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ABSTRACT

In this paper we present experiments on neuro-
evolution mechanisms applied to predator/prey
multi-character computer games. Our test-bed is a
computer game where the prey (i.e. player) has to
avoid its predators by escaping through an exit
without getting killed. By viewing the game from
the predators’ (i.e. opponents’) perspective, we
attempt off-line to evolve neural-controlled
opponents, whose communication is based on
partial implicit information, capable of playing
effectively against computer-guided fixed strategy
players. = However, emergent near-optimal
behaviors make the game less interesting to play.
We therefore discuss the criteria that make a game
interesting and, furthermore, we introduce a
generic measure of this category of (i.e.
predator/prey) computer games’ interest (i.e.
player’s satisfaction from the game). Given this
measure, we present an evolutionary mechanism
for opponents that keep learning from a player
while playing against it (i.e. on-line) and we
demonstrate its efficiency and robustness in
increasing and maintaining the game’s interest.
Computer game opponents following this on-line
learning approach show high adaptability to
changing player strategies which provides
evidence for the approach’s effectiveness against
human players.

INTRODUCTION

In (Yannakakis et al. 2004), we introduced a
predator/prey computer game named ‘Dead End’
for emerging complex and cooperative behaviors
among agents through evolutionary procedures. In

this game the prey (i.e. player) has to avoid its
eight predators (i.e. Dogs) by escaping through an
exit without getting killed. Since there are eight
Dogs on the game field, they are designed to be
slower than the Player so that the game is fairer to
play. This game’s fundamental concepts are
inspired from previous work of Yannakakis et al.
(2003) where efficient cooperative behaviors,
supported only by partial implicit communication,
emerge amongst the agents of a complex multi-
agent environment.

Similar to Luke’s and Spector’s (1996) work on
the Serengeti world, we view Dead End from the
predators’ perspective. Our first aim is to emerge
effective complex teamwork behaviors by the use
of an off-line training approach, based on
evolutionary computation techniques, applied to
homogeneous neural controlled agents (Yao 1999).
Dogs have to demonstrate good cooperative
strategies in order to kill the Player and/or to
defend the Exit. Such behaviors can be aggressive,
defensive, or a hybrid of the two. Given the
specific game, we believe that 8 predators are
enough for cooperative behaviors to emerge.

However, playing a computer game like Dead End
against well-playing opponents with fixed hunting
behaviors cannot be regarded as interesting. The
first stage of experiments on this test-bed, given an
implicitly defined notion of interest, is presented in
(Yannakakis et al. 2004). We believe that the
interest of any computer game is directly related to
the interest generated by the opponents’ behavior
rather than to the graphics or even the player’s
behavior. Thus, when ‘interesting game’ is
mentioned we mainly refer to interesting
opponents to play against. In (Yannakakis and
Hallam 2004), we argue that the interest measure
proposed (for the well-known Pac-Man game)
defines a generic measure of any predator/prey
game. Results obtained from Dead End and



presented here give evidence for this interest
measure’s generality, which defines one of the
goals of this work.

We present a robust on-line neuro-evolution
learning mechanism capable of increasing the
game’s interest (starting from well performing
behaviors trained off-line) as well as maintaining
that interest at high levels as long as the game is
being played. In our Dead End predator/prey
computer game we require Dogs to keep learning
and constantly adapting to the player’s strategy
instead of being opponents with fixed strategies. In
addition, we explore learning procedures that
achieve good real-time performance (i.e. low
computational effort while playing).

Recently, there have been attempts to mimic
human behavior off-line, from samples of human
playing, in specific virtual environments. In
(Thurau et al. 2004) among others, human-like
opponent behaviors are emerged through
supervised learning techniques in a first person
shooter console game. Even though complex
opponent behaviors are emerged, there is no
further analysis on whether these behaviors
contribute to the satisfaction of the player (i.e.
interest of game). In other words, researchers
hypothesize --- by looking at the vast number of
multi-player on-line games played daily on the
web --- that by generating human-like opponents
the player gains more satisfaction from the game.
This hypothesis might be true up to a point;
however, since there is no explicit notion of
interest defined, there is no evidence that a specific
opponent behavior generates more or less
interesting games.

DEAD-END GAME

Dead End is a two-dimensional, multi-agent, grid-
motion, predator/prey game. The game field (i.e.
stage) is a two-dimensional square world that
contains a white rectangular area named “Exit”
(see Fig. 1) at the top. For the experiments
presented in this paper we use the 16 X 16 cm
stage presented in Fig. 1, which is divided into
grid squares (of length 0.5 mm). The characters
visualized in the Dead End game (as illustrated in
Fig. 1) are a dark grey circle of radius 0.75 cm
representing the Player and 8 light grey square (of

dimension 1.5 cm) characters representing the
Dogs.

The relationship between the Dogs and the Player
is mutually highly competitive. The aim of a
Player is to reach the Exit, avoiding the Dogs. On
the other hand, the aims of the Dogs are to defend
the Exit and/or to catch the Player. In Dead End, if
a Player succeeds in arriving at the Exit, this event
is described as a win. Additionally, if a Dog
manages to catch a Player, this event defines a kill.
If there is neither a Player win nor a kill for a
predetermined large period of time, then the
outcome of the game is a win again. After either a
win or a kill, a new game starts.

The Player moves at four thirds the Dogs’
maximum speed and since there are no dead ends,
it is impossible for a single Dog to complete the
task of killing it. Since the Player moves faster
than a Dog, the only effective way to kill the
Player is for a group of Dogs to hunt
cooperatively.

The simulation procedure of the Dead End game is
as follows. Player and Dogs are placed in the game
field (initial positions) so that there is a suitably
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Fig. 1. Snapshot of the Dead End game

large distance between them. Then, the following
occur at each simulation step. (a) Both Dogs and
the Player gather information from their
environment and take an individual movement
decision, up, down, left or right. (b) If the game is



over (i.e. Player escapes through the Exit, Player is
killed, or the simulation step is greater than a
predetermined large number), then a new game
starts from the same initial positions for the Dogs
but from a different, randomly chosen, position at
the bottom of the stage for the Player.

The Player

The difficulty of the Dead End game is directly
affected by the intelligence of the Player. Its nature
is significant because Dogs’ emergent behavior is
strongly related to their competitive relationship
against it. To develop more diverse agents’
behaviors, different playing strategies are required.
We therefore chose three fixed Dog-avoidance
and/or Exit-achieving strategies for the Player,
differing in complexity and effectiveness. The
non-deterministic initial position of the player is
devised to provide Dogs with diverse examples of
playing behaviors to learn from.

Randomly-moving (RM) Player

A Randomly-moving Player takes a movement
decision by selecting a uniformly distributed
random picked direction at each simulation step of
the game.

Exit-achieving (EA) Player

An Exit-achieving Player moves directly towards
the Exit. Its strategy is based on moving so as to
reduce the greatest of its relative distances from
the Exit.

Cost-based path planning (CB) Player

A cost-based path planning Player constitutes the
most efficient Dog-avoiding and Exit-achieving
strategy of the three different fixed-strategy types
of Player. A discrete Artificial Potential Field
(APF) (Khatib 1986), specially designed for the
Dead End game, controls the CB Player’s motion.
The overall APF causes a force to act on the Player
which guides it along a Dog-avoidance Exit-
achievement path. For a more detailed presentation
of the CB player, see (Yannakakis et al. 2004).

Any motion strategy that guides a Player to arrive
quickly at the Exit, avoiding any Dogs and keeping
to the straightest and fastest possible trajectory, is
definitely a “good” strategy in terms of the Dead
End game. Hence, the CB Player presents a “good”

behavior in this game and furthermore a reference
case to compare to human playing behavior.

Neural Controlled Dogs

Artificial neural networks (ANNs) are a suitable
host for emergent adaptive behaviors in complex
multi-agent environments (Ackley and Littman
1992). A feedforward neural controller is
employed to manage the Dogs’ motion and is
described in this subsection.

Using their sensors, Dogs inspect the environment
from their own point of view and decide their next
action. Each Dog receives input information from
its environment expressed in the ANN’s input
array of dimension 6. The input array consists of
the relative coordinates of (a) the Player, (b) the
closest Dog and (c) the Exit. A Dog’s input
includes information for only one neighbor Dog as
this constitutes the minimal information for
emerging teamwork cooperative behaviors. We
deliberately exclude from consideration any global
sensing, e.g. information about the dispersion of
the Dogs as a whole, because we are interested
specifically in the minimal sensing scenario.

As previously mentioned, a multi-layered fully
connected feedforward ANN has been used for the
experiments presented here. The hyperbolic
tangent sigmoid function is employed at each
neuron. The ANN’s output is a two dimensional
vector which represents the Dog’s chosen motion
in X, Y coordinates.

Fixed strategy Dogs

Apart from the neural controlled Dogs, an
additional fixed non-evolving strategy has been
tested for controlling the Dogs’ motion. Dogs of
this strategy are called ‘Followers’ and they are
designed to follow the Player constantly by
moving at half the Player’s speed (i.e. 1.0
cm/simulation step). This strategy is used as a
baseline behavior for comparison with any
emergent neural controller behavior.

INTERESTING OPPONENTS

In order to find, as objective as possible, a measure
of interest in the Dead End computer game we first



need to define the criteria that make a game
interesting. Then, second, we need to quantify and
combine all these criteria in a mathematical
formula. The game should then be tested by human
players and have this formulation of interest cross
validated against the interest the game produces in
real conditions. This last part of our investigation
constitutes a crucial phase of future work.

In order to simplify this procedure we will ignore
the graphics’ as well as the player’s contribution to
the interest of the game and we will concentrate on
the Dogs’ behavior that effects the game’s interest.
That is because, we believe, the computer-guided
opponent character contributes the vast majority of
features that make a computer game interesting.

By being as objective and generic as possible, we
believe that the criteria that collectively define the
interest of the Dead End game are as follows (see
also (Yannakakis and Hallam 2004) for interest
criteria definitions for the Pac-Man game).

o  When the game is neither too hard nor too
easy. In other words, the game is
interesting when Dogs manage to kill the
player sometimes but not always. In that
sense, optimal behaviors are not interesting
behaviors and vice versa.

o  When there is diversity in Dogs’ behavior
over the games. That is, when Dogs are
able to find different ways of hunting and
killing the player in each game so that their
strategy is less predictable.

o  When Dogs’ behavior is aggressive rather
than static. That is, Dogs that move
towards killing the player but meanwhile,
move constantly all over the game field
instead of simply following it. This
behavior gives player the impression of an
intelligent strategic Dogs’ plan which
increases the game interest.

In order to estimate and quantify each of the
aforementioned criteria of the game’s interest, we
follow the same procedure introduced in
(Yannakakis and Hallam 2004). Thus, the metrics
for the three criteria are given by 7T (difference
between maximum and average player’s lifetime

over N games --- N is 50 in this paper), S (standard
deviation of player’s lifetime over N games) and
E{H,} (stage grid-cell visit average entropy of
the Dogs over N games) respectively. All three
metrics are combined linearly (1)
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where / is the interest value of the Dead End game;

y,0 and ¢ are criterion weight parameters (for the

experiments presented here y =1,d =2,& =1).

The measure of the Dead End game’s interest
introduced in (1) can be effectively applied to any
predator/prey  computer game (e.g.  see
(Yannakakis and Hallam 2004)) for a successful
application on the Pac-Man game) because it is
based on generic quantitative features of this
category of games. These features include the time
required to kill the prey as well as the predators’
entropy throughout the game field. We therefore
believe that (1) --- or a similar measure of the
same concepts --- constitutes a generic interest
approximation of predator/prey computer games.
In fact, the two first criteria correspond to any
computer game whereas the third criterion
corresponds only to predator/prey games.

OFF-LINE LEARNING

We use an off-line evolutionary learning approach
in order to produce some ‘good’ (i.e. in terms of
performance) initial behaviors for the on-line
learning mechanism. The ANNs that determine the
behavior of the Dogs are themselves evolved
(evolutionary process is limited to the connection
weights of the ANN).

The evolutionary procedure is as follows. Each
Dog has a genome that encodes the connection
weights of its ANN. A population of 40 (we keep
this number low because of the computational
cost) ANNs (Dogs) is initialized randomly with
initial uniformly distributed random connection
weights that lie within [-5, 5]. Then, at each
generation: (a) Each Dog in the population is
cloned 8 times. These 8 clones are placed in the
Dead End game field and play the game against a
selected Player type for an evaluation period T



(e.g. 125 simulation steps). The outcome of this
game is to ascertain the total number of wins (W)
and kills (K). (b) Each Dog is evaluated via (2)

/=K~ pw 2)

where K and W are the total numbers of kills and
wins respectively; o is the reward rate of a kill; g

is the penalty rate of a win. (¢) A pure elitism
selection method is used where only the 20%
fittest solutions are able to breed and, therefore,
determine the members of the intermediate
population. (d) Each parent clones an equal
number of offspring in order to replace the non-
picked solutions from elitism. (e¢) Mutation occurs
in each gene (connection weight) of each
offspring’s genome with a small probability p,,

(e.g. 0.01). A uniform random distribution is used
again to define the mutated value of the connection
weight.

The algorithm is terminated when a predetermined
number of generations g is completed (e.g. g=300)
and the fittest Dog’s connection weights are saved.

ON-LINE LEARNING

This evolutionary learning approach is based on
the idea of Dogs that learn while they are playing
against the Player. In other words, Dogs that are
reactive to any player’s behavior and learn from its
strategy instead of being predictable and, therefore,
uninteresting characters for game playing.
Furthermore, this approach’s additional objective
is to keep the game’s interest at high levels as long
as it is being played.

Beginning from any initial off-line trained (OLT)
group of homogeneous Dogs, the on-line learning
(OLL) mechanism attempts to transform them into
a group of heterogeneous Dogs that are interesting
to play against. The OLL procedure is as follows.
An OLT Dog is cloned 8 times and its clones are
placed in the Dead End game field to play against
a selected Player type. Then, at each generation:

(a) Each Dog is evaluated every T (T is 25 here)
simulation steps via (3), while the game is played

(where (xs, y§) and (xf,, yf,) are the cartesian

coordinates of the Player’s and the Dog’s center
respectively at simulation step k).
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By using (3), we individually promote each Dog
that attempts to stay as close as possible to the
Player during an evaluation period. (b) If the
average fitness of the population is greater than a
fixed threshold value then, go to (a) else, continue.
(¢) A pure elitism selection method is used where
only the fittest solution is able to breed. The fittest
parent clones an offspring that replaces the worst-
fit member of the population. This offspring takes
the worst-fit member’s position in the game field.
(d) Mutation occurs in each gene (connection
weight) of the offspring’s genome exactly as in the
off-line learning algorithm.
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Fig. 2. The on-line learning mechanism

The algorithm is terminated when a predetermined
number of generations g is completed (e.g.
2=5000) and all 8 Dogs’ connection weights are
saved. Fig. (2) illustrates the main steps of the
OLL algorithm.

We mainly use small simulation periods (i.e.
7=25) to evaluate Dogs during OLL. The aim of
this high frequency of evaluations is to accelerate
the on-line evolutionary process. However, the
evaluation  function (3)  constitutes an
approximation of the examined Dog’s overall
performance for large simulation periods. Keeping
the right balance between computational effort and
performance approximation is one of the key
features of this approach. We therefore use



minimal evaluation periods capable of achieving
good estimation of the Dogs’ performance.

RESULTS

Results obtained from experiments applied on the
Dead End game are presented in this section.
These include, off-line and on-line learning
emergent behavior analysis as well as experiments
for testing robustness and adaptability of the OLL
mechanism proposed.

Performance Measurement

In order to evaluate the performance of a team of
Dogs, we record the total number of both kills K
and wins W of the examined team, against a
specific Player, by placing these agents in Dead

End and letting them play the game for 12.5-10°
simulation steps. We believe that this is a long
enough period for testing a playing-behavior of a
team of Dogs in an efficient way. This evaluation
is called a trial. We then calculate the value P =
100[K/(K+W)]. This performance measurement
(P) quantifies the Player-killing (K) percentage
over the total number of games played (K+W).

Off-line Learning Experiments

The experiment presented in this subsection is
focused on producing well-behaved Dogs in terms
of the performance measure previously described.
We train Dogs against all three fixed-strategy
types of Player through the off-line learning
mechanism. In this experiment we select
a=p=1 in fitness function (2) --- providing
equal opportunities for promoting both Player-
hunting and Exit-defensive behaviors. The off-line
learning experiment is described as follows.

(a) Apply the off-line learning mechanism by
playing against each type of Player separately.
Repeat the learning attempt (run) 10 times --- we
believe that this number is adequate to illustrate a
clear picture of the emergent behavior --- with
different initial conditions. (b) Evaluate each one
of the 10 teams of OLT Dogs against all three
types of Player. Their performance and interest
measurement are given by the average values
obtained over the 10 trials. (¢) Evaluate non-
evolving randomly generated (i.e. untrained) as

well as Player-follower Dogs (i.e. Followers)
against every Player type (run 10 trials and
calculate their average performance and interest).
The outcome of this experiment is presented in
Table 1.

Table 1. The effect of off-line training on the Dogs’ average
performance (E{P}) and interest (E{I}) over 10 learning
attempts

Playing against
RM EA CB
E(P} | E | EtP} | B | EfP} | E/)
OLT/RM | 91.27 0.728 | 24.36 0.682 | 3.82 0.243
OLT/EA 62.55 0.555 | 96.01 0.661 | 51.27 0.486
OLT/CB 93.09 0.628 | 55.09 0.681 | 72.98 0.425
Followers | 98.54 0.466 | 78.94 0.763 | 71.51 0.709
Untrained | 75.58 0.401 | 62.46 0.498 | 17.77 0.425

As can be seen from Table I, there is a large
performance improvement of the OLT Dogs in
comparison to the untrained or even the Follower
Dogs against all three types of Player. However, in
most cases, OLT Dogs against a specific Player
seem to get lower average performance values
when playing against a Player other than the Player
they have been off-line trained against. Dogs
trained off-line against CB Players showed good
overall performance against all types of Players.
Therefore, among the three fixed-strategy Players,
the CB Player provides the best off-line training
for the opponent agents. This suggests that when
Dogs learn from more complex and effective types
of Players, they tend to generalize better.

An increased interest value when Dogs are trained
off-line is also noticeable in all cases (see Table I).
However, these emergent behaviors fail to
compete the interest generated by the Followers in
the majority of cases (mainly against the EA and
CB Players).

The most typical emergent behaviors are pure
Exit-defensive or pure Player-hunting behaviors
but hybrids also occur frequently. The off-line
learning mechanism, in the majority of cases,
produces Dogs that defend the Exit and/or hunt the
Player in a cooperative fashion. As stressed before,
opponents in this game have to learn to cooperate
in order to be successful (achieve a high
performance value) against any playing strategy.



On-line Learning Experiments

The off-line learning procedure is a mechanism
that attempts to produce near-optimal solutions to
the problem of killing the Player and defending the
Exit. These solutions will be the OLL
mechanisms’ initial points in the search for more
interesting games. The OLL experiment is
described as follows.

(a) Apply the OLL mechanism to all teams of OLT
Dogs (see Off-line Learning Experiments section)
playing against each type of Player separately. (b)
Evaluate performance and interest values of each
OLL attempt against each Player type. The
outcome of this experiment is presented in Table II
and Fig. 3.

As seen from Table I and Table II, the OLL
mechanism manages to find ways of increasing the
interest of the game regardless of the initial OLT
behavior or the player. Due to space considerations
we present only 3 out of the 9 OLL experiments in
detail here. Fig. 3 demonstrates the learning
mechanism’s ability of producing games of higher
than the initial interest as well as keeping that high
interest for a long period. The mechanism
demonstrated a similar adaptive behavior for all 9
different OLL experiments. This suggests that the
evolutionary approach proposed shows a behavior
of high robustness which furthermore manages to
generate opponents’ behaviors of much higher
interest values.

The OLL mechanism tends to be a highly
disruptive procedure (via the mutation operation)
for high-interest group behaviors towards
individual rewards. Such disruptive mutations can
cause undesired drops in the game’s interest
generated by a team of Dogs. However,
experiments show that Dogs trained by individual
rewards (while playing) manage to maintain and
even increase the game’s interest.

Another important feature of the mechanism is its
ability to quickly emerge interesting opponents to
play against. It takes, in the worst case
experienced, fewer than 500 OLL games for the
mechanism to generate games of higher interest.

Table II. Best average interest values achieved by applying
on-line learning on Dogs trained off-line. The respective
average performance values are also presented

Playing against — On-line learning

RM EA CB
EP} | By | EP | B | E(P} | EW)
OLT/RM | 86.73 0.758 | 36.45 0.762 | 43.09 0.721
OLT/EA | 95.64 0.707 | 84.18 0.701 | 2091 0.617
OLT/CB | 97.09 0.685 | 53.64 0.745 | 60.92 0.610

0.9

0.8

T R oF B

o7 %/ég — Xﬁ: g,

0.6

Interest
o o ©
© ES @
T T

o
N
T

o

RM
o EA
CB

0 L L L L L L I L L
0 50 100 150 200 250 300 350 400 450 500

Generation

Fig. 3. Interest (averaging over 10 trials) evolution over the
number of games played. . Initial behavior: OLT/RM (initial
and best interest values are presented in the first row of Table
I and Table II respectively.

On the other hand (see Table I and Table II), in
almost half cases, there is a decrease of the Dogs’
average performance values. In general, Dogs that
achieve high-performance values do not generate
interesting games. This illustrates the tradeoff
between optimality and interest in any computer
game. In Dead End, optimal killing behaviors
cannot produce interesting games.

CONCLUSIONS

The Dead End predator/prey computer game is
devised as an interesting test-bed for studying the
emergence of multi-agent cooperative behaviors
supported by partial implicit communication
through evolutionary learning mechanisms. We
introduced an off-line learning mechanism, from
which effective cooperative predator behaviors
have rapidly emerged.

Predator strategies in predator/prey computer
games are still nowadays based on simple rules
which make the game quite predictable and,
therefore, uninteresting --- by the time the player



gains more experience and playing skills. A
computer game becomes interesting primarily
when there is an on-line interaction between the
player and his opponents who demonstrate
interesting behaviors.

Given some objective criteria for defining interest
in predator/prey games presented by Yannakakis
and Hallam (2004) we introduced a method for
explicitly measuring interest in the Dead End
game. We saw that by using the proposed on-line
learning mechanism (see also (Yannakakis et al.
2004)), maximization of the individual simple
distance measure (see (3)) coincides with
maximization of the game’s interest. Apart from
being robust, the proposed mechanism
demonstrates fast adaptability to new types of
player (i.e. playing strategies). Therefore, we
believe that such a mechanism will be able to
produce interesting interactive opponents (i.e.
games) against even the most complex human
playing strategy.

We believe that the methods used need to be tested
on more complex Dead-End stages (i.e less Dogs)
in order to provide more evidence for their
generality, and the interest measure proposed
needs to be cross-validated against human players.
In addition, investigation of the heterogeneity’s
contribution on these results constitutes an
important step for future work.
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