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Abstract. Compositional verification, incrementally generating and com-
posing state graphs of individual processes to produce the global state
graph, tries to address the state explosion problem for systems of com-
municating processes. The main problem with this approach is that in-
termediate state graphs are sometimes larger than the overall global
system. To overcome this problem, interfaces [JL97], and refined inter-
faces [Lan06], which take into account a system’s environment have been
developed. The number of states of these interfaces plays a vital role in
their applicability in terms of computational complexity, which is pro-
portional to the number of states in the interface. The direct use of
complete subcomponents of the global system as interfaces, thus usually
fails, and it is up to the system designer to describe smaller interfaces
to be used in the reduction. To avoid having to verify the correctness of
such manually generated interfaces, we propose automatic techniques to
generate correct interfaces. The challenge is to produce interfaces small
in size, yet effective for reduction. In this paper, we present techniques to
structurally produce language over-approximations of labelled transition
systems which can be used as correct interfaces, and combine them with
refined interfaces. The techniques are applied to a number of case-studies,
analysing the trade-off between interface size and effectiveness.

1 Introduction

Over the past years, the verification of computational systems has taken up con-
siderable interest and support. Techniques in both symbolic and enumerative
strategies made many advances in terms of what can be verified. However, the
main problem still remains that of the state space explosion arising when com-
posing together components of a system. Many solutions have been proposed
and used to counter the problem. Our work focuses on enumerative composi-
tional verification in which the state graph of a system made up of a number
of processes, is generated incrementally. In compositional verification, instead
of generating the global system, the state graphs of the constituent processes
are individually generated, reduced up to some equivalence relation which pre-
serves global system behaviour, and incrementally composed together until the
global system is obtained. The problem with this approach is that intermediate
state graphs are sometimes larger than the global system, simply because the be-
haviour of the processes is not constrained by the other processes which have not
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yet been composed. The challenge is thus one of constraining the state graph
of these intermediate processes without losing anything from their behaviour
within the global system.
Interfaces [GSL96, GS91, CK93], provide a means of overcoming this prob-
lem. An interface, essentially represents part of the environment of a partic-
ular subcomponent of the global system. This environment essentially poses be-
havioural restrictions imposed on the subcomponent through synchronisation.
For instance, in system S, composed of processes P1 to Pn, processes P2 to Pn

(or abstractions of them) can be seen as interfaces of P1. Krimm and Mounier
[JL97] use interfaces to constrain on-the-fly the state graph of the process being
generated and introduce the semi-composition operator which is implemented
as the Projector tool in the CADP toolkit [GLMS07] which we are using3. In
their approach, the interface represents the only possible interactions between
the process and its environment. Semi-composition is used to reduce the process
states and transitions which will anyway not be reachable in the global system
given the knowledge in the interface.
Refined interfaces [Lan06] extend these interface techniques to take into account
whole families of concurrent processes as an environment. Lang [Lan06] proposes
a technique to automatically generate interface processes from a subset of pro-
cesses that are composed with the process of which we want to produce the state
graph. In a number of case studies it has been shown that refined interfaces allow
a better reduction of the process state graph we want to generate. The higher the
number of processes used to produce a refined interface, the better this interface
would describe the environment of a process. However, the higher the number
of processes used the higher the number of states the interface will end up with.
In both techniques, the computational complexity of the reduction for a given
interface is proportional to the number of states in the interface. The direct use
of complete processes of the global system as interfaces, may thus fail, and it
is is up to the system designer to describe smaller interfaces to be used for the
reduction. However, when using an abstraction of the communicating processes,
it is important to guarantee that the abstraction is, in fact, correct. Techniques
to verify the correctness of an interface have been proposed [JL97], but come at
a price. Furthermore, the design of these interfaces requires expert knowledge
of the system being verified in order to be effective. In this paper, we propose
techniques for the automatic construction of interfaces which are guaranteed
to be correct by construction. The techniques are applied to a number of case
studies, analysing the trade-off between interface size and effectiveness.

2 Background

2.1 Preliminary Definitions

The behaviour of a process can be modelled as a labeled transition system (Lts),
consisting of a set of states and a labeled transition relation between states.

3 Available from www.inrialpes.fr/vasy/cadp
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Each transition describes the execution of the process from a current state with
a particular instruction (label).
In what follows A is the global set of labels and τ a particular label representing
a hidden or unobservable instruction (τ /∈ A). Given a set of labels A (A ⊆ A)
we will write Aτ to denote A ∪ {τ}. For a set of labels A, A∗ will represent the
set of finite sequences on A.

Definition 1 (LTS). A Labeled Transition System (Lts, for short) is a quadru-
ple M = (Q, A, T, q0) where Q is a finite set of states, A ⊆ A is a finite set of
actions, T ⊆ Q × Aτ × Q is a transition relation between states in Q and q0 ∈ Q
is the initial state.

We will use the notation q
a
−→T q′ to mean (q, a, q′) ∈ T , and q

a1a2...an⇒ T q′ to
mean that there exist states q1, q2 . . . qn with q1 = q and qn = q′ such that for

all i, qi

ai+1

−−−→T qi+1. We abuse the notation to allow a∗ to appear in the string,
indicating any number of repetitions of a. We will also leave out T when it is
clear from the context. Given a state q, we will use the notation incoming(q)
to denote the set of immediate actions which can be performed just before q
(incoming(q) = {a | ∃q′ · q′

a
−→ q}), and similarly outgoing(q) to indicate the set

of immediate outgoing actions from q. We now define the language generated by
a Lts from a particular state p ∈ Q.

Definition 2 (Language generated by an Lts). Given an Lts M = (Q, A, T, q0)
and q ∈ Q, the (observable) language starting from q in M , written L(M) is de-

fined as follows { w | ∃q′ · w = a1a2 . . . an ∧ q0
τ∗a1τ∗...anτ∗

⇒ q′}.

Two Ltss can be composed together with the parallel composition operator
synchronising on a set of labels common to both Ltss.

Definition 3 (Parallel Composition, Hiding). Let Si = (Qi, Ai, Ti, q0i)
(i = 1, 2) be two Ltss, and G ⊆ A. The parallel composition of S1 and S2 over
G, written S1 ‖G S2, models the concurrent execution of S1 and S2 with forced
synchronization on G, and is defined as the Lts (Q, A1∪A2, T, (q01, q02)), where
Q and T are the smallest sets satisfying both (q01, q02) ∈ Q and the following
rules:

(q1, q2) ∈ Q, q1
a
−→T1

q′1, q2
a
−→T2

q′2, a ∈ A

(q′1, q
′
2) ∈ Q, (q1, q2)

a
−→T (q′1, q

′
2)

(q1, q2) ∈ Q, q1
a
−→T1

q′1, a /∈ A

(q′1, q2) ∈ Q, (q1, q2)
a
−→T (q′1, q2)

(q1, q2) ∈ Q, q2
a
−→T1

q′2, a /∈ A

(q1, q′2) ∈ Q, (q1, q2)
a
−→T (q1, q′2)

Note that, by construction, the states belonging to Q are reachable. A state q1 of
S1 (respectively q2 of S2) is said reachable in S1 ‖G S2 if there is a state (q1, q2)

in S1 ‖G S2. Similarly, a transition q1
a
−→ q′1 of S1 (respectively q2

a
−→ q′2 of S2) is

said reachable in S1 ‖G S2 if there is a transition (q1, q2)
a
−→ (q′1, q

′
2) in S1 ‖G S2.

The system hide A in S1, corresponds to the Lts (Q1, A1 \A, T ′
1, q01), where

T ′
1 is defined as follows:
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q
a
−→T1

q′, a ∈ A

q
τ
−→T ′

1
q′

q
a
−→T1

q′, a /∈ A

q
a
−→T ′

1
q′

Consider for instance modelling a communication protocol with an Lts T rep-
resenting a transmitter, and Lts R representing a receiver’s behaviour. T ‖G R
is the Lts generated by concurrently executing Ltss T and R synchronising on
the labels in G. Any transitions not in G are performed independently by the
two Ltss.

2.2 Compositional Verification using Interfaces

The semi-composition operator takes an Lts M1, and reduces its behaviour up to
another Lts M2 communicating on an alphabet G. The effect is that of removing
sequences of actions which M2 would never allow M1 to engage in. Formally, the
definition of semi-composition is the following [Lan06]:

Definition 4 (Semi-Composition). Let Mi = (Qi, Ai, Ti, q0i) (i = 1, 2) be
two Ltss, G ⊆ A, and (Q′, A′, T ′, q′0) = M1 ‖G M2. The semi-composition of
M1 and M2, written M1 ⌉|G M2, is the Lts (Q, A1, T, q01), where Q = {q1 |

(q1, q2) ∈ Q′} and T = T1 ∩ {(q1, a, q′1) | (q1, q2)
a
−→T ′ (q′1, q

′
2)}. G is called the

synchronization set and the pair (G, M2) is called the interface. We say that an
action a ∈ A1 is controlled by the interface (G, M2) if a ∈ G.

From this definition it is clear that the resultant Lts is a sub-Lts of S1. This
guarantees that semi-composition never increases the number of states of its
first operand. We also know from [JL97] that one can replace the expression
M1 ‖G M2 with (M1 ⌉|G M2) ‖G M2 without loosing any temporal properties
of the system M1 ‖G M2. Semi-composition also guarantees that M1 ⌉|G M2 is
branching bisimilar to M1 ⌉|G M ′

2 if L(hide (A \ G) in M2) = L(hide (A \ G) in
M ′

2). This means that one can first hide uncontrolled actions and then minimize
the Lts modulo a relation preserving observable traces (for instance branching
or safety equivalence reductions). Minimization of the interface is very important
since this reduces the cost of semi-composition, the complexity of which is the
same as parallel composition.

Furthermore, these results can be extended to work with language inclusions:

Conjecture 1 Given Ltss M1 and M ′
1, such that L(M1) ⊆ L(M ′

1), then for
any Lts M2, and action list G, (M2 ⌉|G M ′

1) ‖G M1 is branching bisimilar to
M2 ‖G M1;

The proof of this conjecture is not given for the time being, but will be included
in future work.
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2.3 Refined Interfaces

In our work we make use of refined interface generation to produce interfaces
which take into account a subset of the processes neighbouring the process whose
state graph we want to generate. Generation of refined interfaces is based on the
network of Ltss concurrent model in which the composition hierarchy is com-
pletely flattened. The network of Ltss model is more general than the parallel
composition operator defined in the previous section, and the parallel compo-
sition, renaming, hiding and cutting operators from many process algebras can
be translated into networks of Ltss [Lan05]. We first define vectors, from which
networks of Ltss are composed.

Definition 5 (Vectors). A vector of length n over a set S is an element of Sn,
written t or (t1, . . . , tn). For 1 ≤ i ≤ n, t[i] denotes the ith element ti of t, and
t[i← t′i] represents a copy of t where t[i] is replaced by t′i. Given t ∈ S, we write
tn the vector of length n such that (∀1 ≤ i ≤ n) tn[i] = t. Given I ⊆ {1, 2 . . . n},
the projection t↓I is defined by: t↓I = (t[k1], . . . , t[km]) where {ki | 1 ≤ i ≤
m} = I and (∀i < j) ki < kj .

Definition 6 (Network of Ltss). Let • /∈ Aτ be a special symbol denoting
that a particular Lts has no role in a given synchronization. A synchronization
rule is a pair (t, a), where t is a vector over Aτ ∪ {•} (called a synchronization
vector) and a ∈ Aτ . The components t and a are called respectively the left-
and right-hand sides of the synchronization rule. A network of Ltss (or simply
network) N of dimension n > 0 is a pair (S, V ) where S is a vector of Ltss of
length n and V is a set of synchronization rules, whose left-hand sides are all of
length n. Each left-hand side t expresses a synchronization constraint on S, all
components S[i] where t[i] 6= • having to take a transition labeled respectively
t[i] altogether so that a transition labeled with the corresponding right-hand
side a be generated in the product. More formally, let S[i] = (Qi, Ai, Ti, q0i),
(1 ≤ i ≤ n). To N = (S, V ) corresponds an Lts (Q, A, T, q0), written sem(N)
or sem(S, V ), such that A = {a | (t, a) ∈ V }, q0 = (q01, . . . , q0n), and Q and T
are the smallest sets satisfying both q0 ∈ Q and:

q ∈ Q, (t, a) ∈ V, (∀1 ≤ i ≤ n) (t[i] = • ∧ q′[i] = q[i]) ∨ q[i]
t[i]
−−→Ti

q′[i]

q′ ∈ Q, (q, a, q′) ∈ T

Note that, by construction, the states that belong to Q are reachable. Syn-
chronization rules must obey the following admissibility properties, which forbid
cutting, synchronizations and renaming of τ transitions and therefore ensure
that safety equivalence and stronger relations (e.g., observational, branching,
and strong equivalences) are congruences for networks of Lts [Lan05]:

((∃1 ≤ i ≤ n) τ is reachable in S[i]) =⇒ (∃(t, τ) ∈ V ) t[i] = τ
(∀(t, a) ∈ V ) ((∃1 ≤ i ≤ n) t[i] = τ) =⇒ (a = τ∧(∀1 ≤ j ≤ n\{i}) t[j] = •)

The refined interface generation technique as defined and described in [Lan06]
is used to generate interfaces from a network of Ltss. In our work we use the
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Exp.Open 2.0 tool [Lan05] which allows for the description of concurrent sys-
tems as a composition of Ltss, using either synchronisation vectors, or standard
parallel composition, hiding, renaming and cut operators from several process
algebras. The following syntax describes the generation of a refined interface
M1..n, from the synchronisation vectors of Ltss M1 to Mn.











M1

M2

...
Mn











⇒M1..n

Clearly, the higher the number of processes used to generate a refined interface,
the higher the number of states this interface will end up with. This means that
one can end up with a very good description of the environment of a process
which however cannot be used because of its size. The ideal scenario is a trade
off between the size of the interface and its effectiveness in representing the
environment of a process.

3 Lts Reductions

As discussed in section 2, one can constrain the generation of an Lts state
graph by using other Ltss in the network as interfaces, even if, in most cases the
problem is intractible due to the large size of the base Ltss. However, conjecture 1
gives us the option to use language over-approximations to gain access to smaller
automata. In this section, we propose a number of Lts reduction techniques
especially designed to work for effective interface generation. Rather than design
each technique independantly of each other, we provide an infrastructure to
reason about a class of reduction techniques, enabling us to present a number of
solutions guaranteed to be correct.
We start this section by presenting the concept of an Lts structural reduction
which guarantees language inclusion.

Definition 7 (LTS Reduction). We say that M2 is a structural reduction of
M1 with respect to a total function eq ∈ Q1 → Q2, written M2 ⊑eq M1, if the

following conditions hold: (i) A1 = A2; (ii) Q2 ⊆ Q1; (iii) q
a
→1 q′, implies that,

eq(q)
a
→2 eq(q′); and (iv) q02 = eq(q01).

We simply say that an Lts M2 is a reduction of another Lts M1, written M2 ⊑
M1, if there exists a total function eq such that M2 ⊑eq M1. Also, we say that
M2 is the reduction of M1 with respect to eq, if M2 is the (unique) solution
satisfying M1 ⊑eq M2.

Proposition 1. ⊑ is a reflexive, transitive relation over Ltss.

The property of structural reduction we will be using most is that it guarantees
language inclusion:
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Lemma 1. Given two Ltss Mi = (Qi, Ai, Ti, q0i), with i = 1, 2, related with a

total function eq, then q
s
⇒1 q′ implies that eq(q)

s
⇒2 eq(q′)

Proof: The proof follows directly by induction over string s. ⊓⊔

Language inclusion follows directly from the previous lemma and the fact that
eq(q02) = eq(q01):

Theorem 1. Given two Ltss Mi = (Qi, Ai, Ti, q0i), with i = 1, 2, if M2 ⊑M1,
then L(M1) ⊆ L(M2).

0

1

3

2

a

b
c

a

b

0 1/2

3

a

c

a

b

0/3

1/2

a

c

bb

b

Fig. 1. Lts progressively approximated from left to right (S, S
′ and S

′′ respectively)

Consider a small system, for the purposes of illustration, whose behaviour is
modelled by the first Lts S as depicted in figure 1. From this Lts we know that
the system is capable of first performing a, after which it can only perform b
and then sequences of c b⋆a. This Lts has four states. S′ is the Lts generated
after performing a reduction on S, where eq(0) = 0, eq(1) = eq(2) = 1/2 and
eq(3) = 3. This guarantees that L(S) ⊆ L(S′). In S′ we still know that the
system is initially only capable of performing a. However we’ve now lost the
information which said that only b can be performed from state 1. In S′ after
the initial a the system can now produce either a sequence of b or c. Finally S′′ is
produced from S′ using function eq, with eq(0) = eq(3) = 0/3 and eq(1/2) = 1/2.
Thanks to theorem 1 we know that L(S′) ⊆ L(S′′). In this third language over
approximation we lose further information from the behaviour of S. From the
initial state, the system can now perform either a or b. However we still know
that from the second state following an a transition, we can perform only either
a sequence of b or just one c. From this simple example, one can easily see that
applying the functional composition of the two eq functions applied, one gets
that S ⊑ S′′.

We are currently exploring the definition of different structural reduction tech-
niques for the generation of interfaces. In the following sections, we describe a
number of such techniques, which are then used in the case studies in section 4.
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3.1 Chaos

The most straightforward structural reduction technique is that of keeping a
number of states of the original system (including the initial state), and coalesc-
ing the remaining states into one which can behave chaotically, by emulating
any of the remaining states:

Definition 8. Given an Lts M , and a subset of its states Qin, CHM [Qin] is
defined to be the reduction of M with respect to function eq, defined as follows
(χ /∈ Q):

eq(q) =

{

q if q ∈ Qin

χ otherwise

Typically, when implemented, this reduction is applied by exploring the state-
space of M progressively (in a breadth-first manner), for a fixed depth, beyond
which everything else is collapsed together:

Definition 9. Given an Lts M , we define CHM [n] to be CHM [Qin], where Qin

is the set of states reachable in no more than n steps from the initial state.

3.2 Partition Based on Action Capability Similarity

The main idea behind this reduction technique is that of creating a state partition
which groups together states that exhibit a similar local behaviour. States can
be compared by checking that they have the same outgoing transitions.

Definition 10. Given an Lts M , we define TRM [out] to be the reduction of M
with respect to function eq = outgoing.

In this manner, for each set of possible outgoing actions, we coalesce all states
with that particular capability into one state, and abstract transitions accord-
ingly. Similarly, TRM [inout] looks at both incoming and outgoing actions:

Definition 11. Given an Lts M , we define TRM [inout] to be the reduction of
M with respect to function eq(q) = (incoming(q), outgoing(q)).

A weaker version of comparing outgoing actions, is to identify a state with a set
of outgoing actions with another state with a superset of those actions. Let the
maximal outgoing transition sets of an Lts to be the sets of action capabilities
of states for which no state can perform a superset of:

{A | (∃q | A = outgoing(q)) ∧ (¬∃q | A ⊂ outgoing(q))}

Definition 12. Given an Lts M , with maximal outgoing transition sets S, we
define TR⊆

M [out] to be the reduction of M with respect to some function eq
satisfying eq(q) ∈ {A | A ∈ S ∧ outgoing(q) ⊆ A}.

Clearly, in an implementation, eq has to be fixed. The most straightforward
implementation, when performing the analysis on-the-fly, is to use the implicit
enumeration induced when traversing the state space, and take the first solution
to the constraint. Note that the computational complexity of creating the state
partition is linear in the number of states of the interface we want to reduce if a
hash map is used to store state partitions.
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3.3 Partition based on Label Similarity

Finally, we present a third reduction technique, similar to action capabilities,
but comparing actions up to an equivalence relation, which is typically weaker
than equality.

Definition 13. Given an Lts M , and an equivalence relation on actions ≈, we
define LS≈

M [out] to be the reduction of M with respect to function eq defined as
follows:

eq(q) = {a | ∃a′ · a′ ∈ outgoing(q) ∧ a′ ≈ a}

Note that TRM [out] is simply a special case of this, with TRM [out] = LS=
M [out].

Typically, in a system, labels are strings — for example, when translating a
language such as LOTOS into an Lts, one gets labels consisting of a string
describing (amongst other things) the gate over which the communication takes
place. For this reason, partitioning labels based on equality of prefixes of labels
provides a straightforward equivalence relation. For example, consider the Lts

with the following eight labels:
{AAA, AAB, ABA, BAA, ABB, BAB, BBA, BBB}

Matching the first two symbols of the label strings, we can create a label partition
of four classes, partitioning the labels as follows:

{ {AAA, AAB}, {ABA, ABB}, {BAA, BAB}, {BBA, BBB} }

Definition 14. Given an Lts M , we define PREFIXn
M [out] to be LS≈

M [out],
where ≈ is defined as follows:

l1 ≈ l2 = firstn(l1) = firstn(l2)

Note that firstn(s) gives the first n symbols in string s.
Since we usually would rather put a limit on the number of classes in the parti-
tion, we define PFn

M [out] to be PREFIXi
M [out], maximising i, such that ≈, the

partition used contains no more than n label classes.

4 Case Studies

4.1 Using Lts Reductions with Refined Interfaces

Lts reduction techniques are well suited to be combined with refined interface
generation, since the size of a refined interface sometimes makes it impossible to
use in practice. Since in our Lts language over-approximations we guarantee that
our interfaces include the traces of the environment, we can replace M1 ⌉|G M2

with M1 ⌉|G M ′
2, where M2 ⊑M ′

2 .
Consider for instance, the composition expression E1 = (M1 ‖G1 M2) ‖G2

(M3 ‖G3 M4)). If the number of states in M1, M2 and M3 is small enough,
we can generate a refined interface for M4 from their Lts. If this interface is not
small enough such that it can be used with the semi-composition operator, we
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can reduce the interface and use the resulting over-approximated interface is in
order to constrain the generation of M4.





M1

M2

M3



⇒M123 ⇒ reduction of M123

In general, the higher the number of Ltss involved in the creation of a refined
interface the better that interface would be at representing environment con-
straints. However, sometimes, the generation of a refined interface from the state
graphs of M1, M2 and M3 might itself not be possible due to the individual sizes
of the constituent Ltss meaning that we would either produce a refined interface
from two of of the environments, or generate a full refined over reductions on
the individual environments:





M1

M2

M3



⇒





reduction of M1

reduction of M2

reduction of M3



⇒ reduction ofM123

After generating the refined interface from the reduced Ltss, one can, depending
on the size of M123, apply another reduction technique on M123. Clearly the
more language over-approximations applied to an interface the more generic the
interface becomes. In our experiments we make use of this procedure to verify
the effectiveness of our Lts reduction techniques in the generation of an ODP
trader.

4.2 Open Distributed Processing Trader

In this section we describe the experiments carried out on the generation of an
Open Distributed Processing (ODP) trader. ODP is an ISO standard (Interna-
tional Standard 10746, ISO – Information Processing Systems, Geneve, 1995)
whose purpose is to serve as a reference model for distributed processing. The
ODP framework which has been modelled in the Lotos process algebra con-
sists of one trader (implementing ODP) which communicates with a number of
objects. These objects can either be clients, servers or both of particular ser-
vices. The trader Lts consists of roughly one million states when generated on
its own without environment constraints. In the experiments described here we
make use of three objects to generate the refined interface for the trader. Table
1 illustrates the results achieved while incrementally increasing the complexity
of the objects (by allowing them to offer and request more services).
The interfaces are generated using the Exp.Open 2.0 (with the -interface option)
tool available with the CADP toolkit. The full description and specification
of the case study can be found on the CADP website4. The first trader state
graph is generated through the normal process of first creating a refined interface
out of the objects and then using this interface in semi-composition with the
generation of the trader (Trader in table 1). This should clearly give the best

4 Demo 37 at http://www.inrialpes.fr/vasy/cadp/demos.html
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Table 1. ODP with three objects and one trader

Obj1 Obj2 Obj3 Interface Trader Interface TraderTR

(TR[out]) (TR[out]) (TR[out]) (Safety R) St / Tr (TR
⊆[out]) St / Tr

256 (122) 64 (50) 64 (50) 901K (17K) 1024 / 13K 141K (7106) 1024 / 13K

256 (122) 128 (83) 96 (74) 2.6M (48K) 2048 / 30K 242K (1088) 2048 / 41K

128 (84) 128 (54) 384 (193) 3M (96K) 2048 / 20K 553K (1079) 2048 / 36K

384 (187) 256 (123) 192 (107) 15M (∞) ∞ 2.4M (11676) 8192 / 165K

possible reduction since the interface is giving the exact picture of the trader
environment, but is also the most expensive. We then test how reduction TR
perfoms, by first applying TR[out] to the Ltss of the objects. A refined interface
is then generated out of these over-approximated objects. This refined interface
is further reduced by applying TR⊆[out], and is then used in semi-composition
with the generation of the trader Lts (TraderTR in table 1).
The final ODP experiment documented here is composed of three objects with a
complexity (measured in number of states) of 384,256 and 192 states respectively.
If no reductions are applied to these objects, a refined interface of 15M states is
produced. A state graph of this size cannot be used as an interface. On the other
hand, we are able to produce a refined interface of 2.5M states when the objects
are over-approximated (using reduction TR[out]) prior to the generation of the
refined interface. TR⊆[out] is then applied on this interface to produce a final
interface of 11,676 states. This interface manages to contrain the generation
of the Trader state graph to 8,192 states. This shows that (in this particular
case) as the complexity of the objects increases, without applying Lts reduction
techniques, we would not be able to produce a refined interface out of three
objects.

4.3 Directory Based Cache Coherency Protocol

The second case study describes a standard cache coherency protocol for a mul-
tiprocessor architecture. The system consists of five agent processes composed
in parallel with a directory process. The protocol specification guarantees the
coherency of the cache maintained on the directory across the five agents that
are concurrently writing to it. Table 2 reports on the time and memory usage
results achieved when generating this directory based cache coherency protocol.
The LOTOS specification is available online5.
The standalone directory state graph consists of one million states and 40 million
transitions. Its reduction modulo strong bisimulation produces a Lts of 2,862
states and 1,132,544 transitions. In this experiment we first generate a refined
interface from the five agents which are executing in parallel with the remote
directory. This interface consists of a Lts of 1.8 millions states and 14 million
transitions. When reduced up to branching equivalence we get a directory inter-
face of 2,560 states and 40,576 transitions.

5 Demo 28 at http://www.inrialpes.fr/vasy/cadp/demos.html
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Table 2. Directory-based cache coherency protocol with five Agents and one Directory

Generation Technique Interface Size Directory Size Time Memory

(States/Trans) (States/Trans)

Safety Reduction 48 / 1008 49 / 278 5min 24sec 82Mb

CH[1] 1 / 14 50 / 350 1 sec 1Mb

TR[out] 56 / 1355 49 / 278 2 sec 1Mb

PF
8[out] 36 / 612 49 / 292 2min 10sec 41Mb

Since interfaces can be reduced up to safety without changing their behaviour,
we apply different interface generation techniques and compare them with re-
spect to time and memory consumptions against the standard safety equivalence
reduction. The reduction of the full automaton has 48 states, but takes 5 min-
utes 24 seconds to generate. The most significant result is that achieved with
TR[out], where the interface is generated and reduced in only two seconds, with
only 8 additional states. It is also important to note that with this reduced
interface, we generate exactly the same directory state graph as with the full
interface. We use CH[1] in order to check how much of the reduction is due to
the absence of labels (which are otherwise present in the state graph we want
to generate) in the interface. In this particular case we notice that most of the
directory reduction is induced simply by labels which are absent in the interface.
When applied with semi-composition we get a 50 state, 350 transitions directory.
The main purpose of this case-study, however, is to show that different reduction
techniques produce different results when applied with semi-composition. In this
particular case, the effectiveness of the interface is measured on the number of
transitions which are blocked in the generation of the directory. Here PF 8[out]
produces 292 transitions which is slightly less than the chaos interface which
produces 350.

4.4 Experiments on the VLTS Benchmark Suite

Finally, we report on two benchmarks which have been set up to measure the
effectiveness of Lts reduction techniques. We make use of the VLTS (Very Large
Transition Systems) benchmarks6 state graphs which have been obtained from
various case studies about the modelling of communication protocols and con-
current systems. Many of these case studies correspond to real life, industrial
systems.

In both benchmarks, the original VLTS graphs are used to create their own in-
terfaces. For both, the interface is created by randomly removing some of the
transitions from the original VLTS graph and miniminizing the graph modulo
branching equivalence. In tables 3 and 4, the first column indicates the technique
used to generate the interface which is then used (using the Projector tool)
in order to constrain the generation of the VLTS graph. The second column

6 http://www.inrialpes.fr/vasy/cadp/resources/benchmark bcg.html



Automatic Interface Generation for Compositional Verification 13

Table 3. vasy 164 1619.bcg VLTS state graph with 992 states

Generation Technique Interface Size % Reduction Projected Lts % Reduction

Safety Reduction 377 0 375 / 924 62

PF
2[out] 318 16 375 / 924 62

TR[inout] 338 11 641 / 338 35

CH[1] 1 100 992 / 3456 0

Table 4. vasy 564 13561.bcg VLTS state graph with 3577 states

Generation Technique Interface Size % Reduction Projected Lts % Reduction

Safety Reduction 2792 0 664 / 2809 81

TR[inout] 2274 19 903 / 4073 75

TR[out] 266 91 903 / 4076 75

PF
10[out] 1732 38 664 / 2809 81

PF
6[out] 1460 48 664 / 2809 81

PF
4[out] 1267 55 664 / 2809 81

PF
2[out] 853 70 666 / 2811 81

CH[1] 1 100 2683 / 12140 0

shows the interface size in number of states, while the third column indicates
the percentage reduction in number of states of the interface. The fourth and
fifth columns show, respectively, the number of states (and transitions) of the
projected VLTS state graph and the percentage state reduction of the projected
Lts. In the first benchmark, PF 2[out] generates the same projected VLTS state
graph with a decrease of 16% in the size of the interface. In the second bench-
mark, using PF 4[out] we achieve, with an interface that is 55% smaller, the same
projected VLTS graph. Moreover, with TR[out], which is 91% smaller than the
original interface, we achieve a 75% state reduction of the original VLTS graph.

4.5 Discussion

The results achieved so far indicate that we can use Lts language over approx-
imations in order to produce interfaces which are effective in constraining the
generation of Ltss. In the ODP case study, we achieve interface effectiveness
which is very close to the one achieved when the most specific environment is
used. The two benchmarks which we present here, indicate that there is no one
particular language over-approximation technique that performs best in every
experiment. This was to be expected however, since what we are doing is effec-
tively applying different heuristics in the generation of interfaces.

5 Conclusion and Future Perspectives

This paper describes how Lts language over-approximations can be used to
alleviate the problem of state space explosion in compositional verification. We



14 Sandro Spina, Gordon J. Pace, and Frédéric Lang

have shown how an ODP trader can be generated by semi-composition with a
more generic interface with fewer states. Using a reduced interface, we are able
to achieve the same number of states for the ODP trader as was achieved with
the original (full) interface. As the complexity of the objects composed with
the ODP trader increases, the use of Lts reductions which produce language
over-approximations makes it possible to generate reasonably sized and effective
interfaces.
There are three main directions which, we feel, need to be further explored. The
first one it that of coming up with more effective heuristics for Lts reduction.
The challenge here is that of being able to design heuristics, which are on the one
hand effective in describing the environment as specific as possible and on the
other are not computationally intensive to produce. The best solution would be
that of generating interfaces on-the-fly. The second direction is that of coming
up with alternative ways of combining Lts language over-approximations with
refined interfaces. Finally we plan to investigate how the static analysis of the
specification of a particular composition of processes can help in the generation
of constrains to include as part of the interface.
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