
1

Real-time Game Adaptation for Optimizing Player
Satisfaction

Georgios N. Yannakakis, Member, IEEE, and John Hallam

Abstract—A methodology for optimizing player satisfaction in
games on the ‘Playware’ physical interactive platform is demon-
strated in this paper. Previously constructed artificial neural
network user models, reported in the literature, map individual
playing characteristics to reported entertainment preferences for
augmented-reality game players. An adaptive mechanism then
adjusts controllable game parameters in real-time in order to
improve the entertainment value of the game for the player.
The basic approach presented here applies gradient ascent to
the user model to suggest the direction of parameter adjustment
that leads toward games of higher entertainment value. A simple
rule-set exploits the derivative information to adjust specific
game parameters to augment the entertainment value. Those
adjustments take place frequently during the game with inter-
adjustment intervals that maintain the user model’s accuracy.
Performance of the adaptation mechanism is evaluated using
a game survey experiment. Results indicate the efficacy and
robustness of the mechanism in adapting the game according to
a user’s individual playing features and enhancing the gameplay
experience. The limitations and the use of the methodology as
an effective adaptive mechanism for entertainment capture and
augmentation are discussed.

Keywords: User modeling, player satisfaction, real-time
adaptation, augmented-reality games, neuro-evolution, gradi-
ent ascent.

I. INTRODUCTION

COGNITIVE user models of playing experience promise
significant potential for the design of digital interac-

tive entertainment systems, such as screen-based computer
or augmented-reality games. Quantitative modeling of en-
tertainment or satisfaction — fun, player satisfaction and
entertainment will be used interchangeably in this paper — as
a class of user experiences may reveal game features or user
features of play that relate to the level of satisfaction perceived
by the user (player). That relationship can then be used to
adjust digital entertainment systems according to individual
user preferences to optimize player satisfaction in real-time
[1]. In this paper, we analyze further the use of gradient
ascent on a published user-preference model as an adaptive
mechanism for achieving this in augmented-reality games. The
children’s game “Bug-Smasher” running on the ‘Playware’
[2] playground is used as the test-bed for the experiments
presented here.

Entertainment models have already been constructed for the
Bug-Smasher game [3], [4], based on quantitative measures
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of Malone’s intrinsic qualitative factors for engaging game-
play [5], namely challenge and curiosity. These models map
game features, such as Malone’s factors, and measures of
the individual player’s interaction with the game — player
features — to a numerical value that represents the children’s
notion of ‘fun’. Player features are derived from the statistics
of the interaction of the player with the game platform. For
Playware, this includes statistics derived from measurements
of the time, location and foot pressure associated with inter-
actions between the player and the platform. Neuro-evolution
preference learning then uses these feature vectors to construct
a function mapping the examined game and player features to
the reported player satisfaction preferences such that preferred
games receive higher function value. Feature selection tech-
niques are applied to select the best-performing set of input
features for the model.

Artificial neural network (ANN) models built in this way
can achieve an average prediction accuracy, for children’s
preferences between Bug-Smasher variants, of 77.77% [4] (or
82.25% [6]) using four features (inputs): three player features
(the player’s average response time with the playground, the
variance of the pressure force instances on the playground,
the number of interactions with the playground) and the
game feature of curiosity generated by the game opponents.
Curiosity in the test-bed game investigated is measured using
the spatial diversity of the opponents appearing in the game.
The highest-performing ANN constructed — the same in
both cited studies — achieves 90% prediction accuracy on
expressed pairwise preferences. This particular model forms
the basis of the adaptive controller discussed in this paper.

Following from the reported success with entertainment
modeling in physical interactive games [4], a first attempt
to optimize the entertainment value of those games in real-
time was presented in [1]. A real-time adaptation mechanism,
using gradient ascent on one of the models reported in [4]
coupled with a simple rule-based controller, was implemented.
Its performance was tested through a survey experiment in
which children played variants of the Bug-Smasher game and
reported which variants they preferred. Preliminary results
[1] indicate a clear preference of children for the adaptive
game versus a non-adaptive version. This paper extends the
work of [1] by presenting a fuller analysis of the generated
entertainment value and further discussion of the assumptions
underlying the approach and its performance. The analysis
indicates that in most cases the proposed mechanism does
indeed adapt to the needs of the specific child in such a
way as to increase significantly the child’s satisfaction, and
investigates those cases where this does not occur. These
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positive indications — for a simple gradient ascent mechanism
applied to augmenting player satisfaction — suggest that fu-
ture, smarter, implementations of adaptive learning in real-time
may be even more effective for enhancing player experience.

The work reported here is novel in analyzing and discussing
more thoroughly a demonstration [4] that a subjective model
(a predictor of user preferences) of reported entertainment,
grounded in statistical features obtained from child-game inter-
action, can be exploited to enhance player satisfaction in real-
time by indicating suitable modulation of game parameters.
The methodology proposed can be used to automate, in part,
modern game development processes like quality assurance
and testing but also to enrich human computer interaction
through tailoring the interaction experience.

The paper is organized as follows. First, an extensive
review of the literature on approaches for player satisfaction
modeling and optimization is presented in Section II. Then, the
basic steps of the methodology for constructing computational
models of player satisfaction are outlined in Section III. Subse-
quently, an analysis of player satisfaction model accuracy with
respect to gameplay time is presented (Section IV). Findings
on the relationship between time and model accuracy drive
the design (Section V) of the adaptation mechanism used.
Section VI and Section VII present, respectively, the survey
experiment designed to evaluate the adaptation mechanism and
the statistical analysis of the entertainment values predicted by
the model. The analysis shows that
• the entertainment value of the game is significantly in-

creased when adaptation takes place, and that
• erroneous adjustments of the game’s curiosity (and chal-

lenge) levels appear to influence the preference of chil-
dren for adaptation.

The paper concludes with a discussion of the limitations and
the suitability of the proposed methodology as a generic tool
for optimizing experience in real-time.

II. ENTERTAINMENT MODELING AND OPTIMIZATION

We classify approaches for capturing the level of player
satisfaction into qualitative and quantitative. The former cat-
egory includes the specification of qualitative features and
criteria that collectively contribute to engaging experiences in
entertainment systems, derived from experimental psychology
studies. The latter category includes studies quantifying re-
ported qualitative criteria of entertainment and constructing
models that quantify (in some appropriate way) the compli-
cated mental state of satisfaction perceived while interacting
with digital interactive systems [7]. Given that distinction,
the approach for modeling player satisfaction presented in
this paper is quantitative. Related work on methodologies for
improving player satisfaction in real-time is presented at the
end of this section.

A. Qualitative Approaches

Several researchers have been motivated to identify what
is ‘fun’ in a game and what engages people when playing
computer games. Psychological approaches include Malone’s

well-known principles of intrinsic qualitative factors for en-
gaging game play [5], namely challenge, curiosity and fantasy.
Challenge is defined as the uncertainty toward attaining a goal
generated by the game mechanics; curiosity is the notion of
what will happen next in the game; and fantasy is the ability
of the game to show or evoke images of physical objects or
social situations not actually present.

The theory of flow [8] is a composite of factors (e.g. loss of
the feeling of self-consciousness, distorted sense of time) that
indicate full immersion in or engagement with an experience
(also called optimal experience). Incorporating the theory of
flow [9] in computer games as a model for evaluating game
design principles that yield enjoyable experience has been a
focus of a few recent studies [10], [11].

A comprehensive review of the literature on qualitative
approaches for modeling player enjoyment demonstrates a
tendency for the proposed criteria to overlap with Malone’s
and Csikszentmihalyi’s foundational concepts. An example of
such an approach is Lazzaro’s work on ‘fun’ clustering [12].
Lazzaro focuses on four entertainment factors derived from
facial expressions and data obtained from game surveys on
players: hard fun, easy fun, altered states and socialization.
Koster’s theory of fun [13], which is primarily inspired by
Lazzaro’s four factors, defines ‘fun’ as the act of mastering the
game mentally and suggests that ‘fun’ is strongly dependent
on learning while playing. Bateman and Boon [14] identify
four different audience modes (play styles) for player-centered
game design: conqueror, manager, wanderer and participant
(relating to Lazzaro’s factors). Specific game design principles
for engaging each player style/type are also proposed in
that study. An alternative approach to characterizing fun is
presented in [15] where fun is composed of three dimensions:
endurability, engagement and expectations.

A few indicative studies taken from the vast literature of the
user and game experience field are considered in this section.
The work of Pagulayan et al. [16], [17] provides an extensive
outline of game testing methods for effective user-centered de-
sign of games that generate enjoyable experiences. Ijssellstein
et al. [18] describe the challenge of adequately characterizing
and measuring experiences associated with playing digital
games and highlight the concepts of immersion [19] and flow
[9] as potential candidates for evaluating gameplay. Ryan et
al. [20] have considered human motivation of play in virtual
worlds, attempting to relate it to player satisfaction. Their sur-
vey experiments demonstrate that perceived in-game autonomy
and competence are associated with game enjoyment.

B. Quantitative approaches

All of the above qualitative approaches are based either on
empirical observations of user studies or on linear correlations
of measured user data (interaction and physiological data) with
reported emotions derived from Likert scale [21] question-
naires. On the other hand, the quantitative approach presented
in this paper builds on the qualitative modeling framework and
takes cognitive modeling one step further by quantifying enter-
tainment. Quantitative approaches formulate entertainment in
terms of mathematical models which yield reliable numerical
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correlates for (or predictors of) ‘fun’, entertainment or excite-
ment. Advances in quantitative player satisfaction modeling
have established a growing community of researchers that
investigate diverse methodologies for modeling and improving
gameplay experience [7].

Iida’s pioneering work on metrics of entertainment in board
games was the first attempt at modeling ‘fun’ quantitatively:
he introduced a general metric of entertainment for variants
of chess games, based on average game length and possible
moves [22]. A recent study by van Lankveld et al. [23] intro-
duces the concept of incongruity [24] as a potential measure of
entertainment. Incongruity is defined as the difference between
the complexity of the game environment and the complexity
of the mental model a human has of the game environment.
Incongruity is measured through health points in a simple,
turn-based, side-scrolling arcade game but no experiments to
validate the study’s hypotheses were performed [23]. This
measure resembles the notion of challenge defined by Malone
[5] and the factor of hard fun of Lazzaro [25].

Other work in the field of quantitative entertainment capture
is based on the hypothesis that the player-opponent interaction
— rather than the audiovisual features, the narrative or the
genre of the game — is the property that contributes the
majority of the quality features of entertainment in a computer
game [26]. Given this fundamental assumption, a metric for
measuring the real-time entertainment value of predator/prey
games was designed, using quantitative estimators of game
characteristics (such as challenge and curiosity) based on
the player-game interaction. The developed metric was estab-
lished as effective and reliable by validation against human
judgement [27], [28]. Further experimental survey studies
by Beume et al. [29], [30] demonstrate the generality of
the proposed interest metric in different prey/predator game
variants. A quantitative measure of flow derived from the
subject’s perceived gameplay duration is also introduced in
those studies.

Earlier experiments by the authors [31] have shown that ar-
tificial neural networks and fuzzy neural networks can extract
a better estimator of player satisfaction than a human-designed
one, given appropriate estimators of the challenge and curios-
ity of the game and data on human players’ preferences [32].
Those studies introduce the notion of comparative fun analysis
for eliciting genuine subjective responses concerning complex
notions like ‘fun’ or ‘enjoyment’ from test subjects. Using 2-
alternative forced choice survey questions — e.g. ‘which of
these two games was more fun to play?’ — rather than a Likert
scale [21], minimizes the assumptions made about subjects’
notions of ‘fun’ and allows a fair comparison between answers
from different subjects. The reliability of comparative fun anal-
ysis is shown through the accurate quantitative entertainment
models constructed for both screen-based [32] and physical
game test-beds [4].

In psychophysiological studies, games are equipped with
affect recognizers which are able to identify correlations be-
tween physiological signals and the human notion of entertain-
ment. Correlations between physiological signals and reported
adult user experiences in computer games have been examined
in [33], [34], [35], [36], [37], among others. This paper

however, does not consider physiological signals as a basis
for constructing cognitive models in games and furthermore
focusses on games that incorporate physical activity [38].

C. Optimizing Player Satisfaction

Approaches towards optimizing player satisfaction can be
classified as implicit and explicit. An approach is implicit when
the objective function to be optimized is built on heuristics that
are peripheral to player satisfaction. A typical example of such
a function is the match between the challenge preferred by the
player and that offered by the game opponent, optimization of
which implies improved player satisfaction. On the other hand,
explicit approaches optimize a function that explicitly maps
to player satisfaction. The methodology used in this paper is
explicit since it attempts to maximize a function value derived
from a model of player satisfaction.

Within implicit approaches we generally meet use of ma-
chine learning techniques for adjusting a game’s difficulty —
based on the assumption that challenge is the only factor that
contributes to enjoyable gaming experiences. Given this as-
sumption, difficulty adjustment implies entertainment augmen-
tation. Such approaches include applications of reinforcement
learning [39], genetic algorithms [40], probabilistic models
[41] and dynamic scripting [42], [43] and neuro-evolution of
augmented topologies [44]. Further implicit approaches [45]
concentrate on generating visibly intelligent (i.e. believable)
NPC behavior based on the assumption that believability alone
contributes to player satisfaction. Unlike these approaches we
explicitly focus on control of user satisfaction rather than game
difficulty or believability.

User models have been constructed for the generation of
adaptive interactive narrative systems that potentially optimize
the experience of the user [46], [47], [48]. User preference
modeling with respect to content (race track) creation in racing
games has also shown a potential for enhancing the quality
of playing experience in those games [49], [50]. However,
human survey experiments that verify the belief that player
satisfaction is in fact enhanced have not yet been reported in
any of the aforementioned approaches.

Within the explicit methods for optimizing player satisfac-
tion, robust adaptive learning mechanisms have been built to
optimize the human-verified ad-hoc ‘interest’ (entertainment)
metric for prey/predator games introduced in [26], [27]. Ex-
periments showed that an on-line neuro-evolution mechanism
[28], [51], [52], [53] and a player modeling technique through
Bayesian learning [54] were each capable of maintaining or
increasing the game’s entertainment value while the game was
being played. Effectiveness and robustness of the adaptive
(neuro-evolution) learning mechanism in real-time has been
evaluated via human survey experiments [27]. Furthermore,
studies with the “Playware” [2] augmented-reality playground
have shown that ad-hoc rule-based mechanisms [55] can
successfully adapt a physical interactive game in real-time
according to a user’s individual play features and improve
children’s gameplay experience.

Following the theoretical principles reported by Yannakakis
[56], this paper is primarily focused on the contributions of
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game opponents’ behavior to the real-time entertainment value
of the game. Other aspects of game design — e.g. game me-
chanics, game levels or game narrative — that may contribute
to playing experience are not considered in this work (see [57]
for a proof-of-concept experiment on automatic game design).
Furthermore, instead of being based on empirical observations
of children’s entertainment, the work presented here uses
quantitative entertainment models already constructed using
experimental data obtained from a survey experiment with
children playing with Playware playground [4]. An adaptive
mechanism is proposed for augmenting children’s satisfaction
in real-time and an additional survey experiment validates its
efficacy in the Bug-Smasher test-bed game.

III. CONSTRUCTING QUANTITATIVE ENTERTAINMENT
(USER) MODELS

The work described in this paper builds on quantitative
user preference models whose construction and evaluation has
been fully described in the literature. For completeness, a brief
recapitulation of the key points follows. The reader is referred
to [3] and [4] for further details of the test-bed used and the
entertainment (user) modeling methodology employed.

The test-bed game used for the experiments presented here
is called ‘Bug-Smasher’. The game is developed on a 6 ×
6 square Playware [2] playground, comprising 36 tiles each
incorporating processing power, communication, input (force
pressure sensor) and output (light). The tile’s dimensions are
21cm×21cm×4cm. During the game, different ‘bugs’ (colored
lights) appear sequentially on the game surface and disappear
again after a short period of time as a tile’s light turns on
and off respectively. The bug’s position is picked randomly
according to a predefined level of spatial diversity, measured
by the entropy (H) of the bug-visited tiles. The child’s goal is
to smash as many bugs as possible by stepping on the lighted
tiles, thereby causing a force-sensor input to the tile. Pictures
of the tile setup and snapshots of the Bug-Smasher game are
presented in Section VI.

In [4], experimental data of platform-child interaction and
children’s entertainment preferences were acquired for Bug-
Smasher. Three values (‘Low’, ‘Average’, and ‘High’) were
defined for each of Malone’s factors [5] of challenge and
curiosity, giving 9 different game variants. Challenge was
represented by the speed that the bugs appear and disappear
in the game while curiosity was represented by their spatial
diversity (tile-visit entropy). The former provides a notion of
a goal whose attainment is uncertain and the latter effectively
portrays a notion of unpredictability in the subsequent events
of the game — the higher the entropy, the less predictable the
next bug’s location and therefore the higher the curiosity.

Seventy-two children aged from 8 to 10 years participated in
the experiment reported in [4]. All participants were normal-
weighted1, to minimize the effect of weight as a factor on
physical interaction and playing experience. Children played
two game variants for 90 seconds each; the two games differed
in the levels of one or both entertainment factors of challenge
and curiosity. For each completed pair of games, they reported
their ‘fun’ preference using a 2-alternative forced choice

protocol.
Pressed-tile events were recorded in real-time during play.

From those data, nine personal (individual) player features
were computed for each child. These included the fraction,
P , of presented bugs successfully smashed (i.e. child’s score);
the number of interactions, NI , with the game environment;
the average, E{rt}, and the variance, σ2{rt}, of the response
times; the average, E{Db}, and the variance, σ2{Db}, of
the distance between the pressed tile and the bugs appearing
on the game; the average, E{p}, and the variance, σ2{p},
of the pressure recorded from the force pressure sensor; and
the entropy, HC , of the tiles that the child visited. The total
number of game pairs played was 144; data from 7 game pairs
was lost because of equipment failure, leaving a data set of
137 game pairs labeled with children’s preference judgements.

To construct a quantitative user preference model from the
game pair data, the Sequential Forward Selection (SFS) feature
selection technique is applied to select that subset of a set of
candidate individual player and game features that allows the
best-performing artificial neural network model to be built.
The SFS method is a bottom-up greedy search procedure in
which one feature is added at a time to the current feature set.
The feature to be added is selected from the set of remaining
candidate features such that the new feature set generates
the maximum value of the performance function over all
candidates for addition [58].

The key assumption in model construction is that the
entertainment value y of a given game — which models the
subject’s internal response to playing the game, that is, how
much ‘fun’ it is — is an unknown function of individual
features which a machine learning mechanism can learn. The
subject’s expressed preferences constrain but do not specify
the values of y for individual games but we assume that the
subject’s expressed preferences are consistent.

The ANN representing the user preference model is con-
structed using a preference learning [59] approach in which a
fully-connected ANN of fixed topology is evolved by a genera-
tional genetic algorithm (GA) [4] which uses a fitness function
that measures the difference between the children’s reported
preferences of entertainment and the model output value y.
The GA chromosome is a vector of ANN connection weights.
To permit evaluation of the performance of a constructed
ANN model, the available data is randomly divided into three
subsets. Each of these is used as a validation data set in a run
for which the other two-thirds of the data serve as the training
set, resulting in three independent runs. The performance of
an ANN model is measured through the average classification
accuracy of the ANN in these three independent runs (a 3-fold
cross-validation scheme). The result of this evaluation drives
the feature selection process in its exploration of candidate
feature subsets.

Experiments for finding the candidate feature subset yield-
ing the highest ANN performance resulted [4] in a 3-fold
cross-validation performance of 77.77% (average of 70%,
73.33% and 90%) when the ANN input (selected features
from SFS) contains E{rt}, σ2{p}, H and NI . The binomial-

1Based on their body mass index lying between 18.5 and 25.
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distributed probability of this performance to occur at random
is 0.00192. Further experiments reported in [6] achieve a
higher 3-fold cross-validation accuracy of 82.25% (average
of 76.66%, 80.00% and 90%). In fact, the highest performing
ANNs (90%) derived in both these studies are identical; this
ANN is the model used in this paper as the basis of the game
controller. A further analysis of the feature subset {E{rt},
σ2{p}, NI , H} with the highest validation performances
reveals that fast responding children (E{rt} ≈ 0) tend to
enjoy average and high curiosity values whereas slow children
(E{rt} ≈ 1) appear to prefer games that generate low curiosity
levels [4].

IV. ‘FUN’ DURING THE GAME

At this point we have outlined how one can obtain quan-
titative models that predict children’s preferences with high
accuracy, given vectors of suitable feature values derived from
a complete 90 second game. In other words, they quantify the
‘fun’ level of a game after it is finished. This is manifestly
unsuitable for control of a game, since for that we need
estimates of the degree to which the game is fun while it
is in progress. To go further, we finesse this complication for
now; we return to it in the discussion of this paper.

Suppose one could assume that the entertainment value
of a game (the model output — denoted y above) was
constant throughout the game. Then one could use preferences
expressed after the game to construct a model that evaluates
the game using input features computed on sub-intervals of
the game duration, and thereby obtain more frequent fun
estimates. Alternatively, one could take a model trained using
full-game data and explore how well it predicted whole-
game preference based on input features computed from sub-
intervals. Of these two possibilities we adopt the second,
since input features can easily be scaled to compensate for
a different duration over which they are calculated, and the
model’s output value for the sub-interval can be checked for
consistency with the known whole-game user preference data.

This naturally raises the question of how long the sub-
intervals should be: too short, and there may not be sufficient
data to compute reliable feature values; but if long, the control
points at which the satisfaction measure can influence the
game will be too infrequent.

We therefore proceed as follows. Given three independent
ANN models derived from whole game data — those reported
in [4] and whose construction we outlined above — we
calculate their average classification performance on the entire
data set of 137 game pairs. Then the interaction data for
each game is divided into two equal parts and all features
are recalculated for these two 45-second time windows. The
three models are then re-tested on the entire new data set
(2 times 137 data) assuming that the expressed whole-game
entertainment preferences remain valid for both 45-second
segments. The model performance is re-calculated analogously
for shorter intervals up to the point where a small time window
is reached (e.g. 9 seconds). The goal is to determine the

2Underlined and bold p-values denote statistically significant effects; sig-
nificance equals 5% in this paper.
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Fig. 1. ANN model performance and respective data loss percentage over
different gameplay time windows. The two percentage values (columns) are
independent in this illustration.

shortest time window for which the model can still predict
reported entertainment with acceptable accuracy. That time
window can then be used to set the frequency of any real-
time adaptation mechanism applied.

Fig. 1 illustrates the classification performance of the ANN
models with respect to the time window selected. The per-
centage of data lost for each time window is also shown in
the figure: “data loss” occurs when there is no significant
interaction between child and platform during the given inter-
val, making it impossible to calculate the interaction-derived
features. (Clearly, this becomes more likely as the interval
decreases.) Results show clearly that performance is degraded
by windowing the data, with an immediate decrease to 62.23%
when the feature calculation interval is halved to 45 seconds.
The performance stabilizes around 58% as the time interval
is further reduced. However, data is lost when gameplay time
windows become smaller than 30 seconds. This suggests that
the minimum acceptable time window lies between 30 and
45 seconds: the models’ performance, even though reduced,
is still above 60.0% while data loss for these windows is zero.

Unfortunately, consecutive windows of 45 or 30 seconds
mean infrequent control points: at most 2 in a game. We
therefore investigate overlapping windows with time-shifted
origins (TSOs). A TSO is the time interval between starts of
successive feature computation windows. For instance, a 45-
second window with a 15-second TSO generates the following
four time intervals lying completely within the whole-game
duration: 0–45, 15–60, 30–75 and 45–90 seconds. Table I
shows the performance of the model and data loss for TSOs of
45, 22.5 and 15 seconds with a 45-second feature computation
window and TSOs of 30 and 15 seconds with a 30-second
window.

ANN models evaluated on the 45:15 regime (45-second
computation window starting every 15 seconds) yield the
best performance of 64.53%; moreover, no data is lost. This
suggests that the 45:15 time scheme is the most appropriate of
those tested here for real-time adaptation of the Bug-Smasher
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TABLE I
TIME-SHIFTED ORIGIN (TSO) IMPACT ON 45 AND 30-SECOND WINDOWS

Window TSO Data Data Lost Performance (%)

45 45 274 0 62.23

45 22.5 411 0 63.17

45 15 548 0 64.53

30 30 407 4 59.34

30 15 680 5 60.88

game. Furthermore, this implies that any game adaptation
mechanism has 3 control points at which fun estimates are
available, namely at 45 seconds and each 15 seconds thereafter
— i.e. after 45, 60, and 75 seconds of play.

V. REAL-TIME ADAPTATION MECHANISM

Given the ANN model of entertainment preferences built
on individual gameplay features from Section III, and the fun
estimation regime just described, the next logical question is
how to use this model to improve children’s gameplay expe-
rience in real-time. There are several ways of exploiting the
model’s built-in knowledge (discussed below in the discussion
of this paper) and adapting Playware games for enhancing the
level of entertainment. In this initial study we start with the
simple gradient ascent mechanism presented in this section.

The idea behind real-time adaptation is to use the metric
evaluation function (the ANN user preference model) directly
to enhance the entertainment provided by the game. The
key to this is the observation that the model represents a
(differentiable) functional relationship of game features to
entertainment value y. It is therefore possible in principle to
infer what changes to game features will cause an increase
in the entertainment value of the game, and to adjust game
parameters to make those changes. Given the real-time average
response time (E{rt}) of a child, the variance of his/her
pressure forces on the tiles (σ2{p}) and the number of times
he/she interacts with the environment (NI ), the partial deriva-
tive of the model output ϑy/ϑH can be used, for example,
to appropriately adjust the level of entropy (curiosity) of the
opponent (H) so as to increase the entertainment value y.

ϑy/ϑH = y(1− y)
M∑

i=1

{oi(1− oi)w1
H,iw

2
i,1} (1)

where M is the number of hidden neurons; oi is the output
of the i-th hidden neuron of the ANN model; w1

H,i is the
connection weight between the H input and the i-th hidden
neuron and w2

i,1 is the connection weight between the i-th
hidden neuron and the output neuron of the ANN model.

Since the ϑy/ϑH value indicates the change in entertain-
ment for a small change in the curiosity level, one could use
gradient ascent to attempt to improve entertainment with such
a model. Note, however, that this derivative tells only in which
direction to change H and not by how much, and further that
this approach is only possible for game features since they are
directly controllable.

Previous studies [4] have shown that the number of inter-
actions and the average response time are features correlated
linearly with entertainment preferences. These features are de-
termined by the individual player, but are strongly influenced
by the game speed (challenge) — which is a controllable
game feature. The effects of game speed on the number of
interactions (p-value = 7.63 · 10−7) and average response
time (p-value = 1.51 · 10−4) are statistically significant.
Therefore, in addition to curiosity level adjustment, the game
speed (s) is adapted in real-time, by a simple set of rules given
below, to influence these two player features.

Analogously to equation (1), the partial derivatives ϑy/ϑNI

and ϑy/ϑE{rt} are calculated. The game’s speed is altered
if those values have different signs: higher speed for positive
ϑy/ϑNI and negative ϑy/ϑE{rt}; lower speed for negative
ϑy/ϑNI and positive ϑy/ϑE{rt}. Table II presents the com-
plete set of rules used for adjusting the curiosity and challenge
levels of the game using a 45:15 second time window regime
in a 90 second game — that is, adjustments occur on the 45th,
the 60th and the 75th second. Adjustments are implemented
by altering the state (‘Low’, ‘Average’, ‘High’) of the internal
controls (challenge, curiosity) by one level up (+) or down
(−). Note that when |ϑy/ϑH| < ε (third row of Table II),
curiosity is randomly increased or decreased with equal prob-
ability.

TABLE II
ADAPTATION MECHANISM RULES. ε EQUALS 0.1 IN THIS PAPER.

Condition Action

ϑy/ϑH > ε H+

ϑy/ϑH < −ε H−
|ϑy/ϑH| ≤ ε H+ or H−

(ϑy/ϑE{rt} < −ε) AND (ϑy/ϑNI > ε) s+

(ϑy/ϑE{rt} > ε) AND (ϑy/ϑNI < −ε) s−

VI. ADAPTATION EXPERIMENT

The adaptive mechanism was tested with Bug-Smasher.
Two variants of the game were constructed: the static and
the adaptive. The bugs’ speed (s) and the entropy of bug-
visited tiles (H) for the static game were adjusted to the
average values of the three different levels (‘Low’, ‘Average’,
and ‘High’) of challenge and curiosity respectively used in
the Bug-Smasher experiments [4]. (A reviewer of this work
made the good suggestion that the average preferred levels of
challenge and curiosity would have made a better control game
than that used. The computed difference between average s
and average preferred s (0.065 sec) and the corresponding
difference in average H (0.0248) do not appear large with
respect to the interval these values lie within — [0, 1.5]
and [0, 1] respectively — and suggest that the static game
is, nevertheless, a valid control.) The adaptive game was
initialized with the same values for speed and spatial diversity
as the static game but the challenge and curiosity levels were
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adjusted during play, according to measured player interaction,
using the adaptation rules presented in Table II three times at
45, 60 and 75 seconds.

For the adaptation experiment, we asked 24 naive3 normal-
weighted children (13 boys and 11 girls) aged 8 to 10 years
to play 4 games each on the Playware platform. The set of
4 games played comprised 2 games of static and 2 games of
adaptive Bug-Smasher in all combinations. Thus, the number
of children participating in the experiment is 4 ·C4

2 = 24, this
being four times the required number of all combinations of
2 out of 4 games. Subjects play games in pairs and each time
a pair of games is finished, the child is asked to choose using
the 4 alternative forced choice (4-AFC) protocol below:
• the first [second] game was more ‘fun’ (see [15] for

terminology used in experiments with children) than the
second [first] game (cf. 2-alternative forced choice)

• both games were equally ‘fun’ or
• neither of the two games was ‘fun.’
Note that children are not interviewed but are asked to fill

in a comparison questionnaire, minimizing the interviewing
effects reported in [33]. Children complete a questionnaire
after games 2, 3, and 4, resulting in three fun comparisons
(expressed preferences) between games 1–2, 2–3, and 3–4, for
each child to report. That provides a total of 72 (24 children
times 3 comparisons) “fun” comparisons. The 4-AFC protocol
above is used since it offers several advantages for subjective
entertainment capture: it minimizes the assumptions made
about children’s notions of “fun” and allows a fair comparison
between the answers of different children, while also making
explicit the “no preference” cases concealed by 2-AFC. The 4-
AFC protocol provides the same preference information as the
2-AFC used in previous experiments [4], [60] for any machine
learning process applied to construct entertainment models.

As an example of a playing behavior, Fig. 2 depicts video-
captured photographs of the initial and final seconds of an
adaptive game played by a subject that expressed a preference
for the adaptive over the static game. This participant played
the static game second and the specific adaptive game first. As
seen in Fig. 2(a) the game starts with low levels of curiosity
corresponding to bugs that mainly appear at the right hand
side of the topology. As the game proceeds the curiosity level
is increased (H +) which results in bugs appearing in a less
predictable manner and in more tile positions (see Fig. 2(b)).
Curiosity adjustments follow the rules presented in Table II
and result in an increased entertainment value (compared to
the entertainment value generated from the static game).

A. Adaptive vs. Static Bug-Smasher

Given the experimental protocol there are 50 out of 72
‘fun’ comparisons between the static (S) and the adaptive (A)
Bug-Smasher. Table III illustrates the number of preference
instances for each of the four alternative choices of 4-AFC.
The number of instances for the (A = S) alternative (20) and

3To check whether the children had any previous experience of the
experimental procedure or the game, which for good experimental protocol
they should not have, they were asked if they had seen the game before. None
had.

(a) Snapshot at the 5th second of the adaptive game

(b) Snapshot at the 80th second of the adaptive game

Fig. 2. Subject no. 6 playing the adaptive Bug-Smasher game that adjusts
the level of curiosity (H) and challenge (s) in real-time. The adaptation
rules during this game are: H − (45 sec), H + (60 sec) and H + (75
sec). Note that subject no. 6 preferred the adaptive over the static game he
played. The ANN input recorded at the end of the static game is NI = 60,
E{rt} = 1.433 sec, σ2{p} = 1.7 · 104 and H = 0.496; the equivalent
ANN input at the end of the adaptive game is NI = 42, E{rt} = 2.032 sec,
σ2{p} = 22.0 · 104, H = 0.675. The static and the adaptive game generate
entertainment values of 0.058 and 0.7311 respectively. Video available at
www.itu.dk/∼yannakakis/playware.html.

the ‘neither was fun’ alternative (0) indicate respectively the
difficulty for the respective children of distinguishing between
the two games and that both games offered an enjoyable
experience to all children participating in the experiment. The
number of preference instances of Table III result in a per-
centage of 60% and 76% for respectively higher, and higher or
equal, preference for the adaptive game versus the static game.
The binomial-distributed probability of these two percentages
to occur at random is 0.1002 and 1.59 · 10−4 respectively.
Even though not statistically significant, the percentage of
children who prefer the adaptive game encourages belief in
the effectiveness of the simple adaptation mechanism proposed
here.
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TABLE III
INSTANCES OF SUBJECT PREFERENCES BETWEEN THE ADAPTIVE (A) AND

THE STATIC (S) GAME

Choice Instances

Adaptive is more fun (A Â S) 18

Static is more fun (A ≺ S) 12

Equally fun (A = S) 20

Neither was fun 0

Total 50

VII. STATISTICAL ANALYSIS OF THE ENTERTAINMENT
VALUE

Next, we investigate whether the adaptation mechanism has
a positive impact on the entertainment value of the game.
For this purpose, we calculate the entertainment values y of
the aforementioned 50 static (ys) and adaptive (ya) full (90-
second) game pairs played during the experiment, given the
ANN model and its input features. The assumption made here
is that each user of the system playing the same game variant
(i.e. static game) twice will generate a similar entertainment
value through the ANN model. This assumption is supported
by a t-test for means of paired samples which demonstrates
no significant difference in the entertainment value between
the static games played by the same child (t = 0.7325,
P (T ≤ t) = 0.2412).

In 13 out of 50 game pair instances the absolute differ-
ence |ya − ys| is lower than 0.05 and is not considered for
further investigation since the significant difference level is
set to 5% of the y interval. In 28 out of the remaining 37
games (75.67%), adaptation improved the entertainment value
regardless of the static game’s generated entertainment value
ys. The binomial distributed probability of this performance
to occur at random is 0.0012 demonstrating the efficacy of the
adaptation mechanism in increasing the entertainment value of
the game significantly. Fig. 3 summarizes all above-mentioned
observations in a (ya − ys) stem plot for all 50 game pair
instances.

A clear observation derived from Fig. 3 is that the adaptive
mechanism increases the game’s y value independently of
subjects’ entertainment preference. Another observation is
that the number of game pair instances with corresponding
insignificant change of y (|ya − ys| < 0.05) is higher in the
class of A = S preferences (7 instances) than the class of
A Â S (4 instances) and A ≺ S (2 instances) preferences.
This observation suggests that the generated y values have an
effect in the A = S expressed preference situation, and might
explain the children’s difficulty in choosing one of the two
games played.

A. Adaptation Maladjustments

There are many factors that might have affected the enter-
tainment preference of children with respect to real-time adap-
tation. Our hypothesis is that erroneous H and s adjustments
by the adaptation mechanism, that lead to lower y values, is the
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Fig. 3. Stem plot of y difference between the adaptive and the static game
(ya − ys). Filled circles (‘•’) represent preference of the adaptive over the
static game (A Â B); circles (‘◦’) represent preference of the static over the
adaptive game (A ≺ B); squares represent equal preference (A = B). The
area between the dotted lines indicates the 5% significance level of y. Game
pairs in each preference class are sorted in descending order of the ya − ys

value.

key factor correlated to entertainment preferences. To examine
this, we compute the entertainment values predicted by the
model at the 45th, 60th and 75th second of each adaptive
game played. We investigate 150 parameter adjustments in
total since 3 game parameter adjustments occur during each
of the 50 adaptive games. Only 18.67% (28 out of 150) of
those parameter adjustments lead to a lower y value being
computed the next time an adjustment is made (15 seconds
later). On the other hand, increased y value is observed
in 57 of those parameter adjustments (as mentioned before,
absolute differences lower than 0.05 are excluded from further
investigation). Even though the proportion of maladjustments
is quite low, most of these erroneous real-time adaptation
decisions result in very low y values from which the adaptive
system cannot easily recover before the end of the game.
Decrease of y is mainly caused by maladjustments of the tile
visits entropy, H , since there are only 3 maladjustments of the
speed parameter, s, in the dataset leading to lower y values.

Further insight is possible by investigating the correlation
of those maladjustments with the entertainment preferences
expressed. Fig. 4 illustrates y difference values due to game
parameter adjustments for three classes of preferences: a)
adaptive game is preferred to static game (A Â S, see
Fig. 4(a)); b) static game is preferred to adaptive game —
(A ≺ S, see Fig. 4(b)) and c) adaptive and static game are
equally ‘fun’ (A = S, see Fig. 4(c)). Table IV summarizes
the percentages of total maladjustments, game instances with
at least one maladjustment and maladjustments leading to
lower entertainment values, for each of the three classes
of preference. There is a great difference in the proportion
of maladjusted games between the two classes of opposite
preference: A Â S (33.33%) and A ≺ S (83.33%). Moreover,
while only 16.66% of those maladjustments result in lower y
values in the class of children that preferred the adaptation
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game, 40% of those maladjustments have a negative impact
on the y value in the class of children that preferred the
static game. This suggests that maladjustments during the
game affect children’s preference for the adaptive game. The
correlation coefficient between entertainment preferences (the
20 instances where A = S are excluded) and maladjusted
adaptive games equals 0.4910 with a corresponding p-value
of 0.0059 demonstrating the significant impact of adaptation
maladjustments on the entertainment preference of children.

An additional experimental effect seen in Fig. 4 is that
adjustments at the 45th second have, on average, a lower
impact on the y value than adjustments at the 60th and the 75th

second of the game. This effect is confirmed by the absolute
y difference values at those times: 0.162, 0.291 and 0.3155
respectively.

In addition to the maladjusted game factor, the impact of the
random H decision (see Table II) on children’s entertainment
preferences was also examined. However, results obtained do
not demonstrate any significant effect.

TABLE IV
PERCENTAGES OF TOTAL MALADJUSTMENTS, GAME INSTANCES WITH AT

LEAST ONE MALADJUSTMENT AND MALADJUSTMENTS LEADING TO
ya < ys OVER THE THREE CLASSES OF PREFERENCE: A) ADAPTIVE IS

PREFERRED TO STATIC GAME (A Â S); B) ADAPTIVE AND STATIC GAMES
HAVE EQUAL PREFERENCE (A = S); C) STATIC IS PREFERRED TO

ADAPTIVE GAME (A ≺ S);

A Â S A = S A ≺ S

Total maladjustments 14.81 15.00 30.55
Game instances 33.33 35.00 83.33
Maladjustments leading to ya < ys 16.66 14.28 40.00

VIII. DISCUSSION

The main assumption underlying this use of entertainment
models for game control is that an entertainment preference
expressed at the end of a game is valid for the game as a
whole. This rather dubious assumption stands up quite well
in the work reported above, but in general one might wish
to obtain within-game preference data directly rather than
estimate it from end-of-game data. Obtaining entertainment
preferences during play is certainly a protocol an experiment
designer may follow. However, such a protocol is likely to
be intrusive to the user, augmenting the ‘noise’ present in
the expressed preferences and affecting the validity of the
data collected. Ideal conditions for effective data collection,
proposed by Picard et al. [61], recommend that subjects
should not be questioned during the task under examination
(playing the game) since this interferes with the user’s playing
behavior. Thus, questioning during play was not adopted since
it was judged a priori to be too intrusive and, a posteriori,
unnecessary.

It is generally a hard task to acquire proper and ‘clean’ data
for building cognitive models using machine learning. To the
best of the authors’ knowledge there is no study investigating
the impact of time intervals between questions on expressed
responses. Monitoring physiological signals that correlate to
sympathetic arousal (e.g galvanic skin response) could provide
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(a) The 18 (A Â S) instances
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(b) The 12 (A ≺ S) instances
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(c) The 20 (A = S) instances

Fig. 4. y difference values due to the game parameter adjustments occurring
at the 45th, 60th and the 75th second of the adaptive game. The difference in
the entertainment value is computed 15 seconds after each adjustment. Solid
lines (bold or not) correspond to adaptive games free of maladjustments. Bold
lines (solid or dotted) correspond to adaptive games that generate higher y
value than the respective y value generated by the static game (ya > ys).
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some indications about the level of ‘fun’ during the game as a
non-intrusive alternative to questions. That strategy, however,
implies a new assumption, that ‘fun’ is highly correlated to,
or can easily be inferred from, sympathetic arousal.

Fun is almost certainly not constant during a game, but the
performance of the adaptive controller suggests that this is not
of vital importance, at least for Bug-Smasher. Additionally, the
ANN entertainment preference models built on data derived
from the game as a whole were evaluated on several smaller
in-game time windows with the suggestive result that the
difference between models’ prediction accuracy on the whole
90-second play window and their prediction accuracy on the
9-second time window is approximately 16%.

Another point of concern is that the generated model is
the composite of subjective preferences of several subjects.
The model is thus not perfectly adapted for any individual
child playing the game. Results here and in our previous work
[4] demonstrate that such composite models do nevertheless
give good preference prediction performance. Models might
be further individualized by on-line model learning during
gameplay — though we have at present no suggestions for
how this might be realized.

One might also question the constraint (or assumption) that
the preferences expressed by the children must be consistent.
This is necessary for a consistent model to exist, though a
(perhaps poorly-performing) model can still be constructed
when the assumption is false. The assumption was tested in [4]
using order effect statistics; preferences do not appear strongly
pairwise inconsistent by such measures. It is not clear that
they are transitively consistent, though. Nevertheless, given the
performance of the models reported in [4] this is evidently not
a significant issue.

One of the limitations of the proposed entertainment mod-
eling approach lies in the complexity of entertainment as a
mental state. The generated y value cannot be regarded as a
mental affective state approximator but is rather a correlate of
expressed children’s entertainment preferences. Despite this,
the y value serves the purpose of this work well as far as
entertainment modeling and optimization is concerned. Using
the proposed entertainment augmentation scheme, knowledge
of the direction (from the partial derivative) in which specific
controllable features should be adjusted is available through
the model; however, the magnitude of such an adjustment is
not known a priori. Thus, applying gradient search with a
fixed step in a given game feature may unexpectedly lead to
lower values of entertainment. This is a fundamental limitation
of the gradient-ascent adaptive mechanism, which appears
here to cause more significant maladjustments of the curiosity
(H) than the challenge (s) parameter. This problem might
be resolved by injecting more controllable feature (challenge,
curiosity) states in the search space or by introducing machine
learning in real-time as proposed below.

Note that curiosity is a directly adjustable game parameter
that also serves as input to the model. The gradient of y with
respect to such game parameters can be computed and serves
as a sufficient basis for control. However, speed (challenge) is
a Bug Smasher game parameter which is not a model input.
Control of challenge is derived from an a priori relationship,

coded in the set of rules in Table II, between challenge and
the player features that are inputs to the model. While gradient
ascent suggests what changes to the player features will lead
to higher y value, the game controller has no direct way to
effect such changes, and control of challenge functions as an
indirect method for positively influencing the player features.

The obvious modification to the current, simple, mechanism
is to apply (for example) temporal difference reinforcement
learning, most likely via classifier systems, to derive the
relationship between desired player feature changes and the
game control actions that actually effect them — i.e. to learn
analogues of the designer-created rule-set used here. In such
an approach, the game internal controls (challenge, curiosity)
could be adjusted (within limits) and the effect on player
satisfaction monitored using the entertainment model. The
observed satisfaction changes would then act as reinforcement
for the actor process adjusting the controls. To speed up
learning, the reinforcement learning system could be seeded
with the gradient information from the entertainment measure.
The results of learning could also be saved so that experience
with a given player accumulates: the game then adapts to the
particular player over time.

Such a mechanism not only addresses the issue of how to
achieve desired modifications to player features, which by their
nature cannot be directly controlled, but also handles the quan-
tization problem implicit in the gradient ascent mechanism: the
adjustment is only valid in the limit and any finite adjustment
of the game controls may be an ‘over-adjustment’ resulting in
a decrease of y. The principal disadvantage of such a learning
scheme is likely to be its (slow) rate of learning the player’s
characteristics.

The entertainment modeling approach presented here is
general for the majority of action games created with Playware
since the quantitative measures of challenge and curiosity are
estimated through the generic features of speed and spatial
diversity of the opponent on the game’s surface. Thus, these or
similar measures could be used to adjust player satisfaction in
any future game development on the Playware tiles. However,
each specific game possesses individual entertainment features
that might need to be identified, quantified and added to the
candidate feature set. Therefore, more games of the same
and/or other genres must be tested to validate this hypothesis.

The generated ANN model is built using data derived from
time, location and intensity of foot pressure events. Therefore,
the model itself could potentially be used to capture player
satisfaction in exertainment games that involve similar interac-
tion, e.g. Dance Dance Revolution and Wii fit. However, further
user studies would be required to validate this hypothesis.

While the entertainment model presented is not directly
applicable to different modes of interaction (e.g., key strokes of
a screen-based game), the player satisfaction modeling mech-
anism and the real-time adaptive technique could potentially
scale up to complex 3D commercial-standard screen-based
games. Earlier work has already shown that the experimental
methodology of entertainment modeling is successful with
both prey/predator screen-based games and Playware games
[32].

A similar experimental approach can be followed for any
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computer game under investigation. First, factors of enter-
tainment (e.g. challenge) need to be identified by the game
designer. For each qualitative factor identified, one or more
quantitative measures or variables available in the game and
correlated with that factor need to be instrumented. The
measures could typically include information on the game
(e.g. speed, level complexity) and opponent behavior; these
measures define the game feature set which can be used to
generate a pool of dissimilar game variants (e.g. a slow vs. a
fast game).

Features of playing behavior should also be identified and
measured from the player’s interactions with the game (e.g.
time spent on a task, alternatives chosen, tracking of move-
ment, use of items and contraptions). Meta-features combining
two or more player features may also be relevant but could
be automatically designed through the user modeling ap-
proach proposed. Human survey experiments are then devised
to record game and player features and reported expressed
emotions for the game variants designed (cf. Section III).
Complementary to ‘fun’, the game designer might choose
additional emotions to investigate further: questionnaires ex-
ploring additional affective states, e.g. interestingness, excite-
ment, frustration, boredom etc., could be designed. Note that
comparative emotion analysis [62] using 4-AFC is strongly
recommended for eliciting subjective reports of emotional
preference or state.

Preference learning, through e.g. neuro-evolution, builds
on the recorded player and game features to construct non-
linear mathematical expressions that correlate with or predict
the player-reported emotions. Feature selection combined with
preference learning can isolate those player and game features
that contribute to predicting reported emotions, resulting in
cognitive/affective models represented by ANNs. A game
designer can then handcraft the whole playing experience for
the player using information such as the gradient of the ANN
model, as presented in this paper. For instance, the designer
may decide that a good player experience should comprise
high values of interestingness and frustration at a certain
game level, followed by low values of boredom and high
values of excitement at the next level. The proposed approach
automates parts of the modern game development process,
such as quality assurance and testing, while also providing
an alternative and more accurate method for crafting player
experience compared to the standard practices of difficulty
scaling and rubber band artificial intelligence which are used
extensively in game development.

IX. CONCLUSIONS

This paper introduced an adaptive approach for augmenting
player satisfaction in Playware games in real-time. The first
step is to make use of the player satisfaction models derived
from entertainment modeling processes to adjust Bug-Smasher
game parameters on-line. Previous studies [4] on preference
learning through the combination of neuro-evolution and fea-
ture selection generated ANN models able to predict — based
on player features comprising children’s average response
time, the variance of the pressure they exert on the tiles and

the number of interactions with the playground, together with
the game feature of curiosity — the children’s entertainment
preferences with a 3-fold cross-validation accuracy of 77.77%
(binomial-distributed p-value = 0.0019). These models are
used here as the basis of the adaptive game controller.

The mechanism presented here uses gradient ascent, on
one such entertainment model, with respect to model inputs
— the number of interactions, average response time and
curiosity metric. For instance, if the partial derivative of the
entertainment value (model output) with respect to curiosity
(model input) is positive, one can increase the curiosity level
control a little and expect a positive increment in player
enjoyment. On-line adjustments of both the speed (challenge)
and spatial diversity (curiosity) of the game opponents are
controlled by simple rules, using the model derivatives, that
are applied 45, 60 and 75 seconds into the 90 second game.

A survey experiment for evaluating the performance of the
adaptation mechanism was designed in which 24 children were
asked to compare the standard (static) versus the adaptive
variant of the Bug-Smasher game. Results reveal a preference
for the adaptive Bug-Smasher game. A further statistical
analysis of the generated entertainment value demonstrates the
positive impact of real-time adaptation for the improvement
of the gameplay experience of Playware users. The adaptive
mechanism introduced here augments the entertainment value
of the game in the majority (75.67%; p-value = 0.0012) of
the initial conditions investigated. In other words, the game
adapts to the specific child by significantly increasing the
entertainment value generated compared to the corresponding
(baseline) static game played by the same child.

A deeper analysis of the adaptation mechanism and its effect
on the generated entertainment value reveals that maladjust-
ments of the curiosity and challenge levels occur that lead to
lower entertainment values. Statistical analysis demonstrates
a significant impact of those maladjustments in reducing chil-
dren’s expressed preference for the adaptation game. However,
the statistically significant improvement of the entertainment
(y) values when real-time adaptation occurs provides encour-
aging evidence that real-time optimization, based on enter-
tainment preference models, of player satisfaction is possible
even with a simple gradient ascent adaptive mechanism like
that tested here.
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