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Abstract
Novelty search is a recent algorithm geared towards exploring search spaces without
regard to objectives. When the presence of constraints divides a search space into fea-
sible space and infeasible space, interesting implications arise regarding how novelty
search explores such spaces. This paper elaborates on the problem of constrained nov-
elty search and proposes two novelty search algorithms which search within both the
feasible and the infeasible space. Inspired by the FI-2pop genetic algorithm, both algo-
rithms maintain and evolve two separate populations, one with feasible and one with
infeasible individuals, while each population can use its own selection method. The
proposed algorithms are applied to the problem of generating diverse but playable
game levels, which is representative of the larger problem of procedural game con-
tent generation. Results show that the two-population constrained novelty search
methods can create, under certain conditions, larger and more diverse sets of feasi-
ble game levels than current methods of novelty search, whether constrained or un-
constrained. However, the best algorithm is contingent on the particularities of the
search space and the genetic operators used. Additionally, the proposed enhancement
of offspring boosting is shown to enhance performance in all cases of two-population
novelty search.

Keywords
Genetic algorithms, novelty search, constrained optimization, two-population genetic
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1 Introduction

Genetic search has early on demonstrated its power at numerical optimization in a
plethora of domains including evolutionary design (Lewis, 2008) and search-based pro-
cedural content generation (Togelius et al., 2011). When the search space is somehow
constrained, however, genetic search has often faced significant challenges. The distinc-
tion between feasible and infeasible solutions is often unavoidable in engineering prob-
lems or during game design. For instance, a machine part must satisfy constraints on
maximum cost or minimal performance, while a Sudoku puzzle must have a solution
which satisfies its winning conditions. How best to handle infeasible individuals in a
fitness-based stochastic search algorithm has become a topic of extensive research, and
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has led to a variety of constrained optimization methods summarized by Michalewicz
(1995b), Coello Coello (2010) and others. Despite the numerous solutions put forth,
there has not yet been a consensus on a “general best” algorithm for handling con-
straints. Each technique has its benefits and drawbacks, making the choice of method
dependent on the problem, the topology of the search space, the details of the imple-
mentation and, ultimately, personal preference.

Novelty search is a relatively new paradigm for stochastic search, put forth by
Lehman and Stanley (2011a). Unlike traditional genetic search which performs selec-
tion according to a fitness, novelty search selects parents according to their divergence
from a “norm”. Individuals favored for selection are different — for a certain dis-
tance heuristic — from other individuals in the same population as well as from past
novel discoveries. While novelty search has shown potential in robot control (Morse
et al., 2013), maze navigation (Lehman and Stanley, 2008) and terrain design (Liapis
et al., 2013f), there has been limited interest in exploring its performance in constrained
spaces (Lehman and Stanley, 2010). However, domains such as robot control and game
content generation come with several engineering and playability constraints respec-
tively; this makes constrained novelty search a useful addition to current methods.
Like objective-driven search before it, novelty search faces significant challenges when
dealing with infeasible individuals. As it follows a different selection process, many of
the methods used in constrained optimization, such as penalizing the fitness score of
infeasible individuals, can not be directly applied.

This paper aims to introduce algorithms and methods within the area of con-
strained novelty search and explore how different parameters, genetic operators and
search spaces affect their performance. The paper presents existing work on con-
strained novelty search, in the form of minimal criteria novelty search (Lehman and
Stanley, 2010), and proposes two-population approaches which isolate infeasible indi-
viduals in a separate population evolving along with a population of feasible individ-
uals. Two variants of two-population novelty search are proposed, applying novelty
search either in the feasible population alone (with Feasible-Infeasible Novelty Search)
or in both populations (with Feasible-Infeasible Dual Novelty Search). Constrained
novelty search methods are tested on the domain of game level generation, as the need
for diverse yet playable (i.e. feasible) game levels goes beyond academic interest and
constitutes a commercial necessity for many game titles. Experiments in this domain
demonstrate the differences in optimization behavior between approaches and indi-
cate that, like objective-driven constrained optimization, the choice of method for con-
strained novelty search largely depends on the nature of the problem and its intended
outcomes, as well as the topology of the search space and the genetic operators used.

This paper builds upon and extends the work of Liapis et al. (2013c), which in-
troduced two-population novelty search methods and tested them on the domain of
game level generation. To a large extent, the choice of game levels as a test domain
originates in earlier experiments with Feasible-Infeasible Novelty Search on Sentient
Sketchbook (Liapis et al., 2013d), a computer-aided design tool. The current paper ex-
pands on previous work by testing constrained novelty search methods on a new type
of map along with the two maps of past experiments. Moreover, more rigorous ex-
periments are performed, testing the impact of the genetic operators used, the size of
the total population, the offspring boost addition to two-population algorithms and the
injection of feasible individuals in the initial population. Finally, the paper proposes a
number of domains where constrained novelty search can be valuable.

The structure of the paper is as follows: Section 2 provides an overview of the do-
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mains of constrained optimization, novelty search and content generation, while Sec-
tion 3 presents the two-population methods of constrained novelty search. Section 4
presents the domain of game level generation on which constrained novelty search will
be tested, along with details of the genetic algorithm used, the constraints on playabil-
ity and the characterization of distance between two levels. Section 5 puts forth a set
of hypotheses on the superiority of two-population novelty search methods over exist-
ing approaches and tests them in different constrained spaces and experimental setups.
Section 6 suggests extensions to the current experimental protocol as well as other do-
mains for testing constrained novelty search; the paper concludes with Section 7.

2 Related Work

Novelty search is utilized in this paper for the constrained optimization of game con-
tent. A short survey of the relevant domains is presented below.

2.1 Constrained Optimization

While evolutionary algorithms have a rich history of successful applications in solving
numerical optimization problems, it has never been straightforward how constraints
should be handled. Such constraints are ubiquitous and often non-eliminable in e.g.
engineering problems (Michalewicz et al., 1996), where solutions are often required to
satisfy a minimal functional performance or safety and a maximal cost or size. Con-
straints divide the search space into feasible and infeasible spaces; depending on the
problem, the feasible space may be fragmented, non-convex, or much smaller than than
the infeasible space (see Fig. 2a). The greatest challenge in constrained search spaces
is the issue of handling infeasible individuals, i.e. individuals which do not satisfy one
or more of the constraints. This challenge is augmented by the fact that in many cases
optimal feasible solutions lie in the border between feasible and infeasible space (Schoe-
nauer and Michalewicz, 1996), such as an inexpensive engineering component with a
risk of failure close to the safety threshold.

During the early period of constrained optimization research, infeasible individ-
uals were simply assigned a fitness of zero; in most selection/replacement methods
this would result in infeasible individuals being killed off in favor of feasible individu-
als. This death penalty to the infeasible individuals may not be particularly destructive
in cases where infeasible individuals are rare; however, it has been argued against by
Michalewicz (1995a), as substantial genetic information stored in infeasible individuals
is lost. In highly constrained spaces, where a feasible individual does not exist in the
initial population, genetic search incorporating the death penalty amounts to random
search until the first feasible individual is discovered.

The most popular method for handling constraints in genetic optimization is to re-
duce the fitness score of infeasible individuals by a penalty score. Such penalties can be
a constant value, a measure of feasibility or dynamically adapted according to the state
of search. Different methods of penalizing the fitness function of infeasible individuals
are surveyed by Coello Coello (2010). Designing penalty functions is not a trivial task,
as penalties which are too high may amount to a death penalty while penalties which
are too low may lead to superfluous search in the infeasible space.

Infeasible individuals can also be converted to feasible individuals through some
procedure of repair. In many cases, the “cost” of repairing such an individual is ap-
plied to its fitness score as a penalty. The repair mechanism is useful in cases where
evaluating an infeasible individual is not possible via the same fitness function used
for feasible individuals. For instance, if the infeasible individual cannot be simulated
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(e.g. for having negative mass with the physics model used) in a simulation-based
evaluation process, converting the infeasible individual to feasible is the only way for
calculating its fitness. However, designing a repair function requires significant domain
knowledge and is often as challenging as solving the original problem, while applying
a penalty based on repair costs has the same issues as other penalty functions.

Constrained optimization can also be carried out by evolving infeasible individu-
als separately from feasible ones. As infeasible individuals do not have to compete with
feasible ones within their population, their evaluation can be decoupled from the fea-
sible individuals’ fitness function. While other approaches mate infeasible individuals
with feasible ones (Kramer and Schwefel, 2006), the Feasible-Infeasible two population
Genetic Algorithm (FI-2pop GA) only allows members of the same population to breed
(Kimbrough et al., 2008). However, feasible offspring of infeasible parents migrate to
the feasible population and vice versa; this indirect form of interbreeding allows the
sharing of genetic information. While the feasible population evolves to maximize
a problem-specific measure of quality, the infeasible population evolves to minimize
its members’ distance from feasibility (see Fig. 1a). By guiding infeasible individuals
towards the feasible-infeasible border, FI-2pop increases the likelihood that their off-
spring will become both feasible and on the border of feasibility, where the optimal
solution often lies (Schoenauer and Michalewicz, 1996).

2.2 Novelty Search

Novelty search has been proposed by Lehman and Stanley (2011a) as an alternative to
objective-driven search, and has shown great potential in domains where a fitness func-
tion is deceptive, difficult to quantify, or subjective. Instead of evolving towards max-
imizing an objective function approximating the quality of a solution, novelty search
evolves towards diversifying the solutions in a population. Novelty search selects an
individual according to its novelty score, which is the average distance between the indi-
vidual and its closest neighbors. This distance function is usually a characterization of
the phenotype; for robots or maze-solving agents, the distance function becomes a be-
havioral characterization, comparing the two robots’ positions sampled at one second
intervals (Lehman and Stanley, 2011b) or the two agents’ final positions (Lehman and
Stanley, 2008), respectively. In order to prompt exploration of the search space, novelty
search maintains a novel archive: in each generation, individuals with the highest nov-
elty scores are added to the novel archive (in some cases, only if their novelty score is
higher than a threshold). When calculating the novelty score, the individual’s closest
neighbors are drawn both from the current generation and from the novel archive (see
Fig. 1b). As the novel archive expands with each generation, the novelty score of an
area of the search space decreases; therefore, individuals in less explored areas of the
search space are favored as they have fewer close neighbors in the novel archive.

The notion of minimal criteria novelty search (MCNS) was proposed by Lehman and
Stanley (2010) in order to limit novelty search to the “useful” portions of the search
space. MCNS applies the death penalty to infeasible individuals by reducing their
novelty score to zero. Tested on navigating open mazes (without exterior walls), MCNS
performed better than unconstrained novelty search as the latter explored areas outside
of the maze which led the agent away from the exit. For highly constrained problems,
however, Lehman and Stanley warn that a population of infeasible individuals will
simply perform random search; as a solution, they suggest that a known feasible indi-
vidual is inserted in the population to jump-start evolution. Even with such measures,
however, the fact that all infeasible offspring of feasible parents are almost guaranteed
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to be replaced results in losses of genetic information as argued by Michalewicz (1995a).
Depending on the shape of the infeasible space, this may result in search being carried
out on a small island of feasible space with no way of exploring further.

2.3 Procedural Generation of Game Content

Digital games often use procedural content generation (PCG) in order to speed up de-
velopment as well as to present fresh and surprising experiences to players. The
vast amount of assets needed in modern games drives companies to use computer-
generated content either while developing a game or while the end-users are playing
it. For content generated during development time (such as the terrain of a game’s
world), designers are safe in the knowledge that they can reject or edit any unwanted
generated results; novelty and inspiration are more of a requirement from such gener-
ative algorithms than quality or playability. When game elements are generated while
the end-user is playing, however, quality is imperative since a generated level that
is too challenging or a generated 3D model with impossible geometry is detrimental
to the player’s engagement. Since the early days of Rogue (Toy and Wichman, 1980)
and ELITE (Acornsoft, 1981), games have used procedurally generated content to pro-
vide a potentially endless experience to their players. Many modern computer games
use carefully crafted algorithms to generate content such as weapons in Borderlands
(Gearbox, 2009) or creatures in Spore (Maxis, 2008); however, the most popular use
of procedural content generation (PCG) in commercial games remains game levels as in
Torchlight 2 (Runic, 2012) or the gameworld in Minecraft (Mojang, 2011). Games which
rely on generated content usually advertise the great replayability value they offer. For
instance, best-selling PC game Diablo III (Blizzard, 2012) states that “[previous] games
established the series’ hallmarks: randomized levels, the relentless onslaught of mon-
sters and events in a perpetually fresh world, [...]1.

The game industry therefore has a fundamental need for generators able to create
both “good” and diverse content. Constrained novelty search is particularly suited for
this task, as it targets diversity via the search for novelty while it ensures quality via the
satisfaction of constraints. By collecting past content seen by the player (either gener-
ated or hand-crafted) into a novel archive, novelty search ensures that new content will
be unlike those previously encountered. Constraining novelty search to playable — or
sufficiently entertaining, challenging or balanced — game content ensures that players
are not likely to experience unwanted content. Additionally, novelty search can be used
to aid a game developer during creative tasks. Computer-aided design tools can benefit
from computer generated content as alternatives to (Liapis et al., 2013d) or elaborations
of (Liapis et al., 2013f) a user’s current design; such suggestions can potentially speed
up the design process and enhance the creativity of the human user (Yannakakis et al.,
2014).

Academic interest in the procedural generation of game content is relatively new,
but is considered one of the more promising directions of game AI research (Yan-
nakakis, 2012). The search-based procedural content generation paradigm (Togelius et al.,
2011) often uses genetic algorithms to search for new content which maximize a fit-
ness function pertaining to its entertainment value (Yannakakis and Togelius, 2011),
its learnability (Browne and Maire, 2010), its visual appeal (Liapis et al., 2012), its ap-
propriateness to a specific user (Shaker et al., 2010) or multiple gameplay objectives
(Togelius et al., 2013). Where fitness functions are less straightforward or subjective,

1From the official “What is Diablo 3?” page at Blizzard’s website: http://us.battle.net/d3/en/game/what-is
(Retrieved 14 February 2014)

Evolutionary Computation Volume x, Number x 5



A. Liapis, G. N. Yannakakis and J. Togelius

content is generated via user interaction in the form of interactive evolution (Risi et al.,
2012; Cardamone et al., 2011; Liapis et al., 2013a). Constraints on playability in search-
based PCG have often been addressed by setting infeasible individuals’ fitness to zero,
although the FI-2pop GA paradigm has also been applied for generating playable plat-
former levels (Sorenson et al., 2011), strategy game levels (Liapis et al., 2013e) or space-
ships (Liapis et al., 2011).

3 Two-Population Novelty Search Methods

As presented in Section 2.2, novelty search favors individuals with a high novelty score
which is indicative of their divergence from current and past solutions. This novelty
score ρ(i), presented in Eq. (1), is the average distance between individual i and its k
closest individuals, either in the current population or in a novel archive:

ρ(i) =
1

k

k∑
j=1

d(i, µj) (1)

where µj is the j-th-nearest neighbor of i (within the population and in the archive of
novel individuals); distance d(i, j) is a domain-dependent metric which evaluates the
“difference” between individuals i and j.

Although many prominent techniques for handling constraints with genetic algo-
rithms penalize the fitness scores of infeasible individuals, applying penalties to nov-
elty search is not straightforward considering the novelty score of Eq. (1). It is unclear,
for instance, whether a penalty should be applied to ρ(i) for infeasible i or to d(i, j)
for feasible i but infeasible j. It is therefore preferable to avoid comparisons between
infeasible and feasible individuals. The FI-2pop GA maintains two populations so that
infeasible individuals do not compete with feasible ones for the purposes of selection;
feasible parents can thus be selected using a completely different criterion (e.g. novelty
search) than infeasible ones. Additionally, feasible offspring of infeasible individuals
migrate to the feasible population and increase its diversity, which coincides with the
goals of novelty search among feasible individuals.

This paper presents two variations of this two-population approach, adapted to
the purposes of novelty search. Feasible-infeasible novelty search (FINS) evolves feasible
individuals, in their separate population, towards maximizing the novelty score ρ(i) as
per Equation (1) while infeasible individuals evolve towards minimizing a measure of
their distance from feasibility finf (see Fig. 1c and Fig. 2b). In order to test the impact
of the finf heuristic and do away with objective-driven optimization on both popula-
tions, the feasible-infeasible dual novelty search (FI2NS) performs novelty search on both
the feasible and the infeasible population (see Fig. 2c). For FI2NS, novelty search is car-
ried out independently in each population with two separate archives of feasible and
infeasible novel individuals (see Fig. 1d); while both populations may use the same ρ(i)
metric, only the closest neighbors in the same population and archive are considered.
Maintaining two populations for either FINS and FI2NS ensures that distances between
feasible and infeasible individuals are not considered in the calculation of Eq. (1).

In the FI-2pop GA paradigm, the number of offspring for each population is equal
to the current population’s size. However, previous experiments in constrained opti-
mization have indicated that an offspring boost on the feasible population was beneficial
for enhancing the optimization behavior of feasible individuals. When the feasible pop-
ulation is smaller than the infeasible population, the offspring boost mechanism forces
members of the feasible population to create a number of offspring equal to 50% of the
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(d) FI2NS.

Figure 1: Diagrams of the two-population novelty search algorithms (Fig. 1c–1d), as
well as their inspirations (Fig. 1a–1b). For FI-2pop GA, the feasible population evolves
to maximize an objective score, while the infeasible population evolves to minimize its
members’ distance from feasibility. For Novelty Search, a single population evolves to
maximize a novelty score which measures the average distance of an individual from
its closest neighbors in the current population and in a novel archive which is updated
in every generation with the most novel individuals. For FINS, the feasible popula-
tion performs novelty search using a novel archive containing only feasible individu-
als, while the infeasible population evolves to minimize the distance from feasibility.
For FI2NS, the feasible population performs novelty search using a novel archive con-
taining only feasible individuals; the infeasible population performs novelty search as
well, but uses its own novel archive with only infeasible individuals and calculates the
novelty score by measuring distance only between infeasible individuals.
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Figure 2: A visualization of the search process for two-population novelty search meth-
ods. Fig. 2a shows a possible search space divided into infeasible space (I) and islands
of non-convex feasible space (F), along with a randomly initialized population (black
dots). With FINS, the infeasible individuals evolve to minimize their infeasibility, ide-
ally approaching the closest border with feasibility (Fig. 2b). With FI2NS, the infeasible
individuals evolve to maximize their diversity, ideally discovering faraway islands of
feasible space (Fig. 2c). For both FINS and FI2NS, feasible individuals evolve towards
maximizing their novelty; in the example shown, novelty search is likely to cause fea-
sible individuals on the feasibility border to become infeasible.

total size of the two populations. The number of offspring in the infeasible popula-
tion is reduced accordingly to keep the total population size steady. Unless otherwise
noted, all experiments in this paper apply the proposed offspring boost enhancement
to FINS and FI2NS methods. The impact of the offspring boost will also be tested in
experiments of Section 5, with runs of FINS and FI2NS with and without the boost.

4 Game Level Creation

Procedurally generated game levels — as the most popular type of generated game
content in the game industry as well as within academia — have a need for both playa-
bility and diversity, which makes constrained novelty search an obvious solution. For
the purposes of this paper, constrained novelty search will be used to evolve strategy
game levels. Section 6.2 will elaborate on other domains where constrained novelty
search can also be useful.

The generation of strategy game levels via constrained novelty search is motivated
by the Sentient Sketchbook design tool (Liapis et al., 2013d), which allows human de-
signers to draw their own maps while an artificial designer procedurally generates
alternatives to those, in real-time, and presents them to the users. The maps generated
by Sentient Sketchbook are represented as map sketches. Such sketches are minimal ab-
stractions of game levels, which contain the bare essentials for strategic gameplay; map
sketches, however, can be transformed via rule-based processes with some stochastic-
ity into elaborate, complete levels (see Fig. 3). Although many different types of game
levels (including dungeons and first-person shooter maps) can be represented as map
sketches (Liapis et al., 2013g), this experiment will focus on strategy game levels: there-
fore, map sketches contain passable tiles, impassable tiles, player bases and resources.
As in a typical strategy game, each player is assumed to start the game at one of the
player bases, from where they must collect resources in order to build units; units travel
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(a) Generated map sketch.
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(b) Genotype of the sketch
in Fig. 3a.

(c) Detailed strategy game level
constructed from the sketch in
Fig. 3a.

(d) A strategy level in 3D, constructed from the
sketch in Fig. 3a.

Figure 3: A map sketch generated by the methodology in Section 4 (Fig. 3a); passable
tiles are shown in orange, impassable tiles in brown, player bases as circles and re-
sources as rhombi; the genotype is an integer array with each tile stored as an integer
(Fig. 3b). The map sketch can be transformed, via cellular automata, into a complete
strategy game map in 2D (Fig. 3c) or in 3D (Fig. 3d); the detailed maps maintain the
same navigational and playability properties of the sketch they are based on.

through passable tiles to attack and destroy the enemy players’ bases.

4.1 Representation and Genetic Algorithm

The most significant benefit of the low-resolution map sketches is their ability to be
mapped directly into a genotype. The genotype is an array of integers equal to the
number of tiles of the map sketch: each integer thus determines the contents of a single
map tile (see Fig. 3b).

In the experiments presented in this paper, the genotype is evolved towards max-
imizing a measure of diversity, or in the case of FINS towards minimizing the distance
from feasibility. Evolution is carried out via fitness-proportionate roulette-wheel se-
lection; the same parent may be selected more than once and thus generate multiple
offspring, which is necessary when the number of offspring is different than the num-
ber of parents (e.g. when applying the offspring boost). In each population, the best
individual is carried to the next generation while remaining individuals are replaced by
new ones. Elitism does not seem valuable to novelty search, since the fittest individual
in one generation is likely to have a low fitness in the next generation as it will also be
present in the novel archive. However, the “minimal” elitism used ensures the presence
of at least one feasible individual in each generation for two-population novelty search

Evolutionary Computation Volume x, Number x 9
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}}
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(a) Example of 2-point crossover. (b) Example of mutation.

Figure 4: Examples of genetic operators applied on game levels. Due to the direct
representation, crossover creates two offspring with parts of the first map (light outline)
and the second map (dark outline). Crossover may result in offspring with more bases
or resources than their parents; assuming a designer constraint for maps with exactly
two bases, the repair mechanism must be applied as the offspring have 3 bases and
1 base respectively. For the top map the repair mechanism removes a base chosen
randomly between the three, and the base at location A is changed to passable tile. For
the bottom map the repair mechanism adds a base on a randomly chosen passable tile,
and the tile at location B is changed to base. Mutation changes a few tiles of the map: in
Fig. 4b that amounts to 6% of map tiles. Mutated tiles may be shifted with an adjacent
one (white arrows) or transformed from passable to impassable or vice versa (+ sign).

approaches. New individuals can be created via a 2-point crossover of two parents (see
Fig. 4a) or via mutation (see Fig. 4b). Mutation alters between 5% to 20% of the maps’
tiles (determined randomly): each tile has an equal chance of being swapped with a
randomly chosen adjacent one, or transformed from passable to impassable and vice
versa (bases and resources are not transformed). For populations evolving via novelty
search, the 20 closest individuals are considered when calculating the novelty score
ρ(i) of Eq. 1 (i.e. k = 20), while the 5 highest scoring individuals of each generation are
added to the novel archive.

4.2 Constraints and Feasibility

In the PCG domain, constraints on what is an acceptable game level can be envisioned
as a minimal projected entertainment value or a minimal fairness in how contesting
players are treated. In order to avoid elaborate and domain-specific constraint formu-
lations which may limit the feasible space considerably, this paper will only consider
the minimal criteria of playability. For strategy games, two minimal criteria exist: (a)
there must be a minimum and a maximum number of bases and resources for a level
to be playable (for instance, a strategy game requires two players and therefore at least
two bases), and (b) all bases must be able to reach, via a passable path, all other bases
and resources to enable a player to attack opponents and collect resources, respectively.

The number of bases and resources allowed is ultimately a designer decision, but
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is also dependent on the size of the map: small maps can only have a few resources
and even fewer bases, while larger maps might have sufficient open areas for a larger
number of bases and therefore players. The current mutation scheme does not change
the number of bases or resources on the map, and thus mutating a gene with a feasible
number of bases and resources is guaranteed to generate a gene with a feasible number
of bases and resources. When applying crossover, however, there is a likelihood that the
offspring maps will have more or less bases and resources than their individual parents;
in such cases, a repair mechanism alters the offspring’s genotype to satisfy constraints
on the number of bases and resources. The repair mechanism adds missing bases or
resources to infeasible individuals with missing bases or resources respectively, or re-
moves extraneous bases or resources from infeasible individuals with excess bases or
resources respectively — without any penalties to their fitness. The process is stochas-
tic, as missing bases or resources are added to randomly selected passable tiles while
excess bases and resources are chosen at random and removed (see Fig. 4a). Although
this repair mechanism increases the unpredictability of the crossover operator, it is not
as destructive as creating two infeasible offspring.

When a base is not connected to another base or resource, there is no straightfor-
ward way of repairing the map; therefore, the connectivity of bases and resources is the
hard constraint on which constrained novelty search methods will be tested. Feasible
individuals have bases connected via passable paths with all other bases and resources;
infeasible individuals have at least one disconnected path. For the purposes of FINS,
the distance from feasibility is calculated by finf in Eq. 2. Infeasible individuals have
finf > 0, while feasible individuals have finf = 0; this equality constraint is used in all
constrained novelty search methods when testing for feasibility.

finf =
ub

B(B − 1)
+

ur
RB

(2)

where B and R is the number of bases and resources respectively; ub and ur is the
number of disconnected paths between pairs of bases and between pairs of bases and
resources respectively.

4.3 Distance Characterization

Measuring the difference between two maps is no straightforward task and the choice
of a distance metric for novelty search is likely to affect the appearance of generated
individuals. Since users of the Sentient Sketchbook tool inspect the generated map
suggestions visually, it is assumed for the purposes of this study that visual diversity
between generated maps is the most desirable quality. The distance metric for visual
diversity, shown as dvis in Eq. 3 compares two maps on a tile-by-tile basis: the fewer
matching tiles between maps, the higher the score of dvis. This dvis metric will be used
to calculate the novelty score according to Eq. 1 for all experiments in this paper.

dvis(i, j) =
1

WH

W∑
x=1

H∑
y=1

Dx,y(i, j) (3)

where W and H is the width and height of the map respectively and Dx,y(i, j) = 0 if at
coordinates (x, y) the tile of map i is of the same type as that of map j andDx,y(i, j) = 1
if it is of a different type.
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5 Experiments

In order to assess the behavior of constrained novelty search methods, a number of ex-
periments were conducted and reported below; these experiments compare between
minimal criteria novelty search (MCNS), feasible-infeasible novelty search (FINS),
feasible-infeasible dual novelty search (FI2NS) and traditional, unconstrained novelty
search (NS). The introduction of two-population novelty search aims to test three hy-
potheses (H1, H2, H3) regarding existing methods; a fourth hypothesis (H4) is made for
the addition of the offspring boost mechanism to the two-population methods:

H1: FINS can find feasible individuals faster than FI2NS, NS and MCNS in highly con-
strained search spaces, where a feasible individual is hard to discover and not
likely to exist in the initial population. In such search spaces MCNS performs ran-
dom search and both NS and FI2NS search for novelty in infeasible space, while
the infeasible population of FINS is guided by a measure of feasibility.

H2: FINS and FI2NS can find more feasible individuals than NS. As NS does not distin-
guish between feasible and infeasible individuals, it is likely to explore infeasible
space when the feasible space is small; this amounts to a few feasible individuals,
limiting the efficiency of novelty search in that space.

H3: MCNS has lower diversity than all other methods, as it kills all infeasible individ-
uals once a feasible individual is found. FINS, FI2NS and NS all retain infeasible
individuals; such individuals are likely to eventually create feasible offspring and
enhance the diversity of feasible individuals. On the other hand, MCNS kills infea-
sible offspring of feasible parents, thus forgetting their genetic information; this is
likely to limit the effectiveness of novelty search near the border of feasible space
and thus lower the diversity of feasible individuals.

H4: FINS and FI2NS become more efficient from the offspring boost mechanism in
terms of the number and diversity of feasible individuals discovered. The feasible
population of FINS and FI2NS must be large enough for search to be efficient;
without the offspring boost, their feasible population may be too small.

To validate the above hypotheses, we derive four performance metrics (two for H1 and
one for each of H2, H3) to be used in the experiments of this paper: (H1a) the number
of evolutionary runs (out of 50) where at least one feasible individual is discovered
(n); (H1b) the first generation in which a feasible individual is discovered (g); (H2) the
number of feasible individuals (p); and (H3) the diversity of feasible individuals (d̄vis).
H4 can be tested via p and d̄vis, since its goal is higher diversity afforded by larger
feasible populations. Diversity is measured by calculating the average distance (dvis)
between all feasible individuals in the population (ignoring the novel archive). The
values of p and d̄vis are calculated after 100 generations, at which point the evolutionary
run is terminated. Apart from n, performance metrics are averaged across 50 runs,
with the standard deviation shown in parentheses. Significance throughout this paper
is α = 5%, measured via standard t-tests; when comparing more than one method, the
Bonferroni correction is applied (Dunn, 2012). Unless otherwise stated, experiments in
this paper are performed on a total population of 100 individuals, which can be feasible
or infeasible.

To showcase the algorithms’ behavior in different constrained search spaces, ex-
periments will be performed on small, medium and large maps. Small maps have 64
tiles (laid on a grid of 8 by 8 tiles), and must contain 2 bases and between 4 and 10
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resources. The few bases and resources and small size makes the creation of feasible
individuals likely, even by random generation: from 106 randomly generated maps,
3·104 are feasible. Large maps have 256 tiles (laid on a grid of 16 by 16 tiles), and must
contain between 2 and 10 bases and between 4 and 30 resources. The large map size
increases the likelihood that paths between bases and resources will be blocked, espe-
cially when either bases or resources are numerous; from 106 randomly generated large
maps, only 10 are feasible. Medium maps have 144 tiles (laid on a grid of 12 by 12 tiles),
and must contain 4 bases and between 8 and 20 resources. The map size should place
medium maps somewhere between small and large maps in terms of ease of satisfying
constraints, although medium maps have a minimum of 12 tiles that must be connected
(bases and resources) versus the minimum of 6 tiles for small and large maps: from 106

randomly generated medium maps, 852 are feasible.
The algorithms behave differently depending on the search space and the genetic

operators used. In order to test that, experiments documented in Section 5.1 compare
the two-population approaches with unconstrained NS and MCNS and test the impact
of the offspring boost mechanism. These experiments take place on a total population
of 100 individuals, and start from a random initial population; to test how these pa-
rameters affect the behavior of the different methods, Section 5.2 tests population sizes
both larger and smaller than 100 individuals, while Section 5.3 bypasses the challenge
of discovering feasible individuals by injecting one or more feasible solutions into the
initial population.

5.1 Impact of Genetic Operators

The choice of genetic operators can greatly affect the behavior of any genetic algorithm,
even more so novelty search which relies on divergence to guide it. This section will
evaluate the behavior of the four novelty search methods (three constrained and one
unconstrained) in three different map sizes. All experiments will compare how the
different methods behave when the genetic algorithm uses 2-point crossover (with a
1% chance of mutation) and when it uses only mutation; as a shorthand, the former
operators will be identified as recombination and the latter as mutation. Unless otherwise
noted, FINS and FI2NS use the offspring boost mechanism; experiments in the second
part of this section validate the H4 hypothesis and support the use of the offspring
boost in all experiments in this paper.

Table 1 shows the performance metrics of different methods of novelty search
evolving via the 2-point crossover of two parents and a mutation chance of 1% on
the offspring. Comparing between the different map sizes, it is immediately obvious
that the performance of different methods is greatly affected by the shape of the feasi-
ble space: in highly constrained spaces, minimal criteria novelty search (MCNS) and
unconstrained novelty search (NS) appear to struggle to discover or retain feasible in-
dividuals, respectively. MCNS discovers a feasible individual in 43 out of 50 runs for
medium maps and only in 7 out of 50 runs for large maps; as the initial population
does not contain feasible individuals, MCNS sets the fitness of the entire population
to 0 and performs random search until a feasible individual is found. For experiments
with recombination, it is obvious that random search is not particularly efficient at find-
ing parents whose offspring are feasible. Unconstrained novelty search, on the other
hand, discovers feasible individuals more often than MCNS, but does not succeed at
retaining them in the population: it was not uncommon for runs with NS to discover
a single feasible individual in one generation, only to have it disappear in the next. As
NS does not have an explicit (via a feasibility check) or implicit (via the distance metric)
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Map Size Method n g p d̄vis

Small

NS 50 0.0 (0.2) 14.7 (6.3) 0.523 (0.079)
MCNS 50 0.1 (0.4) 96.7 (2.1) 0.402 (0.019)
FINS 50 0.0 (0.1) 51.6 (5.4) 0.467 (0.016)
FI2NS 50 0.1 (0.4) 48.9 (3.7) 0.523 (0.010)

Medium

NS 50 7.3 (7.1) 1.2 (1.4) 0.192 (0.252)
MCNS 43 13.4 (12.5) 94.7 (2.9) 0.299 (0.030)
FINS 50 2.6 (1.6) 50.1 (5.1) 0.418 (0.016)
FI2NS 50 8.7 (8.6) 47.5 (3.6) 0.481 (0.012)

Large

NS 34 53.7 (25.0) 0.1 (0.3) 0.000 (0.000)
MCNS 7 43.3 (27.6) 85.9 (28.2) 0.176 (0.077)
FINS 50 8.5 (3.9) 48.9 (4.2) 0.361 (0.023)
FI2NS 30 60.5 (20.9) 44.1 (4.5) 0.293 (0.119)

Table 1: Performance metrics for different novelty search approaches used with 2-point
crossover and 1% chance of mutation: number of runs (out of 50) where a feasible
individual was discovered (n) and the first generation in which it occurred (g), as well
as the final number of feasible individuals (p) and their average diversity (d̄vis) of each
experiment. For metrics other than n, results are averaged across 50 runs with standard
deviation in parentheses; significantly different values from all other methods for the
same map size are displayed in bold, while (significantly) best values for each metric
are underlined. Note that the best value is the lowest for g and the highest for p and
d̄vis.

indication that the individual discovered is valuable, it was often discarded in favor of
more visually different yet infeasible individuals. Both FINS and FI2NS have an ex-
plicit indication of feasible individuals’ value, and once discovered these individuals
are prompted to generate numerous offspring — equal to 50% of the total population
due to the offspring boost mechanism. Unlike the random search of MCNS and the
novelty search of FI2NS and NS, FINS attempts to minimize infeasible individuals’
distance from feasibility, and this objective-driven search leads to the discovery of fea-
sible individuals faster and more reliably (based on the low deviation of g) than the
other methods in medium and large maps. Regarding the number of final feasible in-
dividuals, MCNS unsurprisingly has far more feasible individuals than other methods
in all runs where a feasible individual was discovered, for all map sizes. Likely due
to the fact that all infeasible individuals are killed, however, MCNS has a significantly
lower diversity in the feasible population than all methods (excluding NS in medium or
large maps which hardly contains any feasible individuals). In less constrained spaces
such as with small maps, NS can discover a sufficient number of feasible individuals to
measure their diversity; its final diversity is significantly higher than that of MCNS and
FINS. For medium maps FI2NS achieves a significantly higher diversity than all other
approaches, likely due to the fact that novelty search in the infeasible population dis-
covers feasible individuals in distant or segmented areas of the search space. For large
maps, the feasible population of FINS is significantly more diverse than other methods’,
likely due to the fact that FINS discovers individuals much earlier than other methods
and thus performs novelty search on the feasible population for more generations.

Table 2 shows the performance metrics of different methods of novelty search
evolving via the mutation of a single parent. Comparing the performance metrics with
those of Table 1, it is clear that mutation, as a whole, tends to cause different novelty
search methods to exhibit a similar behavior. Feasible individuals are discovered in
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Map Size Method n g p d̄vis

Small

NS 50 0.0 (0.1) 10.9 (4.0) 0.599 (0.032)
MCNS 50 0.1 (0.2) 77.6 (6.3) 0.577 (0.017)
FINS 50 0.0 (0.2) 38.9 (4.5) 0.603 (0.007)
FI2NS 50 0.0 (0.0) 38.5 (4.3) 0.607 (0.010)

Medium

NS 50 4.0 (2.8) 1.7 (1.5) 0.392 (0.282)
MCNS 50 4.7 (2.9) 55.2 (7.7) 0.567 (0.011)
FINS 50 2.5 (1.6) 28.2 (4.3) 0.577 (0.012)
FI2NS 50 4.0 (2.8) 25.4 (4.7) 0.572 (0.015)

Large

NS 50 16.9 (9.0) 0.2 (0.4) 0.000 (0.000)
MCNS 50 20.4 (11.4) 31.8 (6.0) 0.540 (0.018)
FINS 50 6.2 (1.9) 16.1 (4.2) 0.544 (0.026)
FI2NS 50 17.1 (7.8) 15.2 (4.2) 0.523 (0.040)

Table 2: Performance metrics for different novelty search approaches used only with
mutation: number of runs (out of 50) where a feasible individual was discovered (n)
and the first generation in which it occurred (g), as well as the final number of feasible
individuals (p) and their average diversity (d̄vis) of each experiment. For metrics other
than n, results are averaged across 50 runs with standard deviation in parentheses; sig-
nificantly different values from all other methods for the same map size are displayed
in bold, while (significantly) best values for each metric are underlined. Note that the
best value is the lowest for g and the highest for p and d̄vis.

all runs, even in large maps, and the discrepancies in g and d̄vis between methods are
largely subdued. All behaviors (excluding NS in medium and large maps) reach simi-
lar values of final diversity, which are significantly higher than the values obtained by
the same methods using recombination. This should not be surprising given the very
nature of recombination as well as the tile-based distance metric used to measure di-
versity. Given an appropriate “geometric” recombination operator, evolutionary search
can be seen a convex search as it searches inside the hyper-volume specified by the in-
dividuals in the initial population (Moraglio, 2011). In the current problem, the direct
genotype to phenotype mapping makes it probable that the recombination operator is
geometrical or almost geometrical; this could be a good explanation for the low ob-
served diversity in experiments with prevalent recombination. More specifically, an
individual created via crossover inherits parts of the map from either parent, resulting
in a low distance dvis between the offspring and either parent (see Fig. 4a). On the
other hand, a map generated via mutation inherits parts of the map from a single par-
ent, while the random mutation means that offspring of the same parent may still be
dissimilar from each other (see Fig. 4b). Regarding the number of feasible individuals,
however, it is surprising that all methods have fewer feasible individuals with mutation
than with recombination, regardless of map size. From the results, it is obvious that ap-
plying mutation to a feasible individual is more likely to render it infeasible than when
recombining it with another individual (usually feasible); this is likely due to the fact
that mutation can add impassable tiles to a map, which can block a previously pass-
able path. However, this same mechanism of mutation is also more likely to discover
feasible individuals; even the random search of MCNS discovers large feasible maps in
all runs much faster than with recombination, although FINS still manages to discover
such maps faster and more reliably.

Results in this section point to very different behaviors in all performance metrics
between experiments with mutation and experiments with recombination. To ascertain
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Recombination Mutation
Map Size Method p d̄vis p d̄vis

Small

FINSnb 37.8 (10.6) 0.426 (0.025) 19.6 (5.6) 0.597 (0.013)
FINS 51.6 (5.4) 0.467 (0.016) 38.9 (4.5) 0.603 (0.007)
FI2NSnb 20.4 (7.3) 0.511 (0.024) 12.4 (3.7) 0.605 (0.018)
FI2NS 48.9 (3.7) 0.523 (0.010) 38.5 (4.3) 0.607 (0.010)

Medium

FINSnb 28.1 (9.7) 0.337 (0.038) 6.4 (3.0) 0.556 (0.086)
FINS 50.1 (5.1) 0.418 (0.016) 28.2 (4.3) 0.577 (0.012)
FI2NSnb 3.5 (2.6) 0.288 (0.195) 2.9 (1.2) 0.495 (0.197)
FI2NS 47.5 (3.6) 0.481 (0.012) 25.4 (4.7) 0.572 (0.015)

Large

FINSnb 23.4 (12.3) 0.239 (0.087) 2.8 (2.0) 0.410 (0.251)
FINS 48.9 (4.2) 0.361 (0.023) 16.1 (4.2) 0.544 (0.026)
FI2NSnb 1.2 (0.7) 0.036 (0.128) 1.2 (0.5) 0.096 (0.218)
FI2NS 44.1 (4.5) 0.293 (0.119) 15.2 (4.2) 0.523 (0.040)

Table 3: Performance metrics with and without (shown as nb) the offspring boost mech-
anism, for FINS and FI2NS evolving via 2-point crossover and 1% chance of mutation
(Recombination column) and only mutation (Mutation column). Since the offspring
boost takes effect only after a feasible individual is discovered, n and g are not ex-
pected to differ from those in Tables 1 and 2 and are omitted. p and d̄vis are compared
between the same method (FINS or FI2NS) with and without the offspring boost; sig-
nificantly better (higher) values are underlined. Results are averaged across 50 runs,
with standard deviation in parentheses.

whether such differences are persistent across population sizes or initial populations,
remaining experiments in this paper will also be testing both sets of genetic operators.

Impact of the Offspring Boost
Section 3 proposed an addition to the two-population novelty search methods for in-
creasing the size of the feasible population. This mechanism, identified as offspring
boost, increases the number of offspring created by the feasible population to a min-
imum of 50% of the total population or the current size of the feasible population,
whichever is greater. The hypothesis H4 for this addition is that the feasible popu-
lation of FINS and FI2NS must be large enough for search to be efficient. To test H4, 50
runs of FINS and FI2NS without the offspring boost (denoted as FINSnb and FI2NSnb

respectively) are compared with the 50 runs of FINS and FI2NS from Tables 1 and 2,
which use the offspring boost. The results of these tests are shown in Table 3.

As expected, the offspring boost results in a significantly larger feasible popula-
tion, since offspring of feasible parents are more likely to be feasible than offspring of
infeasible parents. FI2NS benefits from the boost the most: without the boost, its final
population is small for small maps and for medium or large maps it often consists of
a single feasible individual. FI2NSnb does not have a much larger number of feasible
individuals than NS, although their difference is still significant. While FINS using
recombination often has a sizable feasible population even without the boost, when us-
ing mutation FINS similarly relies on the boost to reach an adequate population size.
The larger feasible populations afforded by the boost allow both FINS and FI2NS to
search for novelty more efficiently in the feasible space, usually resulting in signifi-
cantly higher diversity values than the same methods without the boost. From the
results of Table 3, the first part of hypothesis H4 that the offspring boost results in more
feasible individuals is validated in 12 out of 12 cases, regardless of map size, genetic
operators, and two-population novelty search method. The second part of hypothesis
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H4 that the offspring boost results in more diverse feasible individuals is validated for
FINS in 5 out of 6 cases, and similarly for FI2NS in 5 out of 6 cases. Since H4 is vali-
dated for the overwhelming majority of cases, every FINS and FI2NS method uses the
offspring boost in the remaining experiments.

5.2 Impact of Population Size

Since most genetic algorithms benefit from larger populations for the additional paral-
lel search that they afford, the same should hold true for constrained novelty search.
A larger population size is more likely to create, even by chance, maps that are more
different from each other and thus better steer novelty search towards higher diversity.
Moreover, a larger population is more likely to discover a feasible individual in highly
constrained spaces, regardless of the type of search.

While other experiments in this paper de facto use a total population of 100 indi-
viduals, which includes both feasible and infeasible ones, Figure 5 displays how dif-
ferent performance metrics change with smaller or larger populations. Five different
population sizes are tested: 20, 50, 100, 200 and 500 individuals. Several interesting
conclusions can be drawn from Fig. 5, although they largely depend on the map size
and the genetic operators used.

For all map sizes, the number of feasible runs increases as the size of the total pop-
ulation increases. This is hardly surprising since a larger population of infeasible indi-
viduals is faster at reaching the border of feasibility for FINS or exploring the infeasible
space for FI2NS and NS. As MCNS lacks an informed heuristic for searching infeasible
space, it benefits the most from the parallel random search afforded by large popula-
tion sizes. The discovery of the first feasible individual is also considerably faster with
larger population sizes (such as 200 or 500 individuals) for all methods, although FINS
is the least affected. On the other hand, the ratio of final feasible individuals to the total
population does not seem to be particularly sensitive to different population sizes. The
average diversity of the final feasible individuals increases with larger populations of
200 or 500, which is hardly surprising since most forms of genetic search benefit from
larger population sizes; it is interesting to note, however, that recombination benefits
more from large population sizes than mutation.

Small populations such as 20 or 50 individuals are quite detrimental for most meth-
ods. For small maps the discovery of feasible individuals is still fast and easy even for
a population of 20, although the final feasible diversity is significantly lower compared
to that for a population of 100. For medium maps, small populations do not partic-
ularly affect the discovery of feasible individuals for FINS, since it still consistently
finds feasible individuals within the first 10 generations even for populations of 20. It
does however affect the discovery of feasible individuals for FI2NS and NS, which dis-
cover individuals much later than in populations of 100, and especially MCNS which
does not discover any feasible individuals in numerous runs when applying recombi-
nation. As with small maps, all methods fail to reach high values of feasible diversity
for medium maps when evolving 20 or 50 individuals. For large maps, small popula-
tions are even more problematic, as even FINS struggles to discover feasible individ-
uals with populations of 20. Other methods fare even worse, as MCNS, FI2NS and
NS rarely discover feasible individuals with populations of 20; in fact, MCNS discov-
ers a feasible large map only once when using recombination with populations of 20.
Although it discovers feasible individuals rarely, MCNS can search for novelty in the
feasible population more efficiently than other methods in very small populations; as
other methods do not have a sufficiently large population in order to effectively explore
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(a) Legend.

(b) Metric n for small maps. (c) Metric n for medium maps. (d) Metric n for large maps.

(e) Metric g for small maps. (f) Metric g for medium maps. (g) Metric g for large maps.

(h) Ratio of p for small maps. (i) Ratio of p for medium maps. (j) Ratio of p for large maps.

(k) Metric d̄vis for small maps. (l) Metric d̄vis for medium maps. (m) Metric d̄vis for large maps.

Figure 5: Comparisons of the performance metrics between different population sizes.
The ratio of feasible individuals p is normalized to the population size used (a ratio of
1.0 represents the entire population size). Solid lines show experiments with recombi-
nation while dotted lines show experiments with mutation. Results are averaged across
50 runs, with errorbars denoting standard deviation.
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(a) Small
seedone

(b) Medium
seedone

(c) Large seedone (d) Small
sample
seedall

(e) Medium
sample seedall

(f) Large sample
seedall

Figure 6: Types of initial seeds. Fig. 6a–6c show the feasible hand-crafted maps used
to seed the initial population of the seedone experiments. Fig. 6d–6f show sample ran-
domly generated feasible maps, with no impassable tiles, used to seed the initial pop-
ulation of the seedall experiments.

the feasible space, MCNS achieves significantly higher diversity scores in populations
of 20 for experiments with mutation.

The differences found in Section 5.1 between experiments with recombination and
experiments with mutation seem to be persistent for the different population sizes
tested. The number of runs with no feasible individuals is much larger for experiments
with recombination than for experiments with mutation, especially with smaller popu-
lation sizes. Similarly, experiments with mutation discover feasible individuals earlier,
and the differences become even more pronounced with larger population sizes. Ex-
periments with mutation consistently have fewer final feasible individuals than exper-
iments with recombination, for populations both small and large. Regarding diversity,
while experiments with mutation and recombination both benefit from larger popula-
tion sizes, recombination struggles much more with small populations than mutation.
Both experiments with mutation and experiments with recombination have a signif-
icantly lower final diversity with a population of 20 than with a population of 100,
excluding MCNS and NS with recombination in large maps due to few feasible runs.

5.3 Impact of Initial Seeds

In highly constrained problems, such as the larger maps in the presented experiments,
both unconstrained novelty search and MCNS are shown to perform poorly: uncon-
strained novelty search explores predominantly infeasible space, finding feasible indi-
viduals with difficulty but discarding them with ease, while MCNS performs random
search which rarely discovers feasible individuals. For such cases, Lehman and Stanley
(2010) suggest that the initial population should be “seeded” with feasible individuals
to jump-start evolution. In order to test the performance of constrained and uncon-
strained novelty search with seeded initial populations, two experimental setups are
devised: the seedone experiment, where a single feasible individual is injected into the
initial population, and the seedall experiment, where every initial population consists
of randomly generated individuals guaranteed to be feasible. For seedone experiments,
the same hand-crafted individual (see Fig. 6) is injected into an otherwise randomly
generated population for all runs and all methods of that map size. For seedall experi-
ments, the random initial individuals are guaranteed to be feasible as they do not con-
tain any impassable tiles that could block paths between bases and resources. These
random individuals are generated by applying the repair algorithm on a blank map
containing only passable tiles; resulting maps, as shown in Fig. 6, possess the mini-
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seedall init. population seedone init. population
Map Size Method p d̄vis p d̄vis

Small

NS 30.4 (12.7) 0.506 (0.012) 16.2 (7.5) 0.521 (0.029)
MCNS 97.5 (1.7) 0.403 (0.019) 97.1 (2.2) 0.403 (0.018)
FINS 58.7 (12.1) 0.448 (0.032) 52.8 (5.9) 0.466 (0.014)
FI2NS 49.1 (5.4) 0.509 (0.012) 49.2 (4.3) 0.519 (0.012)

Medium

NS 35.2 (11.7) 0.460 (0.010) 1.8 (2.3) 0.291 (0.228)
MCNS 97.4 (2.0) 0.375 (0.013) 96.3 (2.0) 0.343 (0.018)
FINS 66.7 (14.5) 0.404 (0.045) 50.6 (4.5) 0.417 (0.013)
FI2NS 63.1 (16.1) 0.434 (0.063) 47.4 (3.9) 0.481 (0.013)

Large

NS 24.6 (9.5) 0.399 (0.014) 0.0 (0.1) 0.000 (0.000)
MCNS 97.0 (1.9) 0.315 (0.014) 95.5 (2.5) 0.274 (0.020)
FINS 53.4 (8.6) 0.343 (0.015) 49.4 (3.7) 0.360 (0.020)
FI2NS 52.3 (11.1) 0.391 (0.044) 45.4 (3.6) 0.431 (0.011)

Table 4: Performance metrics with seeded initial populations for different novelty
search approaches used with 2-point crossover and 1% chance of mutation. Since the
initial population is seeded with at least one feasible individual, n = 50 and g = 0 for
all methods and are omitted. Results are averaged across 50 runs, with standard devia-
tion in parentheses. Significantly different values in the performance metrics compared
to all other methods for the same map size are displayed in bold, while (significantly)
best (highest) values for each metric are underlined.

mum amount of allowed bases and resources. Tables 4 and 5 present the final number
of feasible individuals and their diversity for experiments with initial populations of
the two types of seeds.

In experiments using 2-point crossover and 1% chance of mutation, displayed in
Table 4, the final number of feasible individuals is significantly larger for seedall initial
populations than for seedone or unseeded initial populations from Table 1 for 9 out of
12 cases. This is mostly due to the fact that the seedall initial population contains no
impassable tiles; as only mutation can add impassable tiles and the chance of mutation
is low, even after 100 generations maps are unlikely to have numerous impassable tiles.
This benefits NS the most, as it retains a sizable feasible population even for large maps
when starting from a seedall initial population; this is not true for seedone or unseeded
initial populations, where NS has very few, if any, feasible individuals for medium and
large maps. Since recombination applied to a seedall initial population results in fewer
impassable tiles in the final evolved maps, the final diversity of maps for seedall initial
populations is usually lower than that of seedone initial populations or even unseeded
ones. For all map sizes, however, FI2NS and NS have significantly higher diversities
than FINS and MCNS for seedall initial populations. For seedone initial populations,
there are very few differences in the final number of feasible individuals compared
to the unseeded initial populations of Table 1. However, since a feasible individual
jump-starts evolution in highly constrained spaces where MCNS and FI2NS normally
struggle to discover feasible individuals, these methods have more generations to per-
form novelty search in feasible space. This results in a significantly higher diversity for
MCNS with a seedone initial population than with an unseeded one for medium and
large maps, while FI2NS has a significantly higher diversity than MCNS and FINS even
in large maps, where it underperformed with unseeded initial populations.

In experiments using mutation of a single parent, displayed in Table 5, the behav-
ior of the different methods is overall not very different from those of Table 2. Uncon-

20 Evolutionary Computation Volume x, Number x



Constrained Novelty Search

seedall init. population seedone init. population
Map Size Method p d̄vis p d̄vis

Small

NS 11.5 (4.8) 0.555 (0.019) 11.0 (4.3) 0.602 (0.025)
MCNS 84.5 (5.1) 0.548 (0.006) 79.3 (6.1) 0.574 (0.019)
FINS 40.8 (4.0) 0.554 (0.007) 38.6 (4.1) 0.604 (0.006)
FI2NS 41.9 (4.7) 0.558 (0.006) 38.8 (4.3) 0.603 (0.010)

Medium

NS 1.6 (1.5) 0.324 (0.266) 1.6 (1.4) 0.358 (0.287)
MCNS 60.6 (6.9) 0.534 (0.006) 50.5 (6.6) 0.555 (0.009)
FINS 31.6 (5.2) 0.539 (0.009) 26.9 (5.3) 0.573 (0.013)
FI2NS 30.5 (5.4) 0.535 (0.010) 25.5 (4.5) 0.564 (0.015)

Large

NS 1.3 (1.1) 0.272 (0.243) 0.2 (0.6) 0.199 (0.313)
MCNS 71.6 (7.9) 0.500 (0.005) 26.6 (5.9) 0.490 (0.019)
FINS 34.4 (6.1) 0.498 (0.008) 14.4 (4.2) 0.472 (0.056)
FI2NS 33.0 (6.8) 0.496 (0.008) 13.1 (3.5) 0.467 (0.052)

Table 5: Performance metrics with seeded initial populations for different novelty
search approaches used with mutation only. Since the initial population is seeded with
at least one feasible individual, n = 50 and g = 0 for all methods and are omitted.
Results are averaged across 50 runs, with standard deviation in parentheses. Signifi-
cantly different values in the performance metrics compared to all other methods for
the same map size are displayed in bold, while (significantly) best (highest) values for
each metric are underlined.

strained novelty search does not manage to maintain an adequate number of feasible
individuals, even with a seedall initial population; this is likely due to the larger number
of impassable tiles introduced via mutation which increases the likelihood of blocked
paths between bases and resources. The feasible diversity scores are quite similar be-
tween methods applied on the same map size, excluding NS for medium and large
maps. It is not surprising that MCNS, FINS and FI2NS have a significantly larger num-
ber of final feasible individuals for experiments with seedall initial populations than
with unseeded populations. It is surprising however that for medium and large maps,
the number of feasible individuals with seedone initial populations is significantly lower
than that with unseeded ones in 3 out of 8 cases; this is likely due to the larger number
of mutations applied to the already “crowded” hand-crafted maps, which more easily
create disconnected paths.

5.4 Key Findings

The argument for two-population novelty search methods builds on four hypotheses:
According to H1, FINS can find feasible individuals faster than FI2NS, NS and

MCNS in highly constrained search spaces. Sections 5.1 and 5.2 test that hypothesis in
medium and large maps, which are unlikely to be feasible by chance. H1 is validated
in 14 out of 20 experiments for the highly constrained spaces of medium and large
maps, as FINS discovers feasible individuals at significantly lower g values than other
methods in these 14 cases, regardless of genetic operators used; significance was not
achieved in the remaining cases primarily due the high standard deviation in g of other
approaches for large maps using recombination. Granted that in 4 of the 6 cases where
significant differences in g were not found, the difference in n between FINS and the
other methods was overwhelming, H1 can arguably be considered validated.

According to H2, FINS and FI2NS can find more feasible individuals than NS. With
FINS and FI2NS using the offspring boost, H2 was validated in all 42 cases examined,
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as NS had significantly fewer feasible individuals than all other methods for all exper-
iments of Sections 5.1, 5.2 and 5.3. On the other hand, MCNS had significantly more
feasible individuals than other methods in all but one of these 42 cases. Therefore,
while H2 is validated, FINS and FI2NS have fewer feasible solutions than MCNS.

According to H3, MCNS has lower diversity than all other methods. Since in most
cases NS did not have any feasible individuals for map sizes other than small, we will
test whether MCNS has a lower diversity than FINS or FI2NS. Testing experiments of
Sections 5.1, 5.2 and 5.3, H3 was validated in 28 out of 42 cases regarding FINS having
a significantly higher diversity than MCNS, and again in 28 out of 42 cases regarding
FI2NS having a significantly higher diversity than MCNS. The experiments which did
not validate H3 were mostly with small populations of 20 and 50 individuals, where H3
was validated only in 1 and 3 of 12 cases for FINS and FI2NS respectively. While not
validated in its entirety, H3 seems to hold in larger populations regardless of genetic
operators or initial populations used.

According to H4, FINS and FI2NS are more efficient in terms of population size
and diversity when the offspring boost mechanism is applied. Experiments in Section
5.1 validated H4 in all 12 cases regarding boost significantly increasing the feasible
population’s size and in 10 out of 12 cases regarding boost significantly increasing the
diversity of feasible solutions. These results largely validate H4.

As a more general conclusion from the experiments of Section 5, it is clear that
choosing a novelty search method depends as much on the shape of the feasible space
as on the intended outcomes of the experiment. MCNS is able to create many fea-
sible individuals which are often not particularly diverse, since it discards infeasible
offspring of feasible parents. In highly constrained spaces MCNS performs poorly as
it cannot find a feasible individual using an unguided, random search. On the other
hand, MCNS can explore large feasible spaces efficiently, requiring a smaller popula-
tion than other methods. Unconstrained NS can create diverse feasible individuals but
it has no notion of the value of feasible solutions, and thus it is likely to discard them
in favor of infeasible ones. This leads to few feasible solutions even when constraints
are easily satisfied, but is particularly detrimental in highly constrained spaces as NS
rarely retains even a single feasible solution. FI2NS shares many of the properties of
NS, including the way it searches the infeasible space; as it has a notion of the value
of feasible individuals, however, it can retain them and increase their numbers due to
the offspring boost mechanism. Without the offspring boost, FI2NS does not fare much
better than NS in highly constrained spaces; with the offspring boost, however, FI2NS
usually has a sizable population of feasible individuals with a diversity rivaling that
of NS. FINS retains fewer feasible individuals than MCNS and their diversity is often
lower than that of FI2NS or NS; however, FINS can discover feasible individuals easily
in highly constrained spaces as its infeasible population searches towards the border of
feasibility. This advantage of FINS over other methods can be somewhat mitigated by
injecting feasible individuals in the initial population; in such cases, FI2NS and, under
conditions, MCNS can be equally or better suited at finding diverse feasible solutions.

The choice of genetic operators similarly depends on the intended outcomes of the
experiment, but also on the genotype to phenotype mapping and on the distance metric
used. Experiments in this paper have demonstrated that evolving solely via mutation
leads to more diverse feasible individuals and a faster, more consistent discovery of fea-
sible solutions in highly constrained spaces. However, as will be discussed in Section
6.1, the high diversity of experiments with mutation could be an artifact of the direct
mapping between genotype and phenotype and of the tile-based distance metric used
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to calculate diversity.

6 Discussion

The experiments presented in this paper are a first comprehensive attempt to study
the behavior of novelty search in constrained search spaces. The choice of representa-
tion, distance characterization and performance metrics greatly influences the conclu-
sions drawn; therefore, more experimentation with alternative metrics and in different
domains could further validate the hypotheses put forth in Section 5. Section 6.1 dis-
cusses the limitations found within the current study and in the current experimental
setup, and suggests alternative performance metrics and other distance characteriza-
tions. Section 6.2 provides some suggestions for other case studies in constrained nov-
elty search.

6.1 Limitations & Extensions

Experiments in this paper have shown that generating offspring via mutation alone
can lead to more diverse feasible individuals and a faster discovery of feasible solu-
tions in highly constrained spaces. Mutation, by its very nature, may be more efficient
at exploration than the convex search of recombination operators, but the high diversity
scores it attains for most novelty search methods can easily be traced to the direct geno-
type to phenotype mapping and to the distance metric (dvis), which directly compares
phenotypical appearance. Due to these factors, novelty search essentially rewards in-
dividuals with different genotypes; thus even if mutation is destructive (e.g. rendering
many feasible individuals infeasible or making substantial changes to the genotype), it
would lead to higher diversity scores than a less destructive crossover operator. The
current mutation operator seems to be both harmful, as it results in fewer feasible in-
dividuals than recombination, and beneficial, as it discovers feasible individuals faster
and more reliably than recombination. Before any conclusions can be drawn regarding
the reliability of mutation for novelty search, further experimentation should test its
behavior with different mappings from genotype to phenotype and, more importantly,
with different distance metrics which do not rely only on phenotypical appearance.

Experiments presented in this paper demonstrate broadly how the different meth-
ods of novelty search, both constrained and unconstrained, perform in different types
of constrained spaces. However, there are several directions for enhancing this first sys-
tematic study of constrained exploration. The previous paragraph already noted that
more experiments should test how mutation and recombination perform when search
targets diversity in a dimension less tied to genotypical form. Depending on the dis-
tance metric used, mutation could prove less efficient or demonstrate larger deviations
in the behavior of different search methods. A distance metric could also include a
notion of feasibility, e.g. by assigning a high distance score when comparing feasible
content with infeasible content. Such a distance metric would likely impact uncon-
strained novelty search, which mostly suffered in the current experiments from a dis-
tance metric lacking any indication of the value of feasible individuals. Apart from dif-
ferent distance metrics or genotype to phenotype mappings, other performance metrics
could also be introduced for measuring the exploration of a search space. Measuring
the diversity of past discoveries, such as the novel archive or populations of previous
generations, could evaluate a “temporal” aspect of exploration; a high final feasible di-
versity, for instance, is less valuable if the entire evolutionary run was spent exploring
the same area of feasible space. Including such past discoveries in a measure of ex-
ploration could warrant experiments testing the impact of the size of the novel archive
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Figure 7: The user interface of Sentient Sketchbook as a human designer edits their
sketch (left) and a generator, acting as the artificial designer, creates map suggestions
to the user’s sketch (far right). Human designers can at any time replace their current
sketch with a computer-generated suggestion, and edit it further to their liking.

and the number of closest individuals used for evaluating the novelty score of Eq. 1.
Preliminary tests with different numbers of novel individuals stored in the archive per
generation, or with different values of k in Eq. 1 did not seem to impact the average
feasible diversity in any meaningful way, and were omitted from this paper.

6.2 Other Applications of Constrained Novelty Search

While this paper applied constrained novelty search in the domain of automated gener-
ation of game content, there are a number of other domains which would benefit from
constrained novelty search.

Computer-aided design tools such as Sentient Sketchbook (Liapis et al., 2013d)
can use constrained novelty search to generate suggestions for their users. Using the
same map sketch format as presented in this paper, Sentient Sketchbook generates and
presents suggestions in real-time (see Fig. 7), while the user is sketching a game level.
Presented suggestions are evolved from a small initial population consisting of muta-
tions of the current user sketch, which ensures that most of the map structure (such as
number of bases or placement of impassable tiles) of the user’s sketch is maintained.
This initial population is further diversified via constrained novelty search to maximize
the maps’ visual diversity. As constrained novelty search runs for a few generations,
in order to ensure that suggestions are generated more or less in real-time, the most
diverse evolved maps shown to the user will have certain similarities but also differ-
ences with their initial sketch. Such suggestions are not so different from the current
user sketch to be deemed randomly generated; this local exploration of the search space
is expected to enhance the user’s creativity as they are presented with viable alterna-
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(a) (b) (c)

Figure 8: Map sketches authored by industry experts of Sentient Sketchbook (left) and
the generated suggestions selected by these users to replace their designs (right). All
shown suggestions were generated via novelty search on a population of permutations
of the user’s sketch. Some map integrity with the user’s sketch is maintained in the
suggestions (see resource placement on the edges of Fig. 8b and 8c), although it is clear
that divergent search has also enhanced the visual diversity of suggestions compared
to the initial user sketch. These suggestions are guaranteed to be playable, even if the
user sketches they evolved from were not, as is the case with Fig. 8a.

tives to their current design. Moreover, the guarantee that presented suggestions are
playable — as they satisfy all imposed constraints — makes them useful to the designer.
In an earlier evaluation of the Sentient Sketchbook tool with expert users working in
the game industry, novel suggestions were preferred over objective-driven ones in early
steps of the design process, where users lacked inspiration for a strategy game level (see
Fig. 8). Novelty search used what little information was provided by the user, such as a
few resources placed randomly around the map as in Fig. 8a, to add bases and impass-
able tiles and create a complete, playable map. Acting as a creative “spark”, these maps
were then further edited by the users to conform to their own notion of game quality.
The current version of Sentient Sketchbook uses FINS with recombination as described
in Section 4, due to the requirement for fast discovery of feasible individuals.

Constrained novelty search does not need to rely on a human user to be creative,
however. As constrained novelty search generates content which can be both novel and
useful (by fulfilling some constraints on “usefulness”) it can be considered a creative
process in itself (Boden, 1990). In order to be truly creative, however, such a process
should be able to understand what drives its search. This can be accomplished by
adapting its characterization of diversity according to the artifacts it is currently creat-
ing. As this characterization drives the exploration of the search space, adapting it to
break current patterns of its artifacts will lead to the exploration of the search space in a
new dimension, orthogonal to the one currently being explored. This will not only re-
sult in a more thorough exploration of the search space but also simulates, to a degree,
the way humans are creative via lateral thinking (De Bono, 1970) and reinterpreting
creative problems (Grace et al., 2013). Constrained novelty search has been applied
in preliminary work exploring the potential of adapting the characterization of diver-
sity by learning the distinct patterns of evolved artifacts (Liapis et al., 2013b); these
patterns were ascertained via autoencoders trained on a set of spaceships evolved via
constrained novelty search. Ensuring that the generated spaceships are viable (i.e. of
sufficient size and with no disconnected pixels), the exploration of the feasible search
space was enhanced by the adaptive characterization of divergence, which drove the
search towards discovering patterns previously unseen in the population.

A domain where novelty search has been used quite successfully in recent years
is robot locomotion; the work of Risi and Stanley (2013) and Morse et al. (2013) uses
novelty search to evolve quadruped robot controllers via HyperNEAT (Stanley et al.,

Evolutionary Computation Volume x, Number x 25



A. Liapis, G. N. Yannakakis and J. Togelius

2009). Unlike the search for visual diversity used in this study, these robot controllers
evolve to diversify a behavioral characterization, e.g. the robots’ positions sampled at
certain intervals during a simulation. There are a number of constraints on the behav-
ior of a robot controller: for instance, Risi and Stanley (2013) stop the simulation which
evaluates a robot controller if the robot’s torso falls under a specific height. Currently
controllers deemed infeasible are assigned a novelty score of zero, amounting to min-
imal criteria novelty search. However, such infeasible controllers can be retained in a
separate population which evolves either to maximize the diversity of their behavior
via FI2NS or to minimize their distance from feasibility via FINS; the latter can be ac-
complished by awarding a high fitness to individuals which “fall” at a later time step
than others, or which can return to an upright position after falling.

7 Conclusions

This paper elaborated on the topic of constrained novelty search and proposed two-
population novelty search methods for exploring both feasible and infeasible spaces.
These approaches evolve two populations simultaneously: a feasible population to
maximize novelty and an infeasible population either to minimize the distance from
feasibility (FINS) or to maximize novelty (FI2NS). These two-population methods of
constrained novelty search were built on a number of hypotheses; FINS was assumed
to discover feasible individuals faster as it searches the infeasible space efficiently, while
FI2NS was assumed to be able to discover disjoint sections of feasible space and thus
create more diverse feasible solutions. These hypotheses were tested in the domain of
game content generation, with the goal of discovering and diversifying playable game
levels. Comparing FINS and FI2NS with existing methods of constrained and uncon-
strained novelty search, our hypotheses were validated for the majority of experimental
setups; the few cases where the hypotheses were not validated were attributed to small
population sizes, easily satisfied constraints and erratic behavior of the other novelty
search methods being tested. Finally, boosting the number of offspring in the feasible
population is shown to be beneficial in increasing both the number and the diversity of
feasible individuals in FINS and especially in FI2NS.

Both FINS and FI2NS seem particularly useful for the procedural generation of
game content, which requires its generated artifacts to be diverse yet playable. Di-
versity is important for game elements, such as levels, because the personal tastes of
different players are difficult to capture via mathematically defined objectives. De-
pending on the computational requirements of the content generators, such as offline
while the game loads or online while the game is played, the higher diversity of FI2NS
or the speedy discovery of feasible content of FINS may be preferable. Outside of game
content generators, constrained novelty search can also be directly used as a model of
computational creativity since it creates both novel and useful artifacts, as a tool for
exploring different behaviors of robot controllers, and in any other domain where con-
straint satisfaction is essential.
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