Player Modeling using Self-Organization in Tomb Raider:
Underworld

Anders Drachen, Alessandro Canossa and Georgios N. Yannakakis

Abstract—We present a study focused on constructing models
of players for the major commercial title Tomb Raider: Under-
world (TRU). Emergent self-organizing maps are trained on
high-level playing behavior data obtained from 1365 players
that completed the TRU game. The unsupervised learning
approach utilized reveals four types of players which are
analyzed within the context of the game. The proposed ap-
proach automates, in part, the traditional user and play testing
procedures followed in the game industry since it can inform
game developers, in detail, if the players play the game as
intended by the game design. Subsequently, player models can
assist the tailoring of game mechanics in real-time for the needs
of the player type identified.

Keywords: Player modeling, unsupervised learning, emer-
gent self-organizing maps, Tomb Raider: Underworld

I. INTRODUCTION

Being able to evaluate how people play a game is a
crucial component of the user-oriented testing process in the
game development industry. During the development phases,
games are iteratively improved and modified towards the final
gold master version, which is published. Representatives of
the target audience as well as internal professional testers
spend hundreds of hours testing the games and evaluating
the quality of the gaming experience [1]. Moreover, one
of the key components of user-oriented testing both during
production, as well as after game launch, is to evaluate if
people play the game as intended — and if not, to find out
why there is a difference between the intended and actual
playing behavior, and whether this has an impact on their
playing experience [1], [2]. Given that nonlinear game design
(i.e. game design in which the player has multiple choices
about how to progress in the game) becomes increasingly
popular — massively multi-layer on-line games being a good
example of the increased popularity of nonlinear sandbox-
type games — the need of more reliable and detailed user-
testing is growing.

Within the last five years, instrumentation data — or game
metrics as they are referred to in game development — has
gained increasing attention in the game industry as a source
of detailed information about player behavior in computer
games [2]. Gameplay metrics are detailed numerical data
extracted from the interaction of the player with the game
using specialized monitoring software [3]. The application
of machine learning on such data and the inference of

AD and GNY are with the Center for Computer Games Research, IT
University of Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen
S, Denmark (email: {drachen, yannakakis}@itu.dk). AC is with
10 Interactive, Kalvebod Brygge 35-37, 1560 Copenhagen V, Denmark and
with the Denmark School of Design, Strandboulevarden 47, Copenhagen,
Denmark (email: alessandroc@ioi.dk; aca@dkds.dk).

playing patterns from the data can provide an alternative
quantitative approach to and supplement traditional qualita-
tive approaches of user and playability testing [4].

In this paper, we investigate dissimilar patterns of playing
behavior in the popular commercial game title Tomb Raider:
Underworld" (TRU) using the principles of self-organization.
The experiments presented are based on a data set derived
from 1365 players, which completed the entire TRU game
during November 2008. Data was collected via the EIDOS
Metrics Suite (a game metrics logging system utilized by EI-
DOS). The data collection process is completely unobtrusive
since data was gathered directly from the game engines of
subjects playing TRU in their natural habitat (via the Xbox
Live!” web service) rather than in a laboratory setup.

Six statistical features that correspond to high-level play-
ing behaviors are extracted from the data. Information about
game completion time, number of deaths, causes of death
and help on demand actions is used for feature extraction.
An initial analysis via k-means and Ward’s hierarchical
clustering methods provides some first insight into the inner
structure of the features. Then unsupervised learning via
Emergent Self-Organizing Maps (ESOMs) [5] — an effi-
cient visualization tool for large-scale self-organizing maps
(SOMs) [6] — is used to identify dissimilar clusters (types)
of playing behavior. The highest-performing ESOM network
which is built on the six individual features of play projects
four clusters of behavior, covering the vast majority of the
sampled players. The four groups of behavior identified by
self-organization are subsequently labeled in terms of the
game mechanics and game design. This process ensures that
the outcome of the analysis is in a form and terminology
that is usable by the game designers evaluating if the players
interact with the game in the way intended (given the specific
input playing features) and deciding on whether and how to
change the design in order to alter the behavior of the players.

Unsupervised learning has been utilized for modeling
player behavior in games (e.g. in [7]); however, to the best
of the authors’ knowledge, SOMs have not been applied for
modeling high-level behaviors of players trained on data of
completed games. Results showcase the effectiveness of un-
supervised learning in capturing dissimilar high-level playing
behaviors (e.g. completion time) in the TRU game. Such
behavior clusters can form the basis of further investigation
in lower-levels of playing behavior (e.g. shooting accuracy
in a specific level of the game).

Uhttp://www.tombraider.com
Zhttp://www.xboxlive.com

Because this study is based on large-scale data collection
(1365 players) obtained from a major commercial game and
via an industrial logging system, the findings of this study
directly address the requirements for player behavior model-
ing in the game industry. Very few studies of academic game
artificial intelligence (AI) investigate actual commercial-
standard games due to lack of source-code accessibility
and even fewer examine the game as a whole. This often
generates challenges with respect to the generalization of the
main findings to a real game production and with respect to
directly addressing the needs of the game industry.

II. PLAYER MODELING

User modeling is a broad field of research with numerous
applications. In this section we will concentrate on user
modeling approaches to games, namely player modeling [8],
[9]. Among the few player modeling studies existent in the
literature, quantitative models of players have been built
to assist the learning of basic non-player character (NPC)
behaviors (e.g. moving, shooting) in Quake II [10], [7], [11].
In those studies self-organizing maps [7], bayesian networks
[11] and neural gas [10] approaches are utilized for clustering
game-playing samples. Similarly, self-organizing maps have
been used for clustering the trails (player waypoints) of users
playing a simple level exploration game [12]. Viewing player
modeling as an intermediate process of adaptive learning
in games, Yannakakis and Maragoudakis [13] trained naive
bayesian models of Pac-Man players which infer values
for parameters of an on-line neuro-evolutionary learning
mechanism. The on-line learning mechanism was designed to
maximize the entertainment value of the game by adjusting
NPC behavior during play. Within the field of interactive
narrative and Al in games, quantitative models of players —
partially built on theoretical qualitative models — have been
used to dynamically select the content of an interactive story
[14].

Self-organizing maps — as a tool for player modeling —
have been primarily used to generate low-dimensional data
maps to assist training of NPC behaviors. For instance, the
trained SOM can generate the desired outputs of a supervised
learning approach [7] or form the action-state space of a re-
inforcement learning approach [15]. On that basis, Thurau et
al. [7] utilize SOMs to lower the dimensionality of input data
for training multi layered perceptrons that perform simple
playing behaviors in Quake II while White and Brogan [15]
use SOMs to generate the state space of a temporal difference
learning mechanism which learns to play RoboCup simulated
soccer.

All the aforementioned studies focus on constructing
models of playing behavior based on small-scale player-
data collection experiments held in laboratories. Also, the
vast majority of approaches concentrate on a few specific
scenarios (e.g. imitate human movement in a particular level
of a game) while the game environments investigated are in-
house instrumented test-bed games or simplified versions of
commercial games. This results to the simplification of the
learning task which acts in favor of the learning approach;

Screenshot from Tomb Raider: Underworld.

Fig. 1.

however, the scalability of the obtained performance is often
questionable.

This paper differentiates in that high-level behaviors of
players that completed a game are modeled; data is gathered
in a natural setup via an industrial logging system and
a commercial web service; the data collection experiment
consists of over 1300 players making it large-scale and rep-
resentative; and the test-bed game used is a published game
from one of the major franchises in the industry. Deriving
models of playing behavior under these conditions appears to
minimize any limitations of scalability and commercial-game
practicality and contributes toward bridging the existing gap
between academic and industrial game Al

III. ToMB RAIDER: UNDERWORLD

The popularity of the Tomb Raider series is mainly due to
the game protagonist, whom the player controls: Lara Croft.
She is a combination between an action heroine and Indiana
Jones, who travels to exotic locations and enters forgotten
tombs and lairs, solving puzzles and finding ancient treasures
at the same time. The Tomb Raider game environments have
been 3D from the beginning, and Tomb Raider: Underworld
(TRU) is no exception. The game features exceptional graph-
ics and takes full advantage of the graphics processors of
game consoles.

The game is played in third-person perspective with a
flexible camera system. TRU is in essence an advanced
platform game, where the player has to apply strategic
thinking in planning the 3D-movements of Lara Croft, in
order to solve a series of puzzles and navigate through
complicated levels (see Fig. 1). Apart from the continuous
risk of falling from the heightened platforms that Lara Croft
needs to jump at (and from) and navigate through, the player
regularly encounters different enemy types, notably animals,
various kinds of monsters and mercenaries. An additional
threat to the player is the environment itself. Falling into a
trap, catching fire or drowning into the water are the three
of the typical dangers the player is facing which are caused
by the game environment.

IV. DATA COLLECTION

The gameplay data, namely game metrics, utilized in this
study were recorded using the EIDOS Metrics Suite software

embedded to the TRU game. The suite is an instrumentation
system which is designed to record game metrics from
EIDOS games in production and post-launch, transmitting
the logged data to an SQL-server via an ETL process. Game
metrics are normally logged as sequences of events — with
multiple types of data captured for each event — each
carrying its own time stamp as well as any other pertinent
contextual information. From the server, data can be ex-
tracted for analysis and visualization, creating reports for the
interested parties within the game development process (e.g.
quality assurance, game design, production and marketing
departments).

Data from the TRU game were extracted from the SQL
server system and preprocessed. The dataset used for the
experiments reported in this paper contains live data, i.e.
data from people playing the finished, published version
of TRU in their natural habitats. This unobtrusive way of
user data collection provides data free from bias induced by
using a laboratory setup, i.e. avoids modifying the habitat of
the participant [16]. The dataset used was collected during
November 2008, and includes entries from 25240 players.
Note that at the moment of writing there are over 1 million
recorded gameplay sessions of TRU which will form the
basis for future research. The 1365 of those 25240 players
that completed the game — i.e. played through all levels of the
game — were isolated and used in the experiments presented
in this paper. TRU consists of seven main levels plus a
prologue. Each game level is sub-divided into map units, of
which there are 100. The EIDOS Metrics Suite stores data
for all these map units and levels individually; however data
is aggregated at the level of a completed game in this study.

A variety of different playing characteristics (game met-
rics) are collected for internal analysis work carried out by
Crystal Dynamics®. Several gameplay features are logged
for each player, such as the completion time of each game
level, the number of times the player died, as well as the 3D
coordinates of the player. For the current study, initially the
focus is on defining the primary playing features — among
those collected — that relate to the core mechanics of the
game and, furthermore, may have an impact on the playing
behavior. For instance, the ability of players to perform
jump actions without dying is of key interest for classifying
different playing styles, as jumping is a key TRU game
mechanic.

A. Extracted Features

Six, in total, gameplay features are extracted from the
data collected and are further investigated in this paper. All
features are calculated on the basis of completed TRU games
in this initial study. The selection of these particular features
is based on the core game design of the TRU game and
their potential impact to the process of distinguishing among
dissimilar patterns of play.

3Crystal Dynamics is the developer of Tomb Raider: Underworld;
http://www.crystald.com/

o Causes of death: TRU features a variety of ways in

which players can die, which can be grouped into three
overall categories that encompass all possible ways
players can die. The total number of times a player
died for each of the three following categories and
the corresponding percentages over the total number of
deaths are calculated:

— Opponent; the percent of total number of deaths
caused by any computer-controlled opponent exis-
tent in the game over the total number of deaths,
D,. Dying from opponents comprises 28.9% of the
total number of deaths across the 1365 data sam-
ples. The best player died only 6.32% of the times
from opponents, while 60.86% is the maximum
value observed for D,,.

— Environment; the percent of total number of deaths
caused by the environment over the total number
of deaths, D.. Environment-related causes of death
include player drowning, being consumed by fire,
or killed in a trap, comprising 13.7% of the to-
tal number of deaths across all players. The best
player died 2.43% of her total number of deaths
from environment-related effects, while the highest
recorded value of D, is 45.31%.

— Falling; the percent of total number of deaths
caused by a failed jump over the total number of
deaths, Dy. Dying from falling comprises 57.2%
of all death events making it the dominating cause
of death in TRU. This is expected since the core
of the gameplay consists of jumping, climbing and
navigating in 3D environments. The minimum and
maximum values of Dy are 27.19% and 83.33%
respectively.

o Total number of deaths: The total number of deaths of

each player, D. A total of 190936 deaths were recorded,
giving a mean value of approximately 140 per player,
with the best and worst player dying 16 and 458 times,
respectively.

Completion time: The time (in minutes) required for
each player to compete the game, C. A total of 521.6
days of playtime were recorded. The average completion
time of the game in the sampled data is 550.8 minutes,
with specific levels generally taking longer to complete
than others as they are bigger in extent and/or contain
harder-to-solve puzzles. The C value varies from 2
hours and 51 minutes to 28 hours and 58 minutes, show-
ing considerable variance which, in part, showcases the
variation in the experience level, skill and play-style of
the players.

Help-on-Demand: The number of times help was re-
quested, H. A key feature of TRU is the focus on
puzzle solving. A typical puzzle could be a door which
requires specific switches to be pressed in order to open.
There are more than 200 registered puzzles in the game,
which the players have to solve in order to progress
through the game narrative (see Fig. 2). The game

Fig. 2.
wheels fit together in a specific way and the player must figure out how to
manipulate them.

Example of a puzzle in Tomb Raider: Underworld. Several gear

features a native Help-on-Demand (HoD) system which
players can consult in order to get help with solving the
puzzles. The player can either request a hint about how
to solve the puzzle or a straight answer. The H value
incorporates the total number of times that each player
requested either a hint or an answer. The data from the
1365 players reveal that players generally either request
both hints and answers from the HoD-system, or no
help at all, for specific puzzles. It was therefore decided
to combine the hint and answer requests into the H
aggregated value. The H value ranges from 0 to 148,
with an average of 29.4 per player.

V. EMERGENT SELF-ORGANIZING MAPS

The self-organizing map (SOM) [6] or (Kohonen map)
iteratively adjusts a low dimensional projection of the in-
put space via vector quantization [17]. A SOM consists
of neurons organized in a low (2 or 3) dimensional grid.
Each neuron in the grid (map) is connected to the input
vector through a d-dimensional connection weight vector
m = {my,...,mgq} where d is the size of the input vector,
x. The connection weight vector is also named prototype or
codebook vector. In addition to the input vector, the neurons
are connected to neighbor neurons of the map through
neighborhood interconnections which generate the structure
of the map: rectangular and hexagonal lattices organized in
2-dimensional sheet or 3-dimensional toroid shapes are some
of the most popular topologies used.

SOM training can be viewed as a vector quantization
algorithm which resembles k-means [17]; however, what
differentiates SOM is the update of the topological neighbors
of the best-matching neuron: the whole neuron neighborhood
is stretched towards the presented input vector. The outcome
of SOM training is that neighboring neurons have similar
weight vectors which can be used for projecting the input
data to the two dimensional space. SOMs can be used for
clustering of data (unsupervised learning) for the aforemen-
tioned properties. For a more detailed description of SOMs,
the reader is referred to [6].

The power of self-organization — which generates emer-
gence of structure in the data — is disused when small
SOMs are utilized. The topology preservation of the SOM
projection is of little use and the advantage of neighbor-
neuron relation is neglected which makes a small SOM al-
most identical to a k-means clustering algorithm. Using large
SOMs — called Emergent Self-Organizing Maps (ESOM)
[5] to emphasize the distinction — and reliable visualization
techniques help in identifying clusters in the low-dimensional
projection of the data.

The topology size of an artificial neural network (ANN)
is related to performance. A too small ANN may generate
low approximation of the underlined function while a too
large ANN may overfit the data when using supervised
learning (e.g. multi layered ANN backpropagation training).
Unlike supervised learning, ESOM size does not affect the
model’s performance in the same way because the neurons
are restricted by the topology preservation of the map. The
use of more neurons (larger maps) results to an increase of
the map resolution deriving from the projection of the input
space into 2 dimensions. However, there is a balance between
resolution and computational effort that the ESOM designer
should keep.

We use the batch algorithm for training the ESOM*. Batch
training searches the map for finding the neuron (namely, the
best-match) with a corresponding connection weight vector
that matches each input vector. A best-match neuron is a
neuron for which there exists at least one input vector for
which the Euclidean distance to the weight vector of this
neuron is minimal. In ESOM batch training, similarly to
batch backpropagation, all input samples are presented to the
network before the weight update if performed. The toroid
topology is used to avoid border effects that are generated
by clusters existent in the border of 2D sheet maps. Neurons
are interconnected within the map in a rectangular grid (i.e.
each neuron has four immediate neighbors). The hexagonal
grid (i.e. six immediate neighbor neurons per neuron) is not
preferred since recent studies indicate that the shape of the
map has a greater impact to SOM performance than the
number of immediate neighbors [18].

There are numerous measures proposed in the literature
used to evaluate the performance of a clustering approach.
Even though all measures provide dissimilar indications
for the properties of the generated clusters, no measure
can guarantee approximation of the performance with high
accuracy. In this study we choose the average quantization
error and the topographic error [6] as measures of ESOM
training performance. In the case of ESOM, the average
quantization error equals 4 |[x — mc|| across all N data
samples, where m, is the weight vector of the best-matching
neuron. Topographic error measures topology preservation of
the map and is calculated as the proportion of all input data
vectors for which the first and second best-matching neurons
are not adjacent [6].

4The databionic ESOM software tool [19] is used for training and
visualizing the ESOM.

VI. RESULTS

This section presents the main findings of the clustering
approaches applied to the data. A pre-processing analysis of
the data is complementary to and followed by the design of
the ESOM approach for unsupervised learning of the data
and the identification of the different player styles.

A. Pre-processing and Initial Cluster Analysis

All six features extracted are uniformly normalized into
[0,1] before any clustering analysis is followed. Note that
the cause of death features (D,, D, and Dy) are already
normalized in [0, 1] being percentages of the total number of
deaths.

To get some first insight of the possible number of data
clusters existent in the data, we apply the k-means clustering
algorithm to the normalized data for all k values less than
or equal to 20. The number of player observations (6-
dimensional vector samples) and the sum of the Euclidean
distances between each player instance and its corresponding
cluster centroid (quantization error) are calculated for all 20
trials of the k-means algorithm. The analysis shows that the
percent decrease of the mean quantization error due to the
increase of k is notably high when £ = 3 and k& = 4.
For k = 3 and k£ = 4 this value equals 19.06% and
13.11% respectively while it lies between 7% and 2% for
k > 4. Thus, the k-means clustering analysis provides the
first indication of the existence of 3 or 4 main clusters within
the data.

An alternative approach to k-means for cluster analysis
is through hierarchical clustering. This approach seeks to
build a hierarchy of clusters existent in the data. The squared
Euclidian distance is used as a measure of dissimilarity
between data vector pairs and Ward’s clustering method [20]
is utilized to specify the clusters in the data; the resulting
dendrogram is depicted in Fig 3. (A dendrogram is a tree-
like diagram that illustrates the merging of data sets into
clusters. It consists of many U-shaped lines connecting the
clusters while the height of each U represents the squared Eu-
clidian distance between the two clusters being connected.)
Depending on where the designer sets the squared Euclidian
distance threshold, 7, a dissimilar number of clusters can
be observed. For instance, 3, 4 and 5 clusters of data can
be identified if 6.56 > T > 4.72, 4.72 > T > 4.25 and
4.25 > T > 3.74, respectively.

Both clustering approaches demonstrate that the 1365
players’ feature vector can be clustered in a low number of
different player types. k-means statistics provide indications
for 3 or 4 clusters while the Ward’s dendrogram shows the
existence of 2 populated and 2 smaller clusters, respectively,
in the middle and at the edges of the illustration resulting to
four clusters. By further splitting the populated middle-left
cluster (Fig. 3), a number of six clusters can be obtained
within a small difference of the squared Euclidian distance:
the difference between the minimum 7T for obtaining 4
clusters and the maximum 7' for obtaining 6 clusters equals
0.52. This initial cluster analysis provides the first insights

Squared Euclidian Distance

Tomb Raider: Underworld observations [1365]

Fig. 3. Clustering of data using the Ward dendrogram method. A T" value
of 4.5 (illustrated with a horizontal black line) reveals 4 clusters.

Fig. 4. Rectangular lattice map organized in a toroid shape; SOM size:
50 x 100 neurons.

into the spatial structure of the data, which reveals the
existence of a small number of clusters in the dataset;
however, the analysis does not reveal anything about whether
the players included in the clusters match those obtained via
the ESOM (as presented in Section VI-B). The procedure
followed through k-means and Ward’s clustering is viewed
as necessary data pre-processing prior to learning from data
via self-organization.

B. ESOM

As previously mentioned in Section V, a toroid-shaped
ESOM structured in a sheet grid is utilized to identify
classes of playing behavior in TRU. Fig. 4 depicts the
50 x 100 neuron structure used in the experiments presented
in this paper. The number of 5000 neurons is chosen to
provide a good compromise between training performance,
computational effort and resolution detail of the map. The
toroid shape of the map is selected due to border effects
observed in training attempts with 2-dimensional sheet maps.

1) ESOM training: The weight vector of the ESOM is
randomly initialized using a Gaussian distribution; the mean
and standard deviation of the distribution are set to the
respective values of the corresponding input feature. The
initial neighborhood size is set to 25 which linearly drops
to 1 while the weighting neighbor function, h, used is

the Gaussian kernel. The learning rate is set to 0.7 but is
decreased linearly during training reaching the value of 0.1 at
the end of the 100 training epochs used. The training samples
are presented in a randomly permuted order at each epoch
of the algorithm.

In order to minimize the effect of non-deterministic se-
lection of initial weight values we repeat the training 20
times — using dissimilar initial weight vectors — and select
the ESOM with the smallest average quantization error (see
Section V). The highest-performing ESOM that is examined
in the remained of this paper has a quantization error of 0.038
and a corresponding topographic error of 0.005. As a baseline
performance to compare against, the mean quantization and
topographic error for 10 randomly generated ESOMs equals
0.1744 and 0.9983 respectively.

2) ESOM visualization: The training data can be clustered
by observation of the best performing ESOM. The U-matrix
depicted in Fig. 5(a) is a visualization of the local distance
structure in the data placed onto the two-dimensional map.
The average distance value between each neuron’s weight
vector and the weight vectors of its immediate neighbors
corresponds to the height of that neuron in the U-matrix
(positioned at the map coordinates of the neuron). Thus, U-
matrix values are large in areas where no or few data points
reside, creating mountain ranges for cluster boundaries. On
the other hand, visualized valleys indicate clusters of data
since small U-matrix values are observed in areas where the
data space distances of neurons are small.

Distance based map visualizations (e.g. U-matrix) usually
work well for clearly separated clusters; however, problems
may occur with overlapping clusters. Density-based SOM
visualizations display the density of the data onto the map
space via the best-matching neurons. The P-matrix (see
Fig. 5(b)) displays the local density measures with Pareto
Density Estimation [21]. Neurons with large P-matrix values
are located in dense regions of the input vector space and,
therefore, areas with height P-matrix values indicate clusters
in the data.

3) Player Types: The two map visualizations are comple-
mentary and used for cluster identification within the TRU
data. Four main classes (player types) can be identified as de-
picted in Fig. 5(a) and Fig. 5(b). The best-matching neurons
for all 1365 input vector samples are also represented with
small squares of varying color — different colors correspond
to different clusters of the best matching neurons. On the
same basis, Table I presents the number of observations (i.e.
players completed TRU) and percent of neurons belonging to
each of the four clusters. Note that 87 (6.37% of the sample)
players were not assigned to any cluster since their best-
matching neurons are placed in cluster borders of the ESOM
(see Fig. 5).

Fig. 6 illustrates the corresponding component planes of
the ESOM. A component plane projects the relative distribu-
tion of one input data vector component (i.e. input vector di-
mension) to the ESOM. In the grayscale illustration of those
values, white areas represent relatively small values while

(a) U-matrix

(b) P-matrix

Fig. 5. Visualization maps of the highest-performing ESOM obtained
and the 4 clusters identified. The 1365 best-matching neurons are drawn
as squares on top of the maps. The maps illustrated are border-less since
the map grid is organized in a toroid shape.

TABLE I
THE FOUR PLAYING BEHAVIOR CLUSTERS IDENTIFIED USING ESOM

Class Observations ~ Neurons on map space (%)
1 122 8.68
2 270 22.12
3 641 46.18
4 245 16.56
N/A 87 6.46

dark areas represent relatively large values. By matching the
component planes with the U-matrix of Fig. 5(a) we can
infer characteristics (i.e. playing behavior features) for each
cluster identified.

Cluster number 1 corresponds to players that die very few
times; their death is caused mainly by the environment and
they complete TRU very fast. These players’ HOD requests
vary from low to average and they are labeled as Veterans as
they are the most well performing group of players despite
the high number of environment-related deaths. Likewise,
cluster number 2 corresponds to players that die quite often
mainly due to falling; it takes them quite a long time to
complete the game; and they do not appear to ask for puzzle
hints or answers. Players of this cluster are labeled as Solvers,
because they are adept at solving the puzzles of TRU. Their
long completion times, low number of deaths by enemies
or environment effects indicate a slow-moving, careful style
of play with the number one cause of death being falling
(jumping).

Players of cluster number 3, form the largest group and
are labeled as Pacifists as they die primarily from active
opponents. The total number of their deaths varies a lot

(e) Completion Time, C'

g

(f) Help on Demand, H

Fig. 6. The six component plane representations of the highest performing ESOM. The darker the area the higher the value of the component (feature).

but their completion times are below average and their help
requests are minimal indicating a certain amount of skill at
playing the game. Finally, the group of players corresponding
to cluster number 4, namely the Runners, is characterized by
players that die quite often and mainly by opponents and
the environment. These players are very fast in completing
the game (similar to the Veferans), while having a varying
number of help requests which cover the majority of the H
value range.

VII. DISCUSSION & CONCLUSIONS

This paper provides an initial study on identifying different
player types in a major commercial computer game via
unsupervised learning. A large set of data obtained from 1365
players that completed the game Tomb Raider: Underworld is
used for this purpose. Six statistical features corresponding to
high-level playing characteristics of the core game mechanics
are used as the inputs of an emergent self-organizing map.
The input (feature) vector used consists of: 1) the game
completion time; 2) the total number of deaths; 3) the
total number of Help-on-Demand actions; and the proportion
of deaths caused by the different causes of death in the
game, categorized as 4) death by falling, 5) death due to
the action of computer-controlled opponents, and 6) death

due to hazards in the virtual environment. The highest-
performing toroid-shaped ESOM trained on the data reveals
four clusters of playing behavior — labeled as Veterans,
Solvers, Pacifists and Runners — which are characterized
by specific patterns of play, after the analysis of the U-
matrix and its corresponding component planes. Importantly,
the existence of four clusters of behavior, even in a fairly
linear and restricted game like TRU, shows that players
utilize the affordance space and flexibility offered by the
design of the game, rather than simply using one specific
strategy to get through the game. For example, the Pacifists
are experts in terms of navigation and move rapidly through
the virtual environment, but also respond badly to threats that
are moveable or unexpected; whereas Solvers are excellent
at solving puzzles, respond readily to moveable threats but
die often from falling and are slow to complete the game.

When evaluating if the players of a game play as intended,
or if unwanted or surprising (but unproblematic) behaviors
occur, the type of results presented here are immediately
useful. Importantly, the translation of player behaviors from
raw data output to descriptions that take their basis in the
game design and associated terminology is crucial in order
for the information to be useful to the industry-based game
designers.

The obvious step that will take the modeling of TRU play-
ers further is to extract additional features from the data avail-
able (e.g. use of different weapons and spatial/navigational
behavior) and insert them in the input vector of the ESOM.
Given a large feature set, automatic feature selection methods
will most likely be employed to choose the most suitable
feature subset that yields the highest performing ESOM.
In addition to the high-level features, more data features
corresponding to lower-level behaviors (e.g. number of times
a weapon is fired in a specific level or sub-section of a
game level, HoD-requests for specific in-game puzzles) will
be extracted. The player types identified by the ESOM can
then assist a machine learner trained on sequences of player
actions over the various levels of the game using hidden
Markov models or recurrent artificial neural networks. This
work will be carried out on the current Tomb Raider game
and any future installations in the series, in collaboration with
Crystal Dynamics/EIDOS.

The proposed approach of player modeling through self-
organization appears generic to any type of game genre,
especially those featuring a central player character, as long
as reliable playing behavior data is available; however, it
should be noted that the features suitable for the investigation
will vary between games. For example, shooting accuracy
with different weapons appears as a suitable input feature
of a shooter-type game. In general, the features chosen will
depend on the core mechanics of the game as well as the
overall purpose of the analysis in question.

The methodology can be used for automating, in part, the
traditional exhaustive user and player testing procedures used
in the games industry [2] by providing detailed, quantitative
feedback on player behavior. This is plausible since the
proposed approach provides the opportunity to evaluate in
detail if a game design works as intended, by recognizing
the patterns in how the game is played, and comparing this
with the intentions of the design. Optimization of game
design features — i.e. making sure that no feature of the
game is under-used or misused — and phenomenological
debugging — i.e. debugging of playing experience and game
balancing — can also benefit from player behavior modeling.
Furthermore, information about the different player types can
be used during play to dynamically alter in-game controllable
parameters (e.g. help on demand accessibility, difficulty of
jumps) to adjust to the needs and skills of the player type
identified in real-time and ensure variation in gameplay.

ACKNOWLEDGMENTS

This work would not be possible without the game de-
velopment companies involved. The authors would like to
thank their colleagues at Crystal Dynamics and 10O Interactive
(IOI) for continued assistance with access to the EIDOS
Metrics Suite and discussion of approaches, methods and
results, including but certainly not limited to: Thomas Hagen
and the rest of the EIDOS Online Development Team,
Janus Rau Sgrensen and the rest of the IOI User-Research
Team, Tim Ward, Kim Krogh, Noah Hughes, Jim Blackhurst,
Markus Friedl, Thomas Howalt, Anders Nielsen as well as

the management of both companies. Special thanks also goes
to Arnav Jhala for insightful discussions.

REFERENCES

[11 K. Isbister and N. Schaffer, Game Usability: Advancing the Player
Experience. Morgan Kaufman, 2008.

[2] J. H. Kim, D. V. Gunn, E. Schuh, B. C. Phillips, R. J. Pagulayan, and
D. Wixon, “Tracking real-time user experience (true): A comprehen-
sive instrumentation solution for complex systems,” in Proceedings of
CHI, Florence, Italy, 2008, pp. 443—451.

[3] A. Tychsen and A. Canossa, “Defining personas in games using
metrics,” in Proceedings of Future Play 2008. Toronto, Canada:
ACM publishers, 2008, pp. 73-80.

[4] R.J. Pagulayan, K. Keeker, D. Wixon, R. L. Romero, and T. Fuller,
The HCI handbook. Lawrence Erlbaum Associates, 2003, ch. User-
centered design in games, pp. 883-906.

[51 A. Ultsch, Kohonen Maps, 1999, ch. Data Mining and Knowledge Dis-
covery with Emergent Self-Organizing Feature Maps for Multivariate
Time Series, pp. 33—46.

[6] T. Kohonen, Self-Organizing Maps. Springer, 2001.

[7] C. Thurau, C. Bauckhage, and G. Sagerer, “Combining self organizing
maps and multilayer perceptrons to learn bot-behaviour for a commer-
cial game,” in GAME-ON, 2003, pp. 119-123.

[8]1 R. Houlette, Player Modeling for Adaptive Games. AI Game Program-
ming Wisdom II. Charles River Media, Inc, 2004, pp. 557-566.

[9] D. Charles and M. Black, “Dynamic player modelling: A framework
for player-centric digital games,” in Proceedings of the International
Conference on Computer Games: Artificial Intelligence, Design and
Education, 2004, pp. 29-35.

[10] C. Thurau, C. Bauckhage, and G. Sagerer, “Learning human-like
Movement Behavior for Computer Games,” in From Animals to Ani-
mats 8: Proceedings of the 8" International Conference on Simulation
of Adaptive Behavior (SAB-04), S. Schaal, A. Ijspeert, A. Billard,
S. Vijayakumar, J. Hallam, and J.-A. Meyer, Eds. ~ Santa Monica,
LA, CA: The MIT Press, July 2004, pp. 315-323.

[11] C. Thurau, T. Paczian, and C. Bauckhage, “Is bayesian imitation
learning the route to believable gamebots?” International Journal of
Intelligent Systems Technologies and Applications, vol. 2, no. 2/3, pp.
284-295, 2007.

[12] R. Thawonmas, M. Kurashige, K. Tizuka, and M. Kantardzic, “Cluster-
ing of Online Game Users Based on Their Trails Using Self-organizing
Map,” in Proceedings of Entertainment Computing - ICEC 2006, 2006,
pp. 366-369.

[13] G. N. Yannakakis and M. Maragoudakis, “Player modeling impact
on player’s entertainment in computer games,” in Proceedings of the
10t International Conference on User Modeling; Lecture Notes in
Computer Science, vol. 3538. Edinburgh: Springer-Verlag, 24-30
July 2005, pp. 74-78.

[14] D. Thue, V. Bulitko, M. Spetch, and E. Wasylishen, “Interactive sto-
rytelling: A player modelling approach,” in The Third Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE),
Stanford, CA, 2007, pp. 43-48.

[15] C. White and D. Brogan, “The Self Organization of Context for
Learning in Multiagent Games,” in Proceedings of the Second Ar-
tificial Intelligence and Digital Interactive Entertainment Conference
(AIIDE). AAAI Press, 2006, pp. 92-97.

[16] R. Rosenthal, “Covert communication in laboratories, classrooms, and
the truly real world,” Current Directions in Psychological Science,
vol. 12, no. 5, pp. 151-154, 2003.

[17] R. M. Gray, “Vector quantization,” IEEE ASSP Magazine, pp. 4-29,
1984.

[18] A. Ultsch and L. Herrmann, “Architecture of emergent self-organizing
maps to reduce projection errors,” in Proceedings of ESANN, 2005, pp.
1-6.

[19] A. Ultsch and F. Moerchen, “Esom-maps: tools for clustering, visual-
ization, and classification with emergent som,” Dept. of Mathematics
and Computer Science, University of Marburg, No. 46, Tech. Rep.,
2005.

[20] J. H. J. Ward, “Hierarchical grouping to optimize an objective func-
tion,” Journal of the American Statistical Association, vol. 58, pp.
236-244, 1963.

[21] A. Ultsch, “Maps for the Visualization of high-dimensional Data
Spaces,” in Proceedings of the Workshop on Self-Organizing Maps,
2003, pp. 225-230.

https://www.researchgate.net/publication/224603719

