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Abstract—Learning from preferences, which provide means for
expressing a subject’s desires, constitutes an important topic in
machine learning research. This paper presents a comparative
study of four alternative instance preference learning algorithms
(both linear and nonlinear). The case study investigated is to learn
to predict the expressed entertainment preferences of children
when playing physical games built on their personalized playing
features (entertainment modeling). Two of the approaches are
derived from the literature—the large-margin algorithm (LMA)
and preference learning with Gaussian processes—while the re-
maining two are custom-designed approaches for the problem
under investigation: meta-LMA and neuroevolution. Preference
learning techniques are combined with feature set selection meth-
ods permitting the construction of effective preference models,
given suitable individual playing features. The underlying pref-
erence model that best reflects children preferences is obtained
through neuroevolution: 82.22% of cross-validation accuracy
in predicting reported entertainment in the main set of game
survey experimentation. The model is able to correctly match ex-
pressed preferences in 66.66% of cases on previously unseen data
(p-value = 0.0136) of a second physical activity control exper-
iment. Results indicate the benefit of the use of neuroevolution
and sequential forward selection for the investigated complex case
study of cognitive modeling in physical games.

Index Terms—Augmented-reality games, Bayesian learning
(BL), entertainment modeling, large-margin classifiers, neuroevo-
lution, preference learning.

I. INTRODUCTION

THERE is an increasing trend toward personalization of
services in computer games, e-commerce, marketing, as

well as other fields. The use of computational methods for
unveiling hidden knowledge regarding the prediction of certain
preferences is also of great importance. Preference learning is
a research area that aids in the process of exploiting a set of
specific features of a subject (e.g., an individual) in an attempt
to predict his or her preferences.

Consider, for example, a banker who knows that a middle-
aged working man with two children prefers investment A over
B over C from an imaginary set of investment programs that the
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bank offers. The banker has used previous experience to learn
certain preferences. A similar approach can be followed by a
machine learner. The aforementioned example can be viewed as
an enhanced variation of supervised learning, where instances
are tagged with preference relations over a set of possible
categorizations, instead of with a single value. From a theo-
retical perspective, such a situation goes beyond prediction of
single values (either in regression or pattern recognition) since
it involves construction of preference models, using relational
structures or value functions [1].

The context of the work reported here is the construction of
user models for a class of children’s gameplaying experience
during physical play in the Playware playground platform.
The purpose of the model is to predict children’s answers to
which variants of a given game are more or less “fun” (or
“entertaining,” which is used synonymously in this paper).
This cognitive modeling task is referred to as entertainment
modeling. The word “fun” is used extensively hereinafter since
it captures best, in our view, children’s notion of the term
“entertainment” [2] and is the term used by the children when
making their experimental self-reports. Entertainment gener-
ated by a physical-game experience is captured through features
extracted from user–game interaction, and feature selection is
used for choosing an appropriate set of features that success-
fully predict expressed entertainment preferences.

In our previous work, we used neuroevolution to construct
such models. In this paper, however, four preference learning
techniques (large-margin algorithm (LMA) [3], meta-LMA,
preference learning with Gaussian processes [4], and neuroevo-
lution) are tested in this application, and their performances are
compared. In each case, the output of the constructed model
is a real number y such that more enjoyable games receive
higher numerical output and that the model functions as an
efficient predictor of reported entertainment preferences, given
suitable specific individual gameplay features. Suitable input-
feature subsets are constructed using two alternative feature se-
lection schemes [n best feature selection (nBest) and sequential
forward selection (SFS)], the performances of which are also
compared. This basic approach to entertainment modeling is
applicable to a variety of games, both computer [5] and physical
[6]–[8], using features derived from the interaction of player
and game environment measured through game parameters
and/or physiological signal data.

The comparative studies between the two feature selection
methods and the four preference learning approaches reveal
that evolving artificial neural network (ANN) models combined
with SFS generate the highest accuracy in classifying between
preferred and nonpreferred Playware game variants. These
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models are trained and validated on gameplay data obtained
from a first (main) set of experimentations and are then eval-
uated using unseen data from a second gameplay and control-
experiment set. The results indicate that ANN user models
that are able to predict children’s preferred game variants,
given suitable individual playing-feature representations, can
indeed be constructed and that such models not only distinguish
gameplay from gamelike nonentertaining physical activity but
also generalize (to some extent) over children’s individual
preferences.

This paper concludes with a discussion of the limitations of
the proposed methodology and of the extent to which it could
be applied to other user-modeling problems. Its generic use
as an efficient baseline for capturing reported entertainment in
physical interactive games in real time is also outlined.

II. PREFERENCE LEARNING

Preference learning has recently attracted significant atten-
tion in machine learning research [1], [9]. The problem of pref-
erence learning has been viewed in two main ways: instance
and label preference learning [1]. We focus on the former here.
Within instance preference learning (IPL), the problem consists
of a set of instances X ’s that are associated with a total- or
partial-order relation and a set of pairwise preference relations
D’s on the instances. In contrast to supervised learning, train-
ing instances are not specified by target values but rather by
pairwise preferences between them. The instances are typically
characterized by a set of attribute-value features. The goal is to
learn a relation among the instances that satisfies those pairwise
preferences. Specifically, IPL, in its general form, learns a
preference relation Px ⊆ X × X for any instance x ∈ X , given
the pairwise preferences D = {vk � uk|k = 1, . . . ,m}. Here,
vk � uk means that the instance vk is preferred to uk (we
assume in the following that v’s are always preferred to u’s.
Previous work on this area has presented approaches that learn
a utility function that assigns a score to each instance [10], [11].
Moreover, algorithms based on large-margin classifiers (see [3],
[10], and [12], among others) and Gaussian processes [4] for
preference learning have been proposed and applied to a series
of dissimilar IPL case studies.

For the entertainment modeling problem under investigation,
the mechanism attempts to approximate a function that predicts
whether u1 � u2 holds, where u1 and u2 represent particular
instances of individual gameplay, for any u1, u2 ∈ X ⊂ Rd,
given the following:

1) a set of d features (features extracted from player–game
interaction data) characterizing a gameplay instance;

2) a set of n training instances X = {xi|i = 1, . . . , n} com-
prising vectors of the measured values of those features
for the (various) games played by the (various) players;

3) a set of m pairwise preferences D = {vk � uk|k =
1, . . . ,m} in which players record which of two games
(game variants) that they preferred (uk, vk ∈ X are the
feature value vectors of the specific gameplay instances
concerned).

Four different IPL algorithms are used and compared in
this paper: LMA [3], an algorithm based on LMA but using

a nonlinear utility function (meta-LMA), IPL with Gaussian
processes [4], and evolving feedforward neural networks [13].
(Further details of the mechanisms used can be found in
Section III.)

To the best of our knowledge, the work of Fiechter and
Rogers [3] is the only comparative study of preference learning
approaches including neuroevolution [13]. In contrast to that
study demonstrating the advantages of the use of large-margin
mechanisms [3] over neuroevolution, in our case study, the
inverse occurs: Neuroevolution appears to be the most appropri-
ate IPL mechanism for effectively capturing children’s level of
entertainment in physical play. While preference learning with
neuroevolution has been introduced in the authors’ earlier work
[6], this paper is innovative in two ways. First, it presents a
comparative study of various preference learning mechanisms
(two derived from the literature and two designed for the prob-
lem under investigation). Second, even though learning from
pairwise preferences has been successfully demonstrated in a
number of domains like scheduling [14], [15] and search-engine
optimization [11], this paper introduces preference learning as a
tool for a cognitive modeling application and demonstrates the
supremacy of neuroevolution for the problem chosen.

III. PREFERENCE LEARNING MECHANISMS

The proposed approach to entertainment modeling is based
on selecting a minimal subset of individual features, on the
basis of which is constructed a quantitative user model that
predicts the subject’s reported entertainment preferences. The
assumption is that the entertainment value y of a given game,
which models the subject’s internal response to playing the
game, i.e., how much “fun” it is, is an unknown function of
individual features that a machine learning mechanism can
learn. The subject’s expressed preferences constrain but do not
specify the values of y for individual games, but we assume that
the subject’s expressed preferences are consistent.

Constraint-satisfaction algorithms cannot solve the problem
since the variable y under the constraint yA > yB for any
two given games A and B has no specific domain values.
Likewise, any machine learning that is based on learning a
target output is inapplicable since target outputs are unknown.
By the use of a ranking approach, numerical values for the
y variable could be made available; however, while ranking
is (presumably) internally consistent for a given player, rank
between players may not be commensurate, giving spurious
numerical targets for learning. Preference learning [9] is the
only applicable type of machine learning for this constrained-
classification problem. There are several techniques that learn
from a set of pairwise preferences, such as algorithms based on
support vector machines (SVMs) [3], Gaussian processes [4],
and evolving ANNs. The four preference learning mechanisms
used and compared in this paper are presented in the following
sections.

A. LMA

The LMA introduced in [3] is based on the fundamental
theory of SVMs and constitutes the baseline linear preference-
learning approach to our problem. LMA has been successfully
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applied in routing problems where, among many approaches, it
even outperforms evolving ANNs [3]. This algorithm restricts
its investigation to subjective entertainment preference func-
tions (y’s), which are linear combinations of individual features
f ’s, i.e., y(f) = f · w. The vector w = (w1, w2, . . . , wd) rep-
resents positive weight variables for the d features investigated
(i.e., a linear classifier) and optimized by the algorithm.

The goal is to obtain y(vk) > y(uk) since the child prefers
the gameplay instance with feature vector vk over one with
feature vector uk for each pairwise preference comparison
k. Let fk = uk − vk, k = 1, . . . , m; the classifier with large
margin can then be obtained by solving the following lin-
ear programming problem using (for example) the simplex
algorithm [16]:

minimize
d∑

j=1

wj

subject to w · fk ≥ 1, k = 1, . . . , m (1)

wj ≥ 0, j = 1, . . . , d. (2)

B. Meta-LMA

This is an algorithm inspired by the LMA algorithm sharing
the same goal (y(vk) > y(uk)) and the principal assumption
that the subjective entertainment preference function (y) is a
linear combination of individual features. According to meta-
LMA, the weight vector w = (w1, w2, . . . , wd) of d selected
features is adjusted to solve the following linear programming
problem:

maximize
1
m

m∑

k=1

g (y(fk), ε) (3)

subject to y(fi) ≥ δ, i = 1, . . . , m (4)

where y(fk) = y(vk) − y(uk), δ is 0.05 in all experiments
presented here, g(y(fk), ε) = 1/(1 + e−εy(fk)) is the sigmoid
function, and ε = 30 if y(fk) > 0 and ε = 5 if y(fk) < 0. Both
the sigmoidal shape of the objective function and its selected
ε values are inspired by its successful application as a fitness
function in neuroevolution preference learning problems on
Playware test-bed games [17]. Thus, meta-LMA can be seen
as a LMA variant enhanced with a nonlinear sigmoid objective
function under maximization.

C. BL

As in LMA and meta-LMA, the main idea of the Bayesian-
learning (BL) approach is that there is an unobservable function
y(x) associated with each instance (subject) x and that these
function values express the preference relations observed in the
data set. We utilize the approach of Williams and Rasmussen
[18], who assume that the function values are random variables
in a zero-mean Gaussian process. The process can be esti-
mated using the covariance matrix. The covariance between the
y-function values that correspond to instances xi and xj can
be defined by the Gaussian kernel, and the elements of the
n × n covariance matrix G are given by G = K(xi, xj) =

exp(−κ/2
∑d

l=1(x
l
i − xl

j)
2), where κ is a positive constant

and xl
i denotes the lth individual feature value of subject xi.

Regarding the likelihood function, we used the proposal of Chu
and Ghahramani [4] in order to portray the preference relations.
The function is defined as follows:

P (L|G) =
m∏

k=1

P (vk � uk|y(vk), y(uk)) .

Based on Bayes’ theorem, the posterior probability can be
written as

P (G|L) =
P (G)
P (L)

m∏

k=1

P (vk � uk|y(vk), y(uk)) .

Upon calculation of P (G|L), a gradient-based optimization
algorithm is implemented to shape the Bayesian model. See [4]
for further details of the BL algorithm.

D. Evolving ANNs

Given the high level of subjectivity of human preferences and
the noisy nature of input data, we believe that more complex
nonlinear functions such as those represented by ANNs might
serve our purposes better. Thus, feedforward multilayered
neural networks for learning the relation between the selected
player features (ANN inputs) and the “entertainment value”
(ANN output) of a game are also evaluated here. Since there are
no prescribed target outputs for the learning problem (i.e., no
differentiable output error function), ANN training algorithms
such as backpropagation are inapplicable. Learning is achieved
through artificial evolution.

The sigmoid function is employed at each neuron, and the
connection weights take values from −5 to 5 to match with
input values that are normalized into [0, 1]. In an attempt
to minimize the ANN size, it was determined that a single
hidden-layered architecture, containing 20 hidden neurons, is
capable of successfully obtaining solutions of high fitness.
This was determined by considering the performance of ANN
architectures with up to two hidden layers containing up to
30 hidden neurons each.

1) Genetic Algorithm: A generational genetic algorithm
(GA) [19] is implemented, which uses a fitness function that
measures the difference between the children’s reported pref-
erences and the relative magnitude of the corresponding model
output values y’s. The ANN is itself evolved. In the algorithm
presented here, the ANN topology is fixed, and the GA chro-
mosome is a vector of ANN connection weights. The algorithm
is described only briefly here since it was previously presented
in full detail in [6].

A population of N (1000 in this paper) networks is initialized
randomly. Initial real values that lie within [−5, 5] are picked
for their connection weights randomly from a uniform distribu-
tion. Then, at each generation, the following are implemented.
First, each member (neural network) of the population is given
two d-tuples (where d is the number of game or player features),
i.e., one for gameplay instance A and one for instance B for
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each pair j of games compared by the player—see Section V
and [6] for how these preferences are elicited from the players.
In each case, the network returns two output values, namely,
yj,A and yj,B , representing the level of “fun” in each game.
Second, each member of the population is evaluated via a
fitness function that measures the degree of match between
ANN outputs (y’s) and children’s reported answers (see [6]).
A high fitness results if the ranking of yj,A and yj,B matches
the expressed preference of the children for each game pair j.
Third, a fitness-proportional selection method is used. Last,
Montana and Davis [20] crossover and Gaussian mutation are
applied (see [6]).

The algorithm is terminated when either a good solution is
found (f > 0.95fmax, where fmax is the maximum possible
fitness) or a large number of generations (10 000) have been
completed.

IV. TEST-BED PHYSICAL GAMES

The Playware [21] prototype playground consists of several
building blocks (i.e., tangible tiles) that allow for the game de-
signer (e.g., the child) to develop a significant number of differ-
ent games within the same platform. The overall technological
concept of Playware is based on physically implemented com-
putational agents (the tiles) incorporating processing power,
communication, input, and output. The DigiWall [22] and Age
Invaders [23] mixed-reality (i.e., real environment augmented
with virtual components) systems, the Scorpiodome [24] game
system, the STARS [25] tabletop game, and the PingPongPlus
[26] digitally enhanced ping-pong game are platforms closely
related to Playware. See [6], [8], and [21] for further details on
the Playware playground.

The “Bug-Smasher” game is used as the test-bed game in
the experiments presented here. Bug-Smasher is developed on
a 6 × 6 square-tile topology. During the game, different “bugs”
(colored lights) appear on the game surface and disappear
sequentially after a short period by turning a tile’s light on and
off, respectively. A bug’s position is picked randomly according
to a predefined level of the bugs’ spatial diversity. The child’s
goal is to smash as many bugs as possible by stepping on
the lighted tiles. Bug-Smasher has been used as a test bed in
previous work; further details can been found in [6], [8], [17],
and [27].

As previously mentioned, the overall goal of this paper is
to model the reported entertainment preferences of users of
augmented-reality physical games, such as Playware games.
Modeling of entertainment preferences is grounded on features
extracted from data recorded during play, which include the
time when a tile was pressed, the pressure force on this tile,
the state of the pressed tile (light’s color), the speed of the
game, and the entropy of bugs’ visits. Four different preference-
learning approaches are applied and compared. These ap-
proaches are used to learn the mapping between the selected
features of the game and individual gameplay and the reported
entertainment preferences. The generated model predicts the
entertainment value of the game in real time, given the current
state of the game and specific personal gameplay features of
the user.

V. EXPERIMENTAL SETUP

According to the experimental design proposed in [8] and
[28] for effectively capturing the level of entertainment, the
test-bed game under investigation is played in variants. For this
purpose, different states (e.g., “low” and “high”) of quantitative
estimators of qualitative entertainment factors (e.g., challenge,
curiosity, and fantasy [29]) are used. (The reader may refer to
[8] and [30] for an analysis of quantitative measures of the
challenge and curiosity factors for the Bug-Smasher game.) The
combination of states/number of entertainment factors gener-
ates a pool of dissimilar games for the designer to investigate.

By experimental design (see [5] and [6]), each subject plays
against k of the selected n variants of the chosen game in
all permutations of pairs. (k equals two and n equals nine in
the main experiment presented in this paper.) Thus, Cn

k is the
required number of subjects to cover all combinations of k out
of n game variants. More specifically, each child plays games in
pairs (games A and B)—differing in the levels/states of one or
more of the selected entertainment factors—for a selected time
window. Each time a pair of games (“game pair”) is finished,
the child is asked whether the first game was more “fun” than
the second game (pairwise preference) or vice versa. Children
are not interviewed but are asked to fill in a questionnaire,
minimizing the interviewing effects reported in [31].

To minimize any potential order effects, each child is re-
quired to play the aforementioned games in the inverse order
too. Statistical analysis of the effect of the order of gameplaying
on children’s judgement of entertainment tests for both order
effects and the level of inconsistency in children’s preferences
(see Section V-A1). For example, for a given pair (A,B),
expressed preferences including both A � B and B � A may
indicate a consistent preference for the first game of a pair
(order effect) or an inability to rank the two games because they
generate the same level of entertainment.

All subjects are given the same instructions by an experi-
menter who is unaware of the purpose of the experiment. No
further oral or eye-contact communication takes place during
experiment tasks and questionnaire, minimizing experimenter-
expectancy effects [32]. The playing time window chosen (90 s
in this paper) is a compromise between effective data collection
(long-enough subject–game interaction to support a relative
judgement) and not overstretching children with excessive pe-
riods of energetic physical play.

Capture of emotional state, such as entertainment, is gener-
ally considered a hard problem mainly because understanding
emotion is hard [33]. Capturing reports of playing experiences
or emotions is still tough since data obtained embed experimen-
tal noise and subjectivity. As previously mentioned, a pairwise
preference scheme [2-alternative forced choice (2-AFC)] is
used in self-reports of children. 2-AFC offers several advan-
tages for a subjective entertainment capture: It minimizes the
assumptions made about subjects’ notions of “fun” and allows a
fair comparison between the answers of different people. Since
the focus is to construct a model relating reported entertainment
preferences to individual playing features—which generalizes
over the reports of different players—2-AFC is preferred to a
ranking approach [31].
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A. Main Experiment

Seventy-two normal-weighted (based on their body mass
index) children whose ages cover a range between eight and ten
years participated in the main experiment presented here. In this
experiment, nine Bug-Smasher game variants were designed as
a combination of two entertainment factors: challenge (bugs’
speed) and curiosity (bugs’ spatial diversity) of three states each
(“low,” “average,” and “high”). The 72 children were asked to
play a pair of Bug-Smasher variants according to the protocol
presented in Section V. The Bug-Smasher test-bed game has
already been used in previous work [6], [27]; however, the
results presented in this paper are derived from new and more
extensive experiments on this test bed.

Out of the total number of 288 games played in this exper-
iment, in 274 games (137 game pairs), child–game interaction
data were properly recorded. In the remaining 14 games, data
were lost because of hardware failure (data transmission) dur-
ing the game. There is no reason to suppose that the hardware
failure, resulting in loss of data in 4.8% of the experimental
games, has any particular bias with respect to our experimental
hypothesis. The set of correctly recorded data collected from
137 game pairs of the main experiment underlies the analysis
presented in this paper.

1) Order Effects: To check whether the order of playing
Playware games affects the children’s judgement of entertain-
ment, we follow the order testing procedure introduced in [8],
which is based on the times that the subject prefers the first
or the second game in both pairs. This statistical analysis,
which is presented in [17], shows that no significant order
effect is detected: Statistical correlation of order of play with re-
spect to reported entertainment (rc) equals 0.102; the binomial
distributed probability of this correlation to occur at random
(p-value) equals 0.224. The reported insignificant order effect
also demonstrates in part that effects such as a child’s possible
preference for the very first game played and the interplay
between reported entertainment and familiarity with the game
are statistically insignificant.

B. Controlled Physical Activity Experiment

In order to discover whether there is anything in the type of
physical activity that is characteristic of an entertaining game,
we designed an additional experiment where the physical-
activity control is achieved through a nonentertaining variant
of the Bug-Smasher game named the “Stomping game.” This
game requires children to stamp on Playware tiles in a sim-
ilar way to Bug-Smasher but systematically and without any
variation in response from the game platform. Children almost
unanimously perceive this as boring. Experiments on this game
were first introduced in [8].

For the control experimental protocol, we asked 18 naive
normal-weighted children (nine boys and nine girls) aged eight
to ten years to play five games each on the Playware plat-
form. The set of five games played comprised five games of
Bug-Smasher, in two pairs as in the experiment described in
Section V, and a physical activity control game. As in the main
experiment, two game variants of different levels of entertain-
ment features (challenge and curiosity) were played in both

orders, giving four Bug-Smasher variant games plus the control
game. All details regarding the protocol of the experiment
follow the principles of the experimental setup described in
Section V. Moreover, the statistical analysis presented in [8]
demonstrates that the order of play does not significantly affect
children’s preferences (rc = −0.166 and p-value = 0.2025)
expressed in the experiment. The reader may refer to [8] for
further details of the controlled physical activity experiment
since its detailed presentation does not lie within the main scope
of this paper.

All four preference learning approaches presented in
Section III are trained and validated on data obtained from the
main experiment (see Section V-A), namely, “main data set.”
The best approach is then evaluated using unseen data from the
physical activity control experiment to determine the extent to
which the constructed user model generalizes. Data from this
experiment are referred to as “control data set” in the following
sections.

VI. EXTRACTED FEATURES

Since, with the current implementation of the Playware
platform, the only input to the system is through a force-
sensing-resistor (FSR) sensor, quantitative individual playing
characteristics can only be based on three measurable features:
the state (position and LED color) of a pressed tile, the time
that a pressed-tile event took place, and the pressure force on
a pressed tile. Pressed-tile events are recorded in real time, and
a selection of nine player interaction features are calculated for
each child. These include the number of smashed bugs over the
total number of bugs appeared P (i.e., child’s score), the num-
ber of interactions with the game environment NI , the average
and the variance of the response times (E{rt}, σ2{rt}), the
average and the variance of the distance between the pressed
tile and the bugs appearing on the game (E{Db}, σ2{Db}),
the average and the variance of the pressure recorded from
the FSR sensor E{p}, σ2{p}), and the entropy of the tiles
that the child visited HC . The complete set of candidate fea-
tures also includes the quantitative controllable game features
of challenge (S) and curiosity (H).

A. Main Data-Set Statistical Analysis

The analysis presented in [17] identifies statistically signif-
icant correlations between children’s notion of entertainment
and a few of the aforementioned individual player features
and/or the quantitative entertainment factors (game features):
challenge and curiosity. The obtained significant effects of
E{rt}, NI , and E{p} appear to be commonsensical since the
Bug-Smasher game belongs to the genre of action physical
games where the level of engagement of the user tends to have a
significant effect on the number of interactions and the reaction
time of the player [34]. In Bug-Smasher, the more a child is
entertained, the more (NI) and harder (E{p}) she/he tends to
interact with the game platform. This behavior generates lower
average response time (E{rt}) and higher average pressure
on the tiles (E{p}). The obtained highly significant effect of
E{rt} is consistent with previous experiments on the Bug-
Smasher game [6].
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On the other hand, it appears that reported entertainment
does not straightforwardly correlate with the levels of challenge
(rc = 0.0, p-value = 0.5382) and curiosity (rc = 0.0909 and
p-value = 0.1448). This suggests that the relation between
those two factors and entertainment is nonlinear, i.e., too much
or too little of each is not entertaining. This effect motivates the
need of a level of personalization (measured by the other inter-
action features) included as a factor in entertainment modeling.
The feature selection procedure presented in Section VII helps
the designer choose specific individual player features that can
successfully generate a model that maps between children’s
behavior, game features, and reported entertainment.

B. Control-Data-Set Statistical Analysis

By following the statistical analysis procedure presented in
[17] for the control data set, we obtain significant effects of
H , HC , and σ2{Db} to reported entertainment. It therefore
appears that the higher the spatial diversity of the bugs H and
children HC and the higher the variance of the distances be-
tween the child and the bugs (σ2{Db}), the higher the reported
entertainment. These effects that differ from those derived
from the main experiment data are nevertheless expected since
the Stomping game is now included in our investigation. The
features mentioned are those whose values are, in general, much
higher in the preferred Bug-Smasher game variants than in the
generally nonpreferred Stomping game.

VII. PREFERENCE LEARNING WITH FEATURE SELECTION

Two different input feature selection schemes are used
to pick the appropriate feature subset that generates the high-
est classification performance between preferred and nonpre-
ferred games. Given the set of candidate features described in
Section VI, the nBest and SFS methods are applied. The nBest
method picks the n individually best features (with regard
to a performance function) from the feature subset. The SFS
method, by contrast, is a bottom–up search procedure where
one feature is added at a time to the current feature set. The
feature to be added is selected from the subset of the remaining
features so that the new feature set generates the maximum
value of the performance function over all candidate features
for addition [35].

The SFS method is tested since it has been successfully
applied in a wide variety of feature selection problems yielding
high-performance values with minimal feature subsets (see,
for example, [36] for further discussion and application to the
classification problem of process identification in resistance
spot welding). On the other hand, the nBest method is included
for comparative purposes, with it being the most popular tech-
nique for feature selection. More advanced methods, such as
sequential floating forward search and Fisher projection (FP)
[33] could be used in future experiments, and results could
be compared to the existing studies. The feature selection
procedure followed here evaluates the usability of each one of
the features available and obtains the minimal feature subset
approximation to the feature subset that performs best in the
classification between preferred and nonpreferred games.

TABLE I
VALIDATION PERFORMANCE Pv (IN PERCENT) OF THE INDIVIDUAL

PLAYER AND GAME FEATURES OF THE FOUR PREFERENCE LEARNING

MECHANISMS. E{rt} AND σ2{rt} ARE THE AVERAGE AND THE

VARIANCE OF THE RESPONSE TIME, RESPECTIVELY; σ2{Db} IS THE

VARIANCE OF THE DISTANCES BETWEEN THE PRESSED TILE AND THE

BUGS APPEARING ON THE GAME; NI IS THE TOTAL NUMBER OF

INTERACTIONS; H IS THE QUANTITATIVE MEANS FOR THE

CONTROLLABLE GAME FEATURE OF CURIOSITY; E{p} IS THE AVERAGE

PRESSURE FORCE RECORDED FROM THE FSR SENSOR; HC IS THE

ENTROPY OF THE TILES THAT THE CHILD VISITED; σ2{p} IS THE

VARIANCE OF THE PRESSURE FORCES RECORDED FROM THE FSR
SENSOR; E{Db} IS THE AVERAGE DISTANCE BETWEEN THE PRESSED

TILE AND THE BUGS APPEARING ON THE GAME; S IS THE

QUANTITATIVE MEANS FOR THE CONTROLLABLE GAME

FEATURE OF CHALLENGE; AND P IS THE SCORE

Feature selection algorithms determine the features under
investigation for each learning mechanism; in the case of the
evolving ANN, the selected features define its input vector.
To evaluate the performance of each feature subset considered
by each selection algorithm, the available data are randomly
divided into training and validation data sets consisting of two-
thirds and one-third of the data, respectively. The performance
of each user model is measured through the average classifi-
cation accuracy of the model in three independent runs using
the threefold cross-validation technique on the training and
validation data sets. Since we are interested in the minimal
feature subset that yields the highest performance, we terminate
the feature selection procedure (nBest or SFS) when an added
feature yields equal or lower validation performance than the
performance obtained without it. Feature selection applied this
way resembles a hill-climber approach that is at risk of being
trapped by local optimality. Furthermore, since cross-validation
is used for assessing the performance of each feature subset,
the validation data set is not used here for early stopping of the
training procedure to limit overfitting.

A. Best Feature Selection

The experiment presented here tests the validation perfor-
mance of single individual player and game features. Given
the selected feature set, all four approaches presented in
Section III-D1 are followed and evaluated (see Section VII).
The training and validation performances of each of the indi-
vidual player and game features for each learning mechanism
are presented in Table I, where features are ranked by validation
performance.

Authorized licensed use limited to: IT Universitetet Kobenhavn. Downloaded on October 21, 2009 at 13:12 from IEEE Xplore.  Restrictions apply. 



YANNAKAKIS et al.: PREFERENCE LEARNING FOR COGNITIVE MODELING 1171

TABLE II
nBEST FEATURE SELECTION METHOD: CLASSIFICATION ACCURACY

(IN PERCENT) OF LMA, META-LMA, BL, AND ANN APPROACHES.
THE HIGHEST PERFORMANCE OF EACH APPROACH OBTAINED

THROUGH A MINIMAL FEATURE SUBSET F APPEARS IN BOLD

TABLE III
SFS FEATURE SELECTION METHOD: CLASSIFICATION ACCURACY

(IN PERCENT) OF LMA, META-LMA, BL, AND ANN APPROACHES.
THE HIGHEST PERFORMANCE OF EACH APPROACH OBTAINED

THROUGH A MINIMAL FEATURE SUBSET F APPEARS IN BOLD

The impact of the recorded response times (rt) is demon-
strated in Table I. More specifically, the average of these
values generates the highest cross-validation performances
when LMA, meta-LMA, and evolving ANN are applied (see
also [6] for the impact of E{rt} on reported entertainment
in the Bug-Smasher game). On the other hand, BL reports
the number of interactions with the playground as the single
feature that best predicts reported entertainment. The high
cross-validation accuracy of NI (69.50%) suggests that the
BL mechanism generates a nonlinear mapping of NI to re-
ported entertainment—better than that of E{rt}—which was
discovered by neither the linear (LMA and meta-LMA) nor
the nonlinear (evolving ANN) IPL approaches. Overall, results
obtained show the inability of any single feature to predict
reported entertainment in Bug-Smasher. Given that the best
performed feature (NI) yields a cross-validation performance
of 69.50%, it is apparent that more features are required to
effectively model children’s notion of entertainment.

B. More Features

The initial feature subset for all four preference learning
approaches includes the feature that performs best in the single-
feature experiment (E{rt} for LMA, meta-LMA, and evolving
ANN; NI for BL). By applying the nBest and SFS methods
for each learning approach, we obtain cross-validation perfor-
mances presented in Tables II and III, respectively. Compar-
ing feature selection methods within each preference learning
approach, the SFS method (see Table III) generates feature
subsets that yield higher validation performance than feature
subsets generated by nBest (see Table II) for all four preference-
learning mechanisms. This confirms the benefits of searching
for appropriate feature sets with SFS.

As expected, results obtained through SFS show the advan-
tage of nonlinear (BL and ANN) over linear (LMA and meta-
LMA) learning approaches for our preference learning case
study. Even though the LMA method compared to neuroevo-
lution has generated higher performing solutions in specific

problems (e.g., routing [3]), the inverse occurs in our paper.
Within nonlinear approaches, the comparative study between
BL and evolving ANN is introduced in this paper and shows
that the latter outperforms the former for our problem. More
specifically, the best cross-validation performance (82.22%;
average of 76.66%, 80.00%, and 90.00%) is achieved when
the ANN input contains E{rt}, σ2{p}, H , and NI , while
adding more features to the subset does not yield significantly
higher performance. On the other hand, the best performances
that LMA, meta-LMA, and BL achieve are significantly lower,
i.e., 63.33%, 70.00%, and 73.30%, respectively. However, it is
worth noticing that the highest performance of BL (73.30%)
is achieved by considering two (NI , σ

2{Db}) instead of four
features (evolving ANN). This indicates the promise of BL as
an IPL mechanism for the specific case study. These mecha-
nisms’ generated performance can be used as a baseline for
comparison to the best evolved ANN solution, which indicates
that the nonlinear combination of E{rt}, σ2{p}, H , and NI is
sufficient for an efficient predictor of reported entertainment for
the tested Playware games.

The best performance obtained (82.22%) appears to be
rather low. However, the binomial-distributed probability of
this performance to occur at random (0.0003) is statistically
significant and indicates that ANNs are capable of successfully
predicting children’s reported entertainment preferences based
on features extracted from individual gameplay data, despite
the difficulty of the problem. (For comparison, the average
classification performance of 30 ANNs with random weights
is 49.77%.)

Difficulties in obtaining higher classification accuracy are
caused in part by experimental noise in the recorded features
and in part by inconsistency (due to the 2-AFC protocol) in
children’s answers in self-reports. Even though comparative
fun analysis is a reliable and established method for capturing
reported entertainment in computer [37] and augmented-reality
[6] games, it generates a significant amount of uncertainty
in subjects’ reported answers. Uncertainty appears when the
two games played are not significantly different with regard to
the entertainment value that they generate for the player and
therefore cannot be easily distinguished.

1) Evolved ANN—{E{rt}, σ2{p},H,NI} Feature Subset:
A more detailed analysis of the evolved ANN model that yields
the best classification accuracy is presented here. Fig. 1 shows
the highest performing trained ANN output with regard to
σ2{p} and NI for six points in the (E{rt},H) search space.
These values constitute the combinations of two E{rt} states
(0 and 1 named fast and slow, respectively) and the three states
used for H (0.33, 0.66, and 1 named low, average, and high,
respectively). The aforementioned presentation helps toward
interpreting the mapping between σ2{p}, NI , and reported
entertainment according to how fast children react with the
playground and the level of curiosity. As in the results presented
in [7], [8], and [17], all three fittest ANNs generated, each
trained on different sets comprising two-thirds of the total
data, exhibit similar qualitative features to the surfaces shown
in Fig. 1.

As seen from Fig. 1, fast children (E{rt} = 0) appear to
enjoy average and high curiosity values, except when high NI

Authorized licensed use limited to: IT Universitetet Kobenhavn. Downloaded on October 21, 2009 at 13:12 from IEEE Xplore.  Restrictions apply. 



1172 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 6, NOVEMBER 2009

Fig. 1. Trained ANN (f = 95.85) that yields the highest validation performance (90.00%): ANN output y (entertainment value) with regard to σ2{p} and
NI for all six combinations of two E{rt} states (slow and fast) and three H states (low, average, and high). (a) E{rt} = 1.0 (slow) and H = 0.33 (low).
(b) E{rt} = 1.0 (slow) and H = 0.66 (average). (c) E{rt} = 1.0 (slow) and H = 1.0 (high). (d) E{rt} = 0.0 (fast) and H = 0.33 (low). (e) E{rt} = 0.0
(fast) and H = 0.66 (average). (f) E{rt} = 0.0 (fast) and H = 1.0 (high).

values (NI > 0.7) are combined with low values of σ2{p}
[σ2{p} < 0.4—see Fig. 1(e) and (f)]. Fast children’s preference
for low levels of curiosity is met only when their behavior gen-

erates high values (approximately greater than 0.5) of σ2{p},
independently of the NI value [see Fig. 1(d)]. On the other
hand, slow children appear to prefer low curiosity levels, except
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TABLE IV
EVOLVED ANNS (FEATURE SUBSET: {E{rt}, σ2{p}, H, NI}) TRAINED ON THE MAIN DATA SET: CLASSIFICATION

ACCURACY (IN PERCENT) ON UNSEEN CONTROL DATA SET. THE AVERAGE CLASSIFICATION PERFORMANCE

OF TEN NETWORKS WITH RANDOM WEIGHTS IS GIVEN FOR COMPARISON (RANDOM NETWORK)

when the NI value that they generate is low (NI < 0.1) and
combined with either very high (> 0.9) or very low (< 0.1)
σ2{p} values [see Fig. 1(a)]. Average curiosity levels are pre-
ferred by slow children in many fewer cases, i.e., when their
NI value is low and the σ2{p} value is high or when their
NI value is high and the σ2{p} value is low [see Fig. 1(b)].
Finally, high curiosity is rarely preferred by slow children, and
this occurs only when their NI values are low, independently of
their σ2{p} value [Fig. 1(c)].

The obtained effects of curiosity in reported entertainment
are consistent in part with previous studies on the Bug-Smasher
game [6]. In that study, the relation between challenge, curios-
ity, and average response time was reported through a lower
scale experiment of 28 children. It was found that fast children
liked games, independently of curiosity, whereas children re-
acting slowly to game events preferred games of low curiosity
levels.

2) Validation on Control Data Set: To investigate the extent
to which the predictive model of entertainment preference
computed using data from the main experiment generalizes
to new experimental data, the best performing evolved ANNs
presented in Section VII-B1 are presented with and evaluated
on the unseen game and data of the physical activity control
experiment.

Table IV shows the average total classification accuracy
(fourth column) and the subclassification performance for the
comparisons between the Bug-Smasher game played and the
Stomping game (second column), as well between the Bug-
Smasher game chosen as more entertaining and the Bug-
Smasher game chosen as less entertaining (third column) of all
three evolved ANNs.

The performance obtained equals 66.66%, which appears
rather low compared to 82.22% of correct matching on the
validation data of the main experiment. However, the reported
complexity of the task [17] and the binomial-distributed proba-
bility of this performance to occur at random (0.0136) indicate
that the ANN is a quite effective, robust, and generic predictor
of children’s reported entertainment preferences based on their
interaction data with the physical-game platform. The average
performance of ten ANNs identical in structure to the evolved
ones, but with random weights, is given for comparison.

VIII. CONCLUSION AND DISCUSSION

This paper explored the interplay between individual playing
behaviors and children’s entertainment preferences in physical
play. More specifically, the quantitative impact of children’s
entertainment (known from self-reports) on children’s game-
play statistics was investigated through an action game (Bug-

Smasher) developed on the Playware playground. Features
extracted from the interaction between the user (child) and the
physical-game platform may provide a means for distinguish-
ing between entertaining and nonentertaining games, as well
as between gaming activities and gamelike physical activities
(stomping).

Four IPL mechanisms—both linear (LMA and BL) and
nonlinear (meta-LMA and neuroevolution)—were applied to
the problem of predicting entertainment preference using game-
play features. Two feature selection methods (nBest and SFS)
were used to determine which subset of features should be
used as model inputs. Of the two, SFS was found to generate
better performance than nBest for all learning mechanisms.
Neuroevolution produced the best performance of the four IPL
mechanisms.

SFS selection of individual and game features derived from
the data of the main experiment extracted a feature subset
including the average response times ({E{rt}), the variance of
pressure forces (σ2{p}), the number of interactions (NI), and
the controllable game feature of curiosity H . These inputs feed
an ANN model that correctly predicts the reported entertain-
ment preferences of children with a cross-validation accuracy
of 82.22% on the unseen data of the main experiment.

Moreover, a cross-validation performance of 66.66% is ob-
tained when evaluating the ANN trained on data from the
main experiment using unseen data from the control experi-
ment. Even though the obtained performance appears low, its
binomial-distributed probability to occur at random is 0.0136.
One has to consider the difficulty of classifying accurately
reported emotions through gameplay data [17] and the fact that
the model is trained on data from a group of children whose
individual preferences may not be mutually consistent.

The results presented indicate that the evolved ANNs are
nevertheless successful predictors of children’s reported en-
tertainment grounded on their gameplay data and validate the
hypothesis that there are personalized gameplay features that
capture entertainment in physical games.

As far as the experiment protocol is concerned, a 4-AFC
approach could be adopted for future protocol design. Children
will then be able to choose among the following alternatives:
One game is more “fun” than the other (2-AFC), both games
are equally “fun,” or neither game was “fun.” This protocol
provides similar information for the machine learning process
while eliminating the inconsistency generated by 2-AFC when
two game variants are indistinguishable.

We believe that the entertainment modeling approach
through the individual playing and game features presented
here is general over the majority of action games that could
be created with Playware. Moreover, it is our belief that the
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entertainment models proposed here may very well be applied
to other interactive entertainment systems that include physical
activity. However, each game demonstrates individual enter-
tainment features that may have an impact on the child’s game-
play, and therefore, new games need to be tested to confirm the
generality of the approach.

Individual differences in children’s preferences and playing
behavior generate difficulties in generalization over subjects.
This is a fundamental limitation of attempting to construct
a model based on combined data from multiple subjects: a
game that is exciting and fun to one child may be too fast
or too slow to another. Nevertheless, the results presented
show that some generalization across individuals is possible, in
that the evolved ANNs do predict children’s preferences with
reasonable performance. With further work, it may be possible
to improve performance, for example, by clustering individual
players into classes, depending on the observed playing style.
Each class could then have its own model, simplifying the
machine learning problem.

The advantages of neuroevolution over other preference-
learning techniques presented here appear to be primarily due
to the nature of data obtained. Data are characterized by
experimental noise that is apparent in the recorded features
(ANN input) and inconsistency in children’s answers in self-
reports. Given the ability of ANNs to generalize over noisy
training data, we believe that neuroevolution might serve well
for constructing efficient cognitive and affective models built on
data that embed significant levels of noise (e.g., physiological
signals). Studies in the aforementioned fields have already
demonstrated the benefits of the use of neuroevolution for
yielding successful user models [8], [38].

The proposed approach can be used for adaptation of the
game’s entertainment features (challenge and curiosity) accord-
ing to the player’s individual playing features in real time in
physical games. The key to this is the observation that the
models (e.g., ANNs) relate features to an entertainment value. It
is therefore possible in principle to infer what changes to game
features (challenge, curiosity) will cause an increase in the
entertainment value of the game and to adjust game parameters
to make those changes. For further discussion on this future
direction, the reader may refer to [8] and [17].
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