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Abstract

Adaptive human computer interaction is necessary for
successfully closing the affective loop within intelligent in-
teractive systems. This paper investigates the impact of
adaptivity on the physiological state and the expressed emo-
tional preferences of users. A physical interactive game
is used as a test-bed system and its real-time adaptation
mechanism is evaluated using a survey experiment. Results
reveal that entertainment preferences expressed are consis-
tent with the affective model constructed and that adapta-
tion generates dissimilar physiological responses with re-
spect to preferences.

1. Introduction

There is an increasing research interest towards person-
alization of human machine interaction and construction of
adaptive systems built on computational models of user in-
teraction. The successful realization of the biocybernetic
loop [17] as the core component of a physiological com-
puting system defines an important pathway toward such
adaptive systems. Motivated by the lack of analysis on the
impact of adaptation on constructed affective models and
reported emotions this paper investigates the effect of adap-
tivity to physiology and expressed emotional preferences in
physical interactive play. The Playware [12] physical activ-
ity platform is used as a test-bed for the experiments pre-
sented here.

An artificial neural network (ANN) user model has been
constructed [24] that efficiently maps between controllable
Playware game characteristics (game features), individual
playing behavior statistical data (player features) and ex-
pressed entertainment (“fun”) preferences — entertainment
and fun will be used interchangeably in this paper. Follow-
ing the same approach of preference learning, an accurate
ANN model of entertainment preferences has been built on
physiological signal data [26]. The former and the latter

model are named, respectively, interaction and physiolog-
ical model of reported entertainment; both models output
numerical values for entertainment that successfully match
the entertainment preferences of users. Data used for train-
ing the ANN models (gameplay interaction, physiological
and self-report data) were collected through survey exper-
iments of children playing simple physical activity games
designed on the Playware platform.

The adaptation mechanism employed here adjusts inter-
nal controls of the game (i.e. speed) during play to max-
imize the predicted entertainment value of the game de-
rived from the interaction model. The mechanism’s im-
pact on physiology and the ANN physiological model is
evaluated through a survey experiment. Results show that
reported entertainment preferences correlate significantly
with the entertainment values generated from the physio-
logical model demonstrating the robustness of the model.
Moreover, adaptation appears to generate two classes of
physiological state which reveal different changes of the
entertainment value — derived from the physiological af-
fective model — and yield dissimilar preferences for the
adaptation mechanism.

2. Affective modeling through physiology in
games

The concept of affective gaming [9] has recently at-
tracted significant attention within the affective comput-
ing community. Measurements of physiological quanti-
ties have been used extensively for emotion recognition in
children and adults while playing games [4]. Correlations
between physiological signals — galvanic skin response
(GSR), jaw electromyography (EMG), respiration and car-
diovascular measures — and reported adult user experi-
ences in computer games have been examined by Mandryk
et al. [14,15]. Working on the same basis, Ravaja et al. [19]
examined whether the nature of the game opponent influ-
ences the physiological state of players. In addition, Ha-
zlett’s [7] work focused on the use of facial EMG to dis-
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tinguish positive and negative emotional valence during in-
teraction with a racing video game. Moreover, Rani et
al. [18] propose a methodology for detecting the anxiety
level of the player and appropriately adjusting the level of
challenge (e.g. speed) in the game of ‘Pong’. On the same
basis, a biocybernetic loop [4] that controls system adapta-
tion through frustration (rather than anxiety) recognition is
suggested by Gilleade et al. [11]. Physiological state (hear-
rate, galvanic skin response) prediction models have also
been proposed for potential entertainment augmentation in
computer games [16].

All of the studies referred to above use physiological
measurements for capturing user experiences (e.g. “fun”,
engagement or excitement) applied within screen-based
computer games. On the other hand, heart rate (HR) signals
have been monitored to effect discrimination between chil-
dren’s exploration, problem-solving and play tasks [1]. Ex-
periments with two-year old children further showed sup-
pression of heart rate variability (HRV) during exploration,
and solution of a puzzle, suggesting that the task demands
for these two activities were greater than those during play
[10]. Experiments by Yannakakis et al. [23, 26, 29] have
distinguished those features of HR, skin conductance (SC)
and blood volume pulse (BVP) signal recordings of children
attributed to entertainment from those features that corre-
spond to pure physical activity in action games played in in-
teractive physical playgrounds. In those studies, highly ac-
curate subjective models (predictors of entertainment pref-
erences) of reported “fun” grounded in statistical features of
physiological signal dynamics were constructed.

This study is innovative in that it explores the impact
of an adaptive human-machine interactive system on phys-
iology and affect. Physical interactive games are used as
the initial test-bed evaluation scenario. To the best of the
author’s knowledge, there is no other study investigating
closely related aspects of affective modeling and intelligent
interaction. Given that very little is known about the effi-
cacy of adaptation in terms of psychophysiological state [4],
this paper provides some first insight into the interplay be-
tween adaptation and psychophysiology during physical in-
teractive play. This work follows an implicit adaptation ap-
proach of the biocybernetic loop as presented in [4]: The
game adapts according to a cognitive model of reported
“fun” built on player-game interaction data (i.e. interaction
model) and the impact of adaptivity on an accurate affective
model built on physiology is investigated.

3. Affective Model Construction
The work described in this paper builds on quantita-

tive user emotion preference models whose construction
and evaluation has been fully described in the literature.
For completeness, a brief recapitulation of the key points
follows. The reader is referred to [26] for further details

of the test-bed used and the entertainment (user) modeling
methodology employed.

3.1. Experimental Setup

The test-bed game used for the experiments presented
here is called ‘Bug-Smasher’. The game is developed on a
6× 6 square Playware [12] playground, comprising 36 tiles
each incorporating processing power, communication, input
(force pressure sensor) and output (light). The tile’s dimen-
sions are 21cm×21cm×4cm. During the game, different
‘bugs’ (colored lights) appear sequentially on the game sur-
face and disappear again after a short period of time as a
tile’s light turns on and off respectively. The bug’s posi-
tion is picked randomly according to a predefined level of
spatial diversity, measured by the entropy (H) of the bug-
visited tiles. The child’s goal is to smash as many bugs as
possible by stepping on the lighted tiles, thereby causing a
force-sensor input to the tile. Screen-shots of the tile setup
and the Bug-Smasher game are presented in Section 5.

In [26], physiological signals and children’s preferences
of entertainment were acquired for Bug-Smasher. Seventy
two children aged from 8 to 10 years participated in the ex-
periment reported. All participants were normal-weighted1,
to minimize the effect of weight as a factor on physical in-
teraction and playing experience. Heart Rate (HR), Blood
Volume Pulse (BVP) and Skin Conductance (SC) were
recorded in real-time and a number of statistical features
of those signals were extracted. Children played two game
variants for 90 seconds each; the two games differed in the
levels of challenge (i.e. bug’s speed) and curiosity (i.e. bugs’
spatial diversity) factors identified by Malone [13]. For each
completed pair of games, children reported their “fun” pref-
erence using a 2-alternative forced choice (2-AFC) proto-
col.

3.2. Feature Selection and Preference Learning

To construct a quantitative user preference model from
the game pair data, the Sequential Forward Selection (SFS)
feature selection technique is applied to select that subset of
a set of candidate individual physiological signal features
that allows the best-performing ANN model to be built. The
SFS method is a bottom-up search procedure in which one
feature is added at a time to the current feature set. The
feature to be added is selected from the set of remaining
candidate features such that the new feature set generates
the maximum value of the performance function over all
candidates for addition [2].

The key assumption in model construction is that the
entertainment value y of a given game — which models
the subject’s internal response to playing the game, that is,
how much “fun” it is — is an unknown function of individ-

1Based on their body mass index lying between 18.5 and 25.



(a) σ{RR} = 0.0 (b) σ{RR} = 1.0

Figure 1. Evolved ANN, reported in [26], that yields the best clas-
sification accuracy on unknown data (89.29%): ANN output y
(entertainment value) with regards to HF andE{h} for two values
of σ{RR} (0.0, 1.0).

ual physiological signal features which a machine learning
mechanism can learn. The subject’s expressed preferences
constrain but do not specify the values of y for individual
games but it is assumed that the subject’s expressed prefer-
ences are consistent.

The ANN representing the user preference model is con-
structed using a preference learning [3] approach in which
a fully-connected ANN of fixed topology is evolved by a
generational genetic algorithm (GA) [8] which uses a fit-
ness function that measures the difference between the chil-
dren’s reported preferences of entertainment and the model
output value y. The GA chromosome is a vector of ANN
connection weights. The performance of an ANN model
is measured through the average classification accuracy of
the ANN in three independent runs using 3-fold cross-
validation on these training and validation data sets.

Experiments for finding the candidate feature subset
yielding the highest ANN performance resulted [26] in a
3-fold cross-validation performance of 79.76% (average of
75%, 75.00% and 89.29%) when the ANN input (selected
features from SFS) contains the average heart rate, E{h},
the standard deviation of inter-beat (RR) time intervals,
σ{RR}, and the energy of the high frequency band (i.e.
(0.15, 0.4] Hz) of heart rate variability, HF. The HF fea-
ture indicates high parasympathetic heart activity and is
suppressed during mental or emotional stress [5, 22]. The
function between HF, E{h}, σ{RR} and the game’s pre-
dicted entertainment value (y) given by the highest perform-
ing ANN found is illustrated in Figure 1.

4. Real-time Adaptation Mechanism

The real-time adaptation mechanism presented here is
introduced in [27] and the reader is referred to that study
for all details covering the mechanism. Herein, the main el-
ements of the mechanism are discussed; in particular, the

game controllable features that are adjusted and the fre-
quency of adaptation.

The idea behind real-time adaptation is to use a “fun”
metric evaluation function (ANN user preference model) di-
rectly to enhance the entertainment provided by the game.
The key to this is the observation that the ANN interac-
tion user model [27] represents a (differentiable) functional
relationship of game (controllable) features to an entertain-
ment value y. It is therefore possible in principle to infer
what changes to game features will cause an increase in the
entertainment value of the game, and to adjust game pa-
rameters to make those changes. Thus a simple gradient-
ascent mechanism is used to adjust the levels of challenge
(i.e. speed) and curiosity (i.e. H) to maximize the reported
entertainment value y in real-time. Adjustments of speed
and H occur on the 45th, the 60th and the 75th second of the
90 second Bug-Smasher game.

5. Adaptation experiment
The mechanism described in the previous section was

tested with Bug-Smasher. Two variants of the game were
constructed: the static and the adaptive. The bugs’ speed
(S) and spatial diversity (H) for the static game were ad-
justed to the average of the values used in all Bug-Smasher
experiments [24]. The adaptive game was initialized with
the same values for speed and spatial diversity but the chal-
lenge and curiosity levels (states) were adjusted, according
to measured player interaction, using the adaptation rules
presented in [27] three times during the game: at 45, 60 and
75 seconds.

For the adaptation experiment, 24 naive normal-
weighted children (13 boys and 11 girls) aged 8 to 10 years
are asked to play 4 games each on the Playware platform.
The set of 4 games played comprised 2 games of static and 2
games of adaptive Bug-Smasher in all combinations. Thus,
the number of children participating in the experiment is
4 · C4

2 = 24, this being four times the required number of
all combinations of 2 out of 4 games. Subjects play games
in pairs and each time a pair of games is finished, the child
is asked to choose among the following alternatives: (a)
the first [second] game was more “fun” (see [20] for ter-
minology used in experiments with children) than the sec-
ond [first] game (cf. 2-alternative forced choice); (b) both
games were equally “fun” or (c) neither of the two games
was “fun.”

Note that children are not interviewed but are asked to
fill in the comparison questionnaire above, minimizing in-
terviewing [15] and experimenter expectancy effects [21].
Children complete a questionnaire after games 2, 3, and
4, resulting in three “fun” comparisons (expressed prefer-
ences) between games 1–2, 2–3, and 3–4, for each child
to report. That provides a total of 72 (24 children times 3
comparisons) “fun” comparisons. The 4-alternative forced



(a) Snapshot at the 5th second of the
game

(b) Snapshot at the 80th second of
the game

Figure 2. Subject no. 6 playing the adaptive Bug-Smasher game
that adjusts the level of curiosity (H) and challenge (S) in real-
time. The adaptation rules during this game are: H − (45 sec), H
+ (60 sec) and H + (75 sec). Note that subject no. 6 preferred the
adaptive over the static game he played.

choice (4-AFC) protocol above is used since it offers sev-
eral advantages for subjective entertainment capture: it min-
imizes the assumptions made about children’s notions of
“fun” and allows a fair comparison between the answers of
different children while also making explicit the “no prefer-
ence” cases.

As an example of a playing behavior, Figure 2 depicts
screen-shots of the initial and final seconds of an adaptive
game played by a subject that expressed a preference for the
adaptive over the static game. This participant played the
static game second and the specific adaptive game first. As
seen in Fig 2(a) the game starts with low levels of curiosity
corresponding to bugs that mainly appear at the right hand
side of the topology. As the game proceeds the curiosity
level is increased (H +) which results to bugs appearing
in a less predictable manner in more tile positions of the
topology (see Figure 2(b)).

6. Results

Given the experimental protocol there are 50 out of 72
“fun” comparisons between the static (S) and the adaptive
(A) Bug-Smasher. Within those 50 comparisons, 20 choices
select the ‘both games were equally fun’ (A = S) alterna-
tive and not a single choice the ‘neither was fun’ alterna-
tive. The first indicates the difficulty for the respective chil-
dren of distinguishing between the two games whereas the
latter shows that both games offered an enjoyable experi-
ence to all children participating in the experiment. In 18
and 12 out of the remaining 30 comparisons, children ex-
pressed a preference for the adaptive (A � S) and the static
(A ≺ S) game respectively. Even though not statistically
significant, the percentage of children’s preference for the
adaptive game provide promise for the effectiveness of the
adaptation mechanism as shown in [28].

6.1. Affective Model and Reported Preferences

Given the individual physiological signal features and
the ANN affective model reported in [26], the y values of
the aforementioned 30 static and adaptive game pairs played
are calculated via forward activation of the ANN model.
Then the test statistic introduced in [25] is followed for val-
idating the hypothesis that observed human judgement of
entertainment correlates with the computed entertainment
value, as far as the different game variants are concerned.
The correlation value between the generated y values and
the reported entertainment preferences of the static-adaptive
game pairs equals 0.7333 and its corresponding binomial
distributed p-value is 0.002. This suggests that the gener-
ated y values correlate significantly with children’s pref-
erences and demonstrates the robustness of the affective
model to efficiently predict entertainment preferences in the
adaptation experimental study presented here. Even though
this study includes physiological data sampled from adap-
tive games — on which the model is not trained — the
model yields a statistically significant correlation with the
expressed preferences of those games.

6.2. Adaptivity and Physiology

Herein the impact of the adaptation mechanism on
children’s physiology is investigated given the 30 static-
adaptive pair values in which children expressed a clear
preference for either the adaptive (A � S) or the static
(A ≺ S) game. This paper focuses on the three physiologi-
cal signal features that constitute the input vector of the af-
fective physiological ANN model: HF, E{h} and σ{RR}.
Subsequently the impact of adaptation on the entertainment
value generated in those games is also investigated. The as-
sumption made hereby is that each subject playing the same
game variant (i.e. static game) twice will yield similar phys-
iological indexes — inputs of the ANN model — and gen-
erate a similar entertainment value through the ANN model.
This assumption is supported by a t-test for means of paired
samples which demonstrates no significant difference (sig-
nificance equals 5% in this paper) in HF (t = 2.2033,
P (T ≤ t) = 0.0634), E{h} (t = −0.8744, P (T ≤ t) =
0.4108), σ{RR} (t = 1.5852, P (T ≤ t) = 0.1569) and the
entertainment value (t = −1.5847, P (T ≤ t) = 0.1570)
between the static games played by the same child.

As a first step, the differences between the three ANN
input values generated during the adaptive game and the
corresponding values generated at the static game played by
each subject are calculated. These differences are illustrated
in Figure 3(a) denoted as ∆HF, ∆E{h} and ∆σ{RR}. A
clear observation (see Figure 3(a)) is the existence of two
main clusters of static-adaptive game pairs. More data clus-
ters can possibly be identified; however, k-means cluster-
ing [6] reveals that two (k = 2) classes are adequate to



(a) Big and small circles represent increase and decrease of the y value,
respectively, due to adaptation.

(b) Data clustered using K-means (k = 2). The two data clusters are
represented by circles and squares while cluster centroids are repre-
sented by asterisks (‘∗’).

Figure 3. ANN input value differences between the adaptive and
the static game. Filled markers — circles (‘•’) or squares (‘�’)
— correspond to game pairs where the adaptive is preferred to the
static game (A � B). Empty markers — circles (‘◦’) or squares
(‘�’) — correspond to game pairs where the static is preferred to
the adaptive game (A ≺ B).

yield a clear distinction between the clusters of data. Note
that the average quantization error in 1-means and 2-means
clustering is 0.1519 and 0.0617 respectively.

Within the first class of game pairs (right cluster cen-
troid of Figure 3(b)) we meet children whose HF energy
and standard deviation of the RR intervals are either slightly
increased or decreased due to adaptation: ∆HF < 0.1 and
σ{RR} < 0.1. Furthermore their average heart rate is in-
creased E{h} > 0.0 when the adaptive game is played.
This corresponds to a constantly (decreased σ{RR}) more
energetic (increased E{h}) play of higher emotional or

mental load (decreased HF) which is reported as entertain-
ing for the majority (12 out of 17) of children of this class.

The second class (left cluster centroid of Figure 3(b))
corresponds to children with increased HF energy (∆HF >
0.0) and standard deviation of RR intervals (∆σ{RR} >
0.1) and decreased average heart rate (∆E{h} < 0.0) due
to adaptation. The adaptive game appears to generate a
more dynamic (increased σ{RR}) play that involves lower
mental or emotional load (increased HF) and lower phys-
ical effort (decreased E{h}). Children of this class have
a slight preference for the static over the adaptive game in-
stead since the static game is chosen in 6 out of 13 game pair
instances. This generates the assumption that a game which
forces children towards a more dynamic play and generates
lower mental or emotional load combined with lower phys-
ical effort appears to be preferred by children. The validity
of this assumption is supported by the observation that y is
increased due to adaptation in only 1 out of 13 instances of
the second cluster. On the other hand, y is increased due to
adaptation in 13 out of 17 game pair instances of the first
cluster (see Figure 3(a)).

7. Conclusions
This paper investigated the impact of game adaptation on

entertainment preferences of children through a constructed
affective model for predicting user entertainment prefer-
ences. An evaluation survey experiment using Playware
physical interactive game variants is designed and shows
that the affective model built on static game data collected
from earlier studies correlates significantly with entertain-
ment preferences expressed in this evaluation study. Results
demonstrate the robustness and generality of the model in
predicting reported entertainment preferences even in adap-
tive physical interactive games.

The relationship between adaptation and generated phys-
iological state reveals two classes of subjects. The first class
corresponds to a constantly more energetic play of higher
emotional or mental load. The second class corresponds to
a more dynamic play involving lower mental or emotional
load and lower physical effort. The majority of children
within the first class prefer the adaptive game and the ANN
model generates a higher entertainment value, y, for the ma-
jority of the adaptive games of that class. On the other hand,
children of the second class do not express an obvious pref-
erence for the adaptive game while the corresponding gen-
erated y values are lower in the vast majority of game pair
instances.

A fuller analysis of the adaptation mechanism will be re-
quired to identify causes leading to the adaptive games of
the second class. An initial study has already shown that
maladjustments of internal game controls (challenge, cu-
riosity) have an impact on the performance of the adaptation
mechanism and furthermore on expressed preferences [28].



On that basis, adaptation maladjustments might also lead
to physiological states, such as the state of children of the
second class, that affect children’s preferences of adapta-
tion. Moreover the impact of each in-game control adjust-
ment (occurring on the 45th, the 60th and the 75th second
of the game) on physiology would reveal more details on
the relation between adaptation and its effect to physiology
in physical play. Towards this aim more physiological sig-
nal features could be explored and the impact of adapta-
tion on those features would provide further insight into the
adaptation-physiology relationship.
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