:as, b:bs)) =

let inps = zipp (carryIn, zipp (a, b)) in

val (sum, carry) = unzipp2 (fullAdder inps) in

val (sums, carryOut) = nBitAdderAux (carry, (as,bs)) in

(sum:sums, carryOut);

10 Gordon J. Pace and Christian Tabone

let nBitAdder cin_as_bs =

let (cin, as_bs) = unzipp2 cin_as_bs in

let (as, bs) = unzipp2 as_bs in

zipp2 (nBitAdderAux (cin, (unzipps as, unzipps bs)))

The use of an auxiliary function avoids the wrapping and unwrapping of
structures of signals. However, since blocks can only be used on a structure of
signals, should we want to encapsulate each call to the n-bit adder, we would
need to wrap before closing the function in a block:

letrec nBitAdderAux (carryIn, ([], [])) = ([], carryIn)

/\ nBitAdderAux (carryIn, (a:as, b:bs)) =

let inp = zipp (carryIn, zipp (a, b)) in

val (sum, carry) = unzipp2 (fullAdder inp) in

val inps = zipp2 (carry, zipp2 (zipps as, zipps bs)) in

val (sums, carryOut) = nBitAdderBlock inps in

(sum:sums, carryOut);

let nBitAdder cin_as_bs =

let (cin, as_bs) = unzipp2 cin_as_bs in

let (as, bs) = unzipp2 as_bs in

zipp2 (nBitAdderAux (cin, (unzipps as, unzipps bs)))

let nBitAdderBlock = block nBitAdder

4 Related work

HDL implementations like Lava [BCSS98], Hydra [O’D06] and Hawk [LLC99],
differ from the work presented in this paper, since these have been developed us-
ing the deep embedding technique within the functional language Haskell, while
our approach is that of using reflection within reFLect as a replacement for deep
embedding. Deep embedding allows the developer to provide multiple semanti-
cally interpretations of the defined circuits, which is clearly seen in Lava, Hydra
and Hawk. These HDLs provide several alternative interpretations of a circuit.
For example, an inverter gate can have alternative interpretations defined for
simulation, netlist creation and timing analysis. Unlike this approach, our im-
plementation uses quotations to capture the circuit structure as an unevaluated
expression. Note that, given a different setting, this expression would have been
used to simulate the circuit. However, by delaying the evaluation and by having
access to the abstract syntax tree of the expression, we are able to traverse this
structure and output additional semantically interpretations. The advantage is
that the different semantic interpretations operate on the same instance of the
quoted expression. However, this needs to be done in two separate stages, first
to compose the structure, and then to interpret the structure.

The meta-programming features found in reFLect, provides not only the pos-
sibility to manipulate terms representing primitive gates, but also to manipulate

Embedding a HDL in a Functional Meta-Programming Language 11

terms representing whole circuit definitions. Embedding a HDL using such fea-
tures can result in an advantage over other HDL embeddings, since the access
and manipulation of whole circuit definitions (the circuit generators), should aid
in the reasoning of non-functional aspects of circuits. The hardware description
languages mentioned earlier have shown that the deep embedding approach offer
more advantages over the shallow embedding approach, yet, these don’t have full
control over certain circuit features, especially over the non-functional aspects.
For instance, an important non-functional aspect of circuits is the placement of
the primitive elements. Pebble [LM98], a small language similar to structural
VHDL, defines circuit components in terms of blocks. The end-user can describe
how the blocks are positioned, meaning that a block can be defined to be placed
above or beside another allowing blocks to be placed either vertically or hori-
zontally to each other. In our implementation we adopted this idea of blocks,
by means of the meta-programming features provided by reFLect. However, the
challenges are different from those of Pebble, since Pebble is not an embed-
ded language within a function language. In Pebble, language constructs where
developed to define blocks and the placement of these blocks, while our imple-
mentation uses nested quotation constructs to represent a block in a functional
setting, by abstracting away the details of whole circuit definitions.

Wired [ACS05] is another embedded HDL, built upon the concept of con-
nection patterns, in a certain way extending Lava to enable reasoning about
connection of circuit blocks. The concepts behind Wired are mostly inspired
by Ruby [JS94], more precisely on the adoption of combinators for the place-
ment of circuits. We plan to follow certain features of Wired, for instance to use
combinators at the abstract level of blocks.

Our work is based on similar work done in embedding a Lava-like HDL in
reFLect [MO06]. As in their case, we base our access to the structure of the
circuit descriptions on reflection features of the host language. One difference
in our approaches, is that we use structures to represent signals, as opposed to
raw boolean values used in reFLect. One of the reasons for this variation is that
we try to conceal the use of quotation marks in the circuit descriptions, hence
making the reflection features used only in the underlying framework — not
forcing the end user to use these constructs. In our approach we emphasis the
concept of a marked block in a circuit, which we plan to use for placement and
circuit analysis. We still have a number of features unimplemented — such as the
lack of component sharing and implicit wrapping and unwrapping of structures
of signals — which we plan to develop in the near future.

5 Conclusions and Future Work

In this paper, we have presented a rudimentary HDL embedded in a functional
meta-programming language. Our main motivation behind the use of reflection
is to enable the creation of tagged blocks by looking at the structure and control-
flow of the circuit generator. By adding circuit combinators, similar to the ones
used in Ruby [JS94], we plan to use the control given to us into looking at the

12 Gordon J. Pace and Christian Tabone

circuit generators to aid the generation of placement hints as used, for instance,
in Pebble [LM98].

Another area we intend to explore is that of optimisation of circuits produced
by hardware compilers. The use of embedded HDLs for describing hardware com-
pilers has been explored [CP02]. Despite the concise, compositional descriptions
enabled through the use of embedded languages, the main drawback is that the
circuits lack any form of optimisation or information. Furthermore, introducing
this into the compiler description breaks the compositional description, resulting
with a potential source of errors in the compilation process. If one still has access
to the recursive structure of the control flow followed by the compiler to produce
the final circuit, one can perform post-compilation optimisation, without having
to modify the actual compiler code. We plan to investigate this further through
the use of the features provided by reFLect.

References

[ACS05] Emil Axelsson, Koen Linström Claessen, and Mary Sheeran. Wired: Wire-
aware circuit design. In Proc. of Conference on Correct Hardware Design
and Verification Methods (CHARME), volume 3725 of Lecture Notes in
Computer Science. Springer Verlag, October 2005.

[BCSS98] Per Bjesse, Koen Linström Claessen, Mary Sheeran, and Satnam Singh.
Lava: Hardware design in Haskell. In Proc. of International Conference on
Functional Programming (ICFP). ACM SIGPLAN, 1998.

[BWAH97] Bishop C. Brock and Jr. Warren A. Hunt. The DUAL-EVAL hardware
description language and its use in the formal specification and verification
of the FM9001 microprocessor. Form. Methods Syst. Des., 11(1):71–104,
1997.

[CP02] Koen Claessen and Gordon J. Pace. An embedded language framework for
hardware compilation. In Designing Correct Circuits ’02, Grenoble, France,
April 2002.

[CP07] Koen Linström Claessen and Gordon J. Pace. Embedded hardware de-
scription languages: Exploring the design space. In Hardware Design and
Functional Languages (HFL’07), Braga, Portugal, March 2007.

[GMO06] Jim Grundy, Tom Melham, and John O’Leary. A reflective functional lan-
guage for hardware design and theorem proving. Journal of Functional
Programming, 16(2):157–196, 2006.

[Hud96] Paul Hudak. Building domain-specific embedded languages. ACM Comput.
Surv., 28(4es):196, 1996.

[JS94] Geraint Jones and Mary Sheeran. Designing arithmetic circuits by refine-
ment in Ruby. Sci. Comput. Program., 22(1-2):107–135, 1994.

[LLC99] John Launchbury, Jeffrey R. Lewis, and Byron Cook. On embedding a mi-
croarchitectural design language within Haskell. SIGPLAN Not., 34(9):60–
69, 1999.

[LM98] Wayne Luk and Steve McKeever. Pebble: A language for parametrised and
reconfigurable hardware design. In FPL ’98: Proceedings of the 8th Inter-
national Workshop on Field-Programmable Logic and Applications, From
FPGAs to Computing Paradigm, pages 9–18, London, UK, 1998. Springer-
Verlag.

Embedding a HDL in a Functional Meta-Programming Language 13

[LMS86] Roger Lipsett, Erich Marchner, and Moe Shahdad. VHDL — the language.
IEEE Design and Test, 3(2):28–41, April 1986.

[MO06] Tom Melham and John O’Leary. A functional HDL in reFLect. In Mary
Sheeran and Tom Melham, editors, Sixth International Workshop on De-
signing Correct Circuits: Vienna, 25–26 March 2006: Participants’ Proceed-
ings. ETAPS 2006, March 2006. A Satellite Event of the ETAPS 2006 group
of conferences.

[O’D04] John T. O’Donnell. Embedding a Hardware Description Language in Tem-
plate Haskell, chapter Embedding a Hardware Description Language in
Template Haskell, pages 143–164. Springer Verlag, 2004.

[O’D06] John O’Donnell. Overview of Hydra: a concurrent language for synchronous
digital circuit design. International Journal of Information, pages 249–264,
2006.

[She05] Mary Sheeran. Hardware design and functional programming: a perfect
match. Journal of Universal Computer Science, 11(7):1135–1158, 2005.

[SJO+05] Carl-Johan H. Seger, Robert B. Jones, John O’Leary, Tom Melham,
Mark D. Aagaard, Clark Barrett, and Don Syme. An industrially effec-
tive environment for formal hardware verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 24(9):1381–
1405, September 2005.

[Tah06] Walid Taha. Two-level languages and circuit design and synthesis. In
Designing Correct Circuits, 2006.

