
Evolving Opponents for Interesting Interactive

Computer Games

Georgios N. Yannakakis∗ John Hallam∗∗
∗Centre for Intelligent Systems

and their Applications
The University of Edinburgh

AT, Crichton Street, EH8 9LE
g.yannakakis@sms.ed.ac.uk

∗∗ Mærsk Mc-Kinney Møller Institute
for Production Technology

University of Southern Denmark
Campusvej 55, DK-5230

john@mip.sdu.dk

Abstract

In this paper we introduce experiments on
neuro-evolution mechanisms applied to preda-
tor/prey multi-character computer games. Our
test-bed is a modified version of the well-known
Pac-Man game. By viewing the game from
the predators’ (i.e. opponents’) perspective, we
attempt off-line to evolve neural-controlled op-
ponents capable of playing effectively against
computer-guided fixed strategy players. How-
ever, emergent near-optimal behaviors make the
game less interesting to play. We therefore dis-
cuss the criteria that make a game interesting
and, furthermore, we introduce a generic mea-
sure of predator/prey computer games’ interest.
Given this measure, we present an evolutionary
mechanism for opponents that keep learning from
a player while playing against it (i.e. on-line)
and we demonstrate its efficiency and robustness
in increasing and maintaining the game’s inter-
est. Computer game opponents following this
on-line learning approach show high adaptabil-
ity to changing player strategies which provides
evidence for the approach’s effectiveness against
human players.

1. Introduction

Machine learning in computer games is nowadays still
in its very early stages, where computer games continue
to use simple rule-based finite and fuzzy-state machines
for nearly all their AI needs (Woodcock, 2001). There-
fore, we still meet new released games with the same
20-year old concept in brand new graphics engines. Un-
fortunately, instead of designing intelligent opponents to
play against, game developers mainly concentrate on the
graphical presentation of the game.

Predator/prey games is a very popular category of
computer games and among its best representatives is
the classical Pac-Man released by Namco (Japan) in

1980. Even though Pac-Man’s basic concept and graph-
ics are very simple, the game still keeps players inter-
ested after so many years, and its basic ideas are still
found in many new released games. In Pac-Man, the
player’s (PacMan’s) goal is to eat all the pellets appear-
ing in a maze-shaped stage while avoiding being killed by
four opponent characters named ‘Ghosts’. On the other
hand, Ghosts are aiming to kill (by ‘touching’) PacMan
as soon as possible. The game is over when either all pel-
lets in the stage are eaten by PacMan or Ghosts manage
to kill PacMan. In that case, the game restarts from the
same initial positions for all five characters. Since there
are four Ghosts on the game field, they are designed to
be slower than PacMan so that the game is fairer to play.

There are some examples, in the Pac-Man domain lit-
erature, of researchers attempting to teach a controller
to drive PacMan in order to acquire as many pellets
as possible and to avoid being eaten by Ghosts. Koza
(1992) considers the problem of controlling an agent in a
dynamic non-deterministic environment and, therefore,
sees Pac-Man as an interesting multi-agent environment
for applying off-line learning techniques based on genetic
programming. The same Pac-Man application domain
has been used for analyzing size and generality issues in
genetic programming (Rosca, 1996).

On the other hand, there are many researchers who
use predator/prey domains in order to obtain efficient
emergent teamwork behavior of either homogeneous or
heterogeneous predators. For example, Luke and Spec-
tor (1996), among others, have designed an environment
similar to the Pac-Man game (i.e. Serengeti world) in
order to examine different breeding strategies and coor-
dination mechanisms for the predators. Finally, there
are examples of work (see (Haynes and Sen, 1995) and
(Miller and Cliff, 1994)) in which both the predators’
and the prey’s strategies are co-evolved in continuous or
grid-based environments.

Similar to Luke and Spector (1996), we view Pac-
Man from the Ghosts’ perspective. Our first aim is to
emerge effective teamwork hunting behaviors by the use

of an off-line training approach, based on evolutionary
computation techniques, applied to homogeneous neural
controlled (Yao, 1999) Ghosts. However, playing a com-
puter game like Pac-Man against optimal hunters can-
not be interesting because of the fact that you get easily
killed. To this end, the primary objective of this work
is to introduce an efficient generic measure of interest of
any predator/prey game. We believe that the interest
of any computer game is directly related to the inter-
est generated by the opponents’ behavior rather than to
the graphics or even the player’s behavior. Thus, when
‘interesting game’ is mentioned we mainly refer to inter-
esting opponents to play against.

We present a robust on-line neuro-evolution learn-
ing mechanism capable of increasing the game’s interest
(starting from near-optimal off-line trained behaviors)
as well as keeping that interest at high levels as long as
the game is being played. The arcade version of Pac-
Man uses a handful of very simple rules and scripted se-
quences of actions combined with some random decision-
making to make the Ghosts’ behavior less predictable.
The game’s interest decreases at the point where Ghosts
are too fast to beat (Rabin, 2002). In our Pac-Man ver-
sion we require Ghosts to keep learning and constantly
adapting to the player’s strategy instead of being unin-
teresting opponents with fixed strategies. In addition,
we explore learning procedures that achieve good real-
time performance (i.e. low computational effort while
playing).

2. The Pac-Man World

The computer game test-bed studied is a modified ver-
sion of the original Pac-Man computer game released by
Namco. The original game includes a number of special
pellets called ‘power-pills’ that allow PacMan to ‘eat’
Ghosts for a short period of time. Power-pill is the only
feature not included in this modified version of the game.
This omission contributes to the simplicity of the game
without affecting the game’s playing interest.

As previously mentioned, the Pac-Man game is inves-
tigated from the viewpoint of Ghosts and more specifi-
cally how Ghosts’ emergent adaptive behaviors can con-
tribute to the interest of the game. Pac-Man — as a
computer game domain for emerging adaptive behaviors
— is a two-dimensional, multi-agent, grid-motion, preda-
tor/prey game. The game field (i.e. stage) consists of
corridors and walls. Both the game’s dimensions and its
maze structure are predefined. For the experiments pre-
sented in this paper we use the 19× 29 grid maze-stage
presented in Figure 1.

The characters visualized in the Pac-Man game (as
illustrated in Figure 1) are a white circle that repre-
sents PacMan and 4 ghost-like characters representing
the Ghosts. Additionally, there are black squares that
represent the pellets and dark grey blocks of walls.

Figure 1: Snapshot of the Pac-Man game

PacMan moves at double the Ghosts’ speed and since
there are no dead ends, it is impossible for a single Ghost
to complete the task of killing it. Since PacMan moves
faster than a Ghost, the only effective way to kill Pac-
Man is for a group of Ghosts to hunt cooperatively. It
is worth mentioning that one of Ghosts’ properties is
permeability. In other words, two or more Ghosts can
simultaneously occupy the same cell of the game grid.

The simulation procedure of the Pac-Man game is as
follows. PacMan and Ghosts are placed in the game
field (initial positions) so that there is a suitably large
distance between them. Then, the following occur at
each simulation step:

1. Both PacMan and Ghosts gather information from
their environment.

2. PacMan and Ghosts take a movement decision ev-
ery simulation step and every second simulation step
respectively. (That is how PacMan achieves double
the Ghost’s speed.)

3. If the game is over (i.e. all pellets are eaten, PacMan
is killed, or the simulation step is greater than a pre-
determined large number), then a new game starts
from the same initial positions.

4. Statistical data such as number of pellets eaten,
simulation steps to kill PacMan as well as the to-
tal Ghosts’ visits to each cell of the game grid are
recorded.

2.1 PacMan

Both the difficulty and, to a lesser degree, the interest of
the game are directly affected by the intelligence of the
PacMan player. We chose three fixed Ghost-avoidance
and pellet-eating strategies for the PacMan player, dif-
fering in complexity and effectiveness. Each strategy is
based on decision making applying a cost or probability

approximation to the player’s 4 neighbor cells (i.e. up,
down, left and right). Even though the initial positions
are constant, the non-deterministic motion of PacMan
provides lots of diversity within games.

• Cost-Based (CB) PacMan: The CB PacMan moves
towards its neighbor cell of minimal cost. Cell costs
are assigned as follows: cp = 0, ce = 10, cng = 50,
cg = 100, where cp: cost of a cell with a pellet (pellet
cell); ce: cost of an empty cell; cg: cost of a cell occu-
pied by a Ghost (Ghost cell); cng: cost of a Ghost’s
4 neighbor cells. Wall cells are not assigned any cost
and are ignored by PacMan. In case of equal mini-
mal neighbor cell costs (e.g. two neighbor cells with
pellets), the CB PacMan makes a random decision
with equal probabilities among these cells.

In other words, the CB PacMan moves towards a cost
minimization path that produces effective Ghost-
avoidance and (to a lesser degree) pellet-eating be-
haviors but only in the local neighbor cell area.

• Rule-Based (RB) PacMan: The RB PacMan is a CB
PacMan plus an additional rule for more effective
and global pellet-eating behavior. This rule can be
described as follows. If all PacMan’s neighbor cells
are empty (c = 10), then the probability of moving
towards each one of the available directions (i.e. not
towards wall cells) is inversely proportional to the
distance to the closest pellet on that direction.

• Advanced (ADV) PacMan: The ADV PacMan
checks in every visible direction (i.e. no wall cell)
for Ghosts. If there is at least one Ghost in sight,
then the probability of moving towards each one of
the available directions is directly proportional to the
distance to a Ghost in that direction. If there is no
Ghost in sight, then the ADV PacMan behaves like
a RB PacMan.

The ADV moving strategy is expected to produce a
more global Ghost-avoidance behavior built upon the
RB PacMan’s good pellet-eating strategy.

2.2 Neural Controlled Ghosts

Neural networks are a suitable host for emergent adap-
tive behaviors in complex multi-agent environments
(Ackley and Littman, 1992). A feedforward neural con-
troller is employed to manage the Ghosts’ motion and
is described in this subsection. Apart from the neural
controller, three non-evolving fixed ways of controlling
the Ghosts are presented in subsection 2.3.

Input

Using their sensors, Ghosts inspect the environment
from their own point of view and decide their next action.

Each Ghost receives input information from its environ-
ment expressed in the neural network’s input array of di-
mension 4 (see Figure 2). The input array consists of the
relative distances from (a) PacMan in x (∆x,P = xg−xp)
and y (∆y,P = yg − yp) axis and (b) the closest Ghost
in x (∆x,C = xg − xc) and y (∆y,C = yg − yc) axis;
where (xg, yg), (xp, yp) and (xc,yc) are the cartesian co-
ordinates of the current Ghost’s, PacMan’s and closest
Ghost’s current position respectively. Ghost’s input in-
cludes information for only one neighbor Ghost as this
constitutes the minimal information for emerging team-
work cooperative behaviors.

Figure 2: Ghost’s input data

All input values are linearly normalized into [0, 1] via
0.5[(∆i,J/Li) + 1] where i ∈ {x, y}, J ∈ {P, C} and
Lx, Ly are the width and height of the stage respectively.

Architecture

As previously mentioned, a multi-layered fully connected
feedforward neural network has been used for the experi-
ments presented here. The sigmoid function is employed
at each neuron.

The connection weights take values from -5 to 5 while
the neural network’s output is a four-dimensional vector
with respective values from 0 to 1 that represents the
Ghost’s four movement options (up, down, left and right
respectively). Each Ghost moves towards the direction
represented by the highest output value.

2.3 Fixed Strategy Ghosts

Apart from the neural controlled Ghosts, three addi-
tional fixed non-evolving strategies have been tested for
controlling the Ghost’s motion. These strategies are
used as baseline behaviors for comparison with any neu-
ral controller emerged behavior.

• Random (R): Ghosts that randomly (uniform distri-
bution) decide their next available movement. Avail-
able movements have equal probabilities to be picked.

• Followers (F): Ghosts designed to follow PacMan
constantly. Their strategy is based on moving so

as to reduce the greatest of their relative distances
(∆x,P , ∆y,P) from PacMan.

• Near-Optimal (O): A Ghost strategy designed to pro-
duce attractive forces between Ghosts and PacMan
as well as repulsive forces among the Ghosts. For
each Ghost X and Y values are calculated as follows.

X = sign[∆x,P]h(∆x,P , Lx, 0.25)
− sign[∆x,C]h(∆x,C − 1, Lx, 10) (1)

Y = sign[∆y,P]h(∆y,P , Ly, 0.25)
− sign[∆y,C]h(∆y,C − 1, Ly, 10) (2)

where sign[z]=z/|z| and h(z, zm, p) = [1− (|z|/zm)]p.
X and Y values represent the axis on which the near-
optimal Ghost will move. Hence, the axis is picked
from the maximum of |X| and |Y | whereas, the di-
rection is decided from this value’s sign. That is, if
|X| > |Y |, then go right if sign[X] > 0 or go left if
sign[X] < 0; if |Y | > |X|, then go up if sign[Y] > 0
or go down if sign[Y] < 0.

3. Optimal Behavior

When a predator/prey game is investigated from the
predator’s viewpoint, optimality can be measured in the
predators’ ability to kill the prey. Thus, a predator’s
behavior that always manages to kill the prey in such
games is obviously a desired behavior in terms of opti-
mality.

Prey-killing ability is the primary factor that deter-
mines how good a behavior is (i.e. its performance) in
the Pac-Man game as well. Furthermore, the behavior
of preventing PacMan from eating pellets constitutes an
additional factor of the desired optimal behavior. This
behavior also implies a fast-killing behavior, which is also
desired from optimal predators. Given these, a measure
designed to give an approximation of a group of Ghosts’
performance over a specific number N of games played,
is

P =
α k

N + βmin{1 + (emin−E{e})
emax

, 1}
α + β

(3)

where P is the performance of a Ghost group behavior
taking values from 0 to 1; k is the number of PacMan
kills within N games; E{e} is the average number of
pellets eaten by PacMan over the N games; emin, emax

are the lower and upper bound of the eaten pellets e
respectively (in this paper emin = 70 and emax = 187);
α, β are weight parameters (in this paper α = β = 1).

4. Interesting Behavior

In order to find an objective (as possible) measure of in-
terest in the Pac-Man computer game we first need to
define the criteria that make a game interesting. Then,

second, we need to quantify and combine all these cri-
teria in a mathematical formula. The game should be,
then, tested by human players and therefore have this
formulation of interest cross-validated against the inter-
est the game produces in real conditions. This last part
of our investigation constitutes a crucial phase of future
work.

In order to simplify this procedure we will ignore the
graphics’ as well as the player’s contribution to the inter-
est of the game and we will concentrate on the Ghost’s
behavior that effects the game’s interest. That is be-
cause, we believe, the computer-guided opponent char-
acter contributes the vast majority of features that make
a computer game interesting.

By being as objective and generic as possible, we be-
lieve that the criteria that collectively define interest on
the Pac-Man game are as follows.

1. When the game is neither too hard nor too easy. In
other words, the game is interesting when Ghosts
manage to kill PacMan sometimes but not always.
In that sense, optimal behaviors are not interesting
behaviors and vice versa.

2. When there is diversity in Ghosts’ behavior over the
games. That is, when Ghosts are able to find different
ways of hunting and killing PacMan in each game so
that their strategy is less predictable.

3. When Ghosts’ behavior is aggressive rather than
static. That is, Ghosts that move towards killing
PacMan but meanwhile, move constantly all over the
game field instead of simply following it. This be-
havior gives player the impression of an intelligent
strategic Ghosts’ plan which increases the game in-
terest.

In order to estimate and quantify each of the afore-
mentioned criteria of the game’s interest, we let the ex-
amined group of Ghosts play the game N times (each
game for a sufficiently large evaluation period of tmax

simulation steps; this period should be enough for Pac-
Man to clear the stage of pellets; in the experiments pre-
sented here tmax = 300 simulation steps) and we record
the simulation steps tk taken to kill PacMan as well as
the total number of Ghosts’ visits vi at each cell i of the
game field for each game. Given these, the quantifica-
tions of the Pac-Man game’s three interest criteria can
be presented as follows.

1. According to the first criterion, the estimate of how
interesting the behavior is, is given by T in (4).

T = [1− (E{tk}/max{tk})]p1 (4)

where
tmin ≤ tk ≤ tmax (5)

and E{tk} is the average number of simulation steps
taken to kill PacMan over the N games; max{tk} is
the maximum tk over the N games; tmin is the mini-
mum number of simulation steps required for Ghosts
to kill PacMan (tmin is 30 simulation steps in this
paper); p1 is a weighting parameter (for the experi-
ments presented here p1 = 0.5).

The T estimate of interest demonstrates that the
greater the difference between the average number of
steps taken to kill PacMan and the maximum num-
ber of steps taken to kill PacMan, the higher the in-
terest of the game. Given (4), both poor-killing (‘too
easy ’) and near-optimal (‘too hard ’) behaviors get
low interest estimate values (i.e. E{tk} ' max{tk}).

2. The interest estimate for the second criterion is given
by S in (6).

S =
(
s2/s2

max

)p2 (6)

where

s2
max =

N

4(N − 1)
(tmax − tmin)2 (7)

and s2 is the sample variance of tk over the N games;
s2

max is the maximum value of s2; p2 is a weighting
parameter (for the experiments presented here p2 =
1).

The S estimate of interest demonstrates that the
greater the variance of the steps taken to kill Pac-
Man over N games, the higher the interest of the be-
havior. Therefore, by using (6) we promote Ghosts
that produce high diversity in the time taken to kill
PacMan.

3. A good measure for quantifying the third interest cri-
terion is through entropy of the Ghosts’ cell visits in a
game, which quantifies the completeness and unifor-
mity with which the Ghosts cover the stage. Hence,
for each game, the cell visits’ entropy H is calculated
via (8) and it is normalized into [0, 1] via (9).

H = −
∑

i

vi

V
log

(vi

V

)
(8)

Hn = (H/logV)p3 (9)

where V is the total number of visits of all visited cells
(i.e. V =

∑
i vi) and p3 is a weighting parameter (for

the experiments presented here p3 = 4).

Given the normalized entropy values for all N games,
the interest estimate for the third criterion can be
presented as their average value E{Hn} over the N
games. This implies that the higher the average en-
tropy value, the more interesting the game becomes.

All three criteria are combined linearly (10)

I =
γT + δS + εE{Hn}

γ + δ + ε
(10)

where I is the interest value of the Pac-Man game; γ, δ
and ε are criterion weight parameters (for the experi-
ments presented here γ = 1, δ = 2, ε = 3).

The measure of the Pac-Man game’s interest intro-
duced in (10) can be effectively applied to any preda-
tor/prey computer game because it is based on generic
features of this category of games. These features include
the time required to kill the prey as well as the preda-
tors’ entropy throughout the game field. We therefore
believe that (10) — or a similar measure of the same
concepts — constitutes a generic interest approximation
of predator/prey computer games.

5. Off-line learning

As previously stressed, our primary aim is to generate
emergent Ghost behaviors that make the game interest-
ing via an on-line learning mechanism. We therefore
use an off-line evolutionary learning approach in order
to produce some ‘good’ (i.e. in terms of performance)
initial behaviors for the on-line learning mechanism.

The neural networks that determine the behavior of
the Ghosts are themselves evolved. In the algorithm
presented here, the evolving process is limited to the
connection weights of the neural network.

The evolutionary procedure, which is based on previ-
ous work by Yannakakis et al. (2003), is as follows. Each
Ghost has a genome that encodes the connection weights
of its neural network. A population of 80 (we keep this
number low because of the computational cost) neural
networks (Ghosts) is initialized randomly with initial
uniformly distributed random connection weights that
lie within [-5, 5]. Then, at each generation:

Step 1: Every Ghost in the population is cloned 4
times. These 4 clones are placed in the Pac-Man
game field and play Nt games, each one for an evalu-
ation period of t simulation steps (in the experiments
presented in this paper Nt = 10 games and t = 300
simulation steps). The outcome of these games is to
ascertain the time taken to kill PacMan tk for each
game.

Step 2: Each Ghost is evaluated via (11) for each game
and its fitness value is given by E{f} over the Nt

games.

f = [1− (tk/t)]
1
4 (11)

By the use of the f fitness function, that takes values
from 0 to 1, we promote PacMan-killing behaviors
capable of achieving high performance values P .

Step 3: A pure elitism selection method is used where
only the 10% best fit solutions determine the mem-
bers of the intermediate population and, therefore,
are able to breed.

Step 4: Each parent clones an equal number of off-
spring in order to replace the non-picked solutions
from elitism.

Step 5: Mutation occurs in each gene (connection
weight) of each offspring’s genome with a small prob-
ability pm (e.g. 0.01). A uniform random distribu-
tion is used again to define the mutated value of the
connection weight.

The algorithm is terminated when a predetermined
number of generations g is achieved (e.g. g = 1000) and
the best-fit Ghost’s connections weights are saved.

Ghosts play few games (i.e. Nt = 10) when evalu-
ated by the off-line learning mechanism. Even though,
this evaluation procedure constitutes an approximation
of the examined Ghost’s overall performance in a greater
number of games, it keeps the computational cost in low
levels.

6. On-line learning (OLL)

This learning approach is based on the idea of Ghosts
that learn while they are playing against PacMan. In
other words, Ghosts that are reactive to any player’s
behavior and learn from its strategy instead of being the
predictable and, therefore, uninteresting characters that
exist in all versions of this game today. Furthermore,
this approach’s additional objective is to keep the game’s
interest at high levels as long as it is being played.

Beginning from any initial group of homogeneous off-
line trained (OLT) Ghosts, the OLL mechanism at-
tempts to transform them into a group of heterogeneous
Ghosts that are interesting to play against.

The OLL procedure is as follows. An OLT Ghost is
cloned 4 times and its clones are placed in the Pac-Man
game field to play against a selected PacMan type of
player. Then, at each generation:

Step 1: Each Ghost is evaluated every t simulation
steps via (12), while the game is played. For the ex-
periments presented in this paper t = 50 simulations
steps.

f ′ =
t/2∑

i=1

(dP,2i − dP,(2i−1)) (12)

where dP,i is the distance between the Ghost and
PacMan at the i simulation step. This fitness func-
tion promotes Ghosts that move towards PacMan
within an evaluation period of t simulation steps.

Step 2: A pure elitism selection method is used where
only the fittest solution is able to breed. The best-
fit parent clones an offspring with a probability pc

that is inversely proportional to the normalized cell
visits’ entropy (i.e. pc = 1 − Hn) given by (9). In
other words, the higher the cell visits’ entropy of the
Ghosts, the lower the probability of breeding new so-
lutions. If there is no cloning, then go back to Step
1, else continue to Step 3.

Step 3: Mutation occurs in each gene (connection
weight) of each offspring’s genome with a small prob-
ability pm (e.g. 0.01). A gaussian random distribu-
tion is used to define the mutated value of the con-
nection weight. The mutated value is obtained from
(13).

wm = N (w, 1−Hn) (13)

where wm is the mutated connection weight value
and w is the connection weight value to be mutated.
The gaussian mutation, presented in (13), suggests
that the higher the normalized entropy of a group of
Ghosts, the smaller the variance of the gaussian dis-
tribution and therefore, the less disruptive the muta-
tion process as well as the finer the precision of the
GA.

Step 4: The cloned offspring is evaluated briefly via
(12) in off-line mode, that is, by replacing the worst-
fit member of the population and playing an off-line
(i.e. no visualization of the actions) short game of t
simulation steps. The fitness values of the mutated
offspring and the worst-fit Ghost are compared and
the better one is kept for the next generation. This
pre-evaluation procedure for the mutated offspring
attempts to minimize the probability of group be-
havior disruption by low-performance mutants. The
fact that each mutant’s behavior is not tested in a
single-agent environment but within a group of het-
erogeneous Ghosts helps more towards this direction.
If the worst-fit Ghost is replaced, then the mutated
offspring takes its position in the game field as well.

The algorithm is terminated when a predetermined
number of games has been played.

We mainly use small simulation periods (i.e. t = 50)
in order to evaluate Ghosts in OLL. The aim of this
high frequency of evaluations is to accelerate the on-
line evolutionary process. The same short period is used
for evaluating mutated offspring. The two primary ob-
jectives of this are: 1) to apply a fair comparison be-
tween the mutated offspring and the worst-fit Ghost (i.e.
same evaluation period) and 2) to avoid undesired high
computational effort in on-line mode (i.e. while play-
ing). However, the evaluation function (12) constitutes
an approximation of the examined Ghost’s overall per-
formance for large simulation periods. Keeping the right

balance between computational effort and performance
approximation is one of the key features of this approach.
In the experiments presented here, we use minimal eval-
uation periods capable of achieving good estimation of
the Ghosts’ performance.

7. Results and analysis

Results obtained from experiments applied on the Pac-
Man game are presented in this section. These include,
off-line and on-line learning emergent behavior analysis
as well as experiments for testing robustness and adapt-
ability of the on-line mechanism proposed.

7.1 Off-line experiments

The experiment presented in this subsection is focused
on producing well-behaved Ghosts in terms of the perfor-
mance measure described in section 3. We train Ghosts
against all three types of PacMan players through the
off-line learning mechanism presented in section 5. The
off-line learning experiment is described as follows.

• Apply the off-line learning mechanism by playing
against each type of PacMan players separately.

• Ghosts trained against a specific type of PacMan
player are evaluated by playing 100 non-evolution
games against the same PacMan type.

• In order to minimize the non-deterministic effect of
the PacMan’s strategy on the Ghost’s performance
and interest values as well as to draw a clear picture
of these averages’ distribution, we apply the follow-
ing procedure. Using a uniform random distribution
we pick 10 different 50-tuples out of the 100 afore-
mentioned games. These 10 samples of data (i.e.
e, k, tk, vi) from 50 games (i.e. N = 50) are used
to determine the Ghosts’ average performance and
interest values. The outcome of this experiment is
presented in Table 1.

More analytically, in Table 1, both the performance
and the interest values of six different Ghosts’ behaviors
against all three different PacMan types as well as their
average values E{} are presented for comparison. In the
first three rows of Table 1 the fixed strategy Ghosts’ (i.e.
R:Random, F:Followers, O:Near-Optimal) performance
and interest values are presented against each type of
PacMan player. Furthermore, P and I values of three
different emergent behaviors against each PacMan type
(9 in total) are presented. These behaviors can be de-
scribed as follows.

• Blocking (B): These are the OLT Ghosts that achieve
the best performance (P > 0.75) against each Pac-
Man type. Their behavior is characterized as ‘Block-
ing’ because they tend to wait for PacMan to enter

Trained off-line by playing against
CB RB ADV

P I P I P I
R 0.446 0.429 0.4 0.43 0.411 0.424
F 0.776 0.705 0.839 0.733 0.822 0.722
O 1.0 0.607 0.96 0.625 1.0 0.582
B 0.987 0.458 0.79 0.555 0.875 0.535
A 0.724 0.646 0.7 0.614 0.749 0.513
H 0.6 0.297 0.587 0.476 0.464 0.357

E{} 0.755 0.524 0.713 0.572 0.72 0.522

Table 1: Performance (P) and Interest (I) values (average

values of 10 samples of 50 games each) of fixed strategy (R, F,

O) and OLT Ghosts (B, A, H) playing against all three Pac-

Man types (CB, RB, ADV). Average P and I values (E{})
of all six strategies appear in the bottom row. Experiment

Parameters: population size is 80, g = 1000, t = 300 simu-

lation steps, Nt = 10 games, pm = 0.01, 5-hidden neurons

controller.

into a specific area that is easy for them to block and
kill.

• Aggressive (A): These are suboptimal OLT Ghosts
that achieve lower performance (0.6 < P ≤ 0.75) in
comparison to the blockers. Their behavior is char-
acterized as ‘Aggressive’ because they tend to follow
PacMan all over the stage in order to kill it.

• Hybrid (H): These are suboptimal OLT Ghosts that
achieve the lowest performance (P ≤ 0.6) in compar-
ison to the aforementioned B and A Ghosts. Their
behavior is characterized as ‘Hybrid’ because they
tend to behave as a Blocking-Aggressive hybrid which
proves to be ineffective at killing PacMan.

The two main criteria in distinguishing the aforemen-
tioned behavior types are their performance values and
their behavior seen on screen.

Near-optimal and Blocking behavior Ghosts achieve
high-performance values against all three PacMan types
whereas their interest value is not as high as their perfor-
mance value. This illustrates the compromise between
optimality and interest we have to make because, in a
predator/prey computer game, optimal killing behaviors
cannot be interesting behaviors.

On the other hand, Followers and Aggressive behavior
Ghosts are likely to produce the two most interesting
behaviors (among the behaviors examined in Table 1)
for the game. Given the highest achieved interest values
(Followers — 0.705 against CB, 0.733 against RB and
0.722 against ADV), we can determine the threshold of
I ≥ 0.7 in accepting a team of Ghosts’ behavior (i.e. a
game) as interesting.

Viewing results presented in Table 1 from the PacMan
type perspective (i.e. average values in the bottom row of

the table), it looks as if the RB is the harder to kill and,
meanwhile, the most interesting PacMan player for the
Ghosts to play against. Furthermore, the CB PacMan
seems to be the easiest to kill whereas, ADV — even
though apparently not significantly different from CB
— seems to be the least interesting type of PacMan for
Ghosts to play against.

7.2 On-line experiments

As previously mentioned, the off-line learning procedure
is a mechanism that produces near-optimal solutions to
the problem of killing PacMan and minimizing the pel-
lets eaten in a game. These solutions will be the OLL
mechanisms’ initial points in the search for more interest-
ing games. The OLL experiment is described as follows.

• Pick the nine different emerged Ghosts’ behaviors
produced from the off-line learning experiments pre-
sented in subsection 7.1 (i.e. B, A and H behaviors
emerged by playing against each PacMan type).

• Starting from each OLT behavior, apply the OLL
mechanism by playing against each type of PacMan
player separately. This makes a total of 27 different
OLL attempts.

• Calculate the interest of the game every 100 games
during each OLL attempt.

In order to calculate the interest of the game we take
the Ghosts’ neural controllers every 100 OLL games and
evaluate them by letting them play 100 non-evolution
games against the PacMan type they were playing
against during OLL. We need to minimize the non-
deterministic effect of the PacMan’s strategy on the
game’s interest and therefore, we use a uniform random
distribution to pick 10 different 50-tuples out of these
100 games. These 10 samples of data (i.e. tk, vi), of
50 games each (i.e. N = 50), are used to determine the
games’ average as well as boundary values of interest de-
scribed in section 4. The outcome of this experiment is
presented in Table 2 and Figure 3.

Figure 3 illustrates the overall picture of the OLL ex-
periments. The evolution of interest over the OLL games
of each one of the nine different OLT behaviors is pre-
sented in a sub-figure of Figure 3. For each sub-figure,
three lines are illustrated, representing the interest val-
ues of the OLL attempt playing against the three differ-
ent PacMan types (a total of 27 different OLL attempts).

As seen from Figure 3, the OLL mechanism manages
to find ways of increasing the interest of the game no
matter what the initial OLT behavior or the PacMan
player they play against. In all experiments presented
here the learning mechanism is capable of producing
games of higher than the initial interest as well as keeping
that high interest for a long period. There is obviously a

slight probability of disruptive mutations (i.e. the higher
the game’s interest, through the cell visit’s entropy value,
the less the probability of mutation — see section 6)
that can cause undesired drops in the game’s interest.
However, as seen from Figure 3, the learning mechanism
is robust enough to recover from such disruptive phe-
nomena. When the initial Ghost behavior is interesting
(see Figures 3(b) and 3(e)) then the mechanism is likely
to keep the game at these high, or ever higher, levels
of interest. Given an interesting initial behavior (e.g.
Aggressive behavior, I > 0.6) or even a suboptimal H
behavior (see Figures 3(c) and 3(f)), it takes some hun-
dreds of games (i.e. around 500 games in most cases) for
the learning mechanism to produce games of high inter-
est. On the other hand, it takes some thousand games to
transform an uninteresting near-optimal blocking behav-
ior (see Figures 3(a), 3(d) and 3(g)) into an interesting
one. That is because the OLL process requires an initial
long period to disrupt the features of an uninteresting
blocking behavior in order to be able to increase the
interest of the game. This long period of disruption ap-
pears when the initial on-line Ghosts’ behavior (B, A, or
H) is emerged by playing against ADV PacMan as well
(see Figures 3(g), 3(h) and 3(i)). This happens likely
because off-line training against ADV PacMan seems to
produce the least interesting games (see Table 1).

It is obvious that a number in the scale of 103 consti-
tutes an unrealistic number of games for a human player
to play. In other words, it is very unlikely for a hu-
man player to play so many games in order to see the
game’s interest increasing. The reason for the OLL pro-
cess being that slow is a matter of keeping the right
balance between the process’ speed and its ‘smoothness’
(by ‘smoothness’ we define the interest’s magnitude of
change over the games). A solution to this problem is
to consider the initial long period of disruption as an
off-line learning procedure and start playing as soon as
the game’s interest is increased. How effective will this
mechanism be in a potential change from a fixed strat-
egy to a human PacMan player? Subsection 7.3 provides
evidence in order to support the answer.

OLL - Playing against
CB RB ADV

B 0.731 0.711 0.682
A 0.761 0.714 0.772CB
H 0.627 0.418 0.609
B 0.743 0.727 0.724
A 0.716 0.688 0.705RB
H 0.673 0.772 0.676
B 0.701 0.574 0.564
A 0.706 0.591 0.733

In
it

ia
l
O

LT
be

ha
vi

or
s

ADV
H 0.763 0.595 0.675

Table 2: Best interest values achieved from on-line learning.

1000 3000 5000 7000 9000 11000 13000 15000 17000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Games

In
te

re
st

CB PacMan
RB PacMan
ADV PacMan

(a) B OLT against CB PacMan

100 300 500 700 900 1100 1300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In
te

re
st

Games

CB PacMan
RB PacMan
ADV PacMan

(b) A OLT against CB PacMan

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Games

In
te

re
st

CB PacMan
RB PacMan
ADV PacMan

(c) H OLT against CB PacMan

1000 3000 5000 7000 9000 11000 13000 15000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Games

In
te

re
st

CB PacMan
RB PacMan
ADV PacMan

(d) B OLT against RB PacMan

100 300 500 700 900 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Games

In
te

re
st

CB PacMan
RB PacMan
ADV PacMan

(e) A OLT against RB PacMan

100 300 500 700 900 1100 13000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Games

In
te

re
st

CB PacMan
RB PacMan
ADV PacMan

(f) H OLT against RB PacMan

1000 3000 5000 7000 9000 11000 13000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Games

In
te

re
st

CB PacMan
RB PacMan
ADV PacMan

(g) B OLT against ADV Pac-
Man

1000 3000 5000 7000 9000 11000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Games

In
te

re
st

CB PacMan
RB PacMan
ADV PacMan

(h) A OLT against ADV Pac-
Man

1000 3000 5000 7000 9000 11000 13000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Games

In
te

re
st

CB PacMan
RB PacMan
ADV PacMan

(i) H OLT against ADV Pac-
Man

Figure 3: Game interest over the number of OLL games. For reasons of computational effort, the OLL procedure continues

for a number of games, large enough to illustrate the mechanism’s behavior, after a game of high interest (I ≥ 0.7) is found.

Initial Ghost behaviors appear in sub-figure captions. Experiment Parameters: t = 50 simulation steps, pm = 0.01, 5-hidden

neurons controller.

Table 2 presents the best average interest values ob-
tained from the OLL mechanism. It is clear that the
OLL approach constitutes a robust mechanism that,
starting from near-optimal or suboptimal Ghosts, man-
ages to emerge interesting games (i.e. interesting
Ghosts) in the majority of cases (i.e. in 15 out of 27
cases I > 0.7). It is worth mentioning that in 10 out
of 27 different OLL attempts the best interest value is
greater than the respective Follower’s value (i.e. 0.705
against CB, 0.733 against RB and 0.722 against ADV).

7.3 Adaptability

In order to test the OLL mechanism’s ability to adapt to
a changing environment (i.e. change of PacMan strat-
egy), the following experiment is proposed. Beginning
from an initial OLT behavior we apply the OLL mecha-
nism against a specific PacMan type. During the on-line
process we keep changing the type of player as soon as in-
teresting games (i.e. I > 0.7) are produced. The process
stops when all types of players have played the game.

Since we have three types of players, the total num-
ber of different such experiments is 6 (all different player
type sequences). These experiments illustrate the over-

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Games

In
te

re
st

RB PacManADV PacMan CB PacMan

Figure 4: On-line learning Ghosts playing against changing

types of PacMan. Initial behavior: A OLT against CB Pac-

Man.

all picture of the mechanism’s behavior against any se-
quence of PacMan types. Due to space considerations we
present only one (see Figure 4) out of the 6 experiments
here. As seen in Figure 4, the OLL mechanism is able to
quickly recover a sudden change in the player’s strategy
(i.e. from ADV to RB and finally to CB PacMan) and
increase the game’s interest at high levels after a number
of games has been played (i.e. 100 to 400 games). The
mechanism demonstrated a similar adaptive behavior for
all 6 different sequences of PacMan players which illus-
trates the mechanism’s independence from the sequence
of the changing PacMan’s type.

In addition, by experimenting with all sorts (B, A,
H) of initial behaviors, the mechanism’s time scale of
adaptation to new players is seen to be a function of the
initial Ghosts’ behavior: the more interesting the initial
behavior, the faster the adaptation to new players.

Results obtained from this experiment provide evi-
dence for the mechanism’s ability to adapt to new types
of players as well as its efficiency in producing interesting
games against human players.

8. Conclusion

Predator strategies in prey/predator computer games
are still nowadays based on simple rules which make the
game pretty predictable and, therefore, uninteresting (by
the time the player gains more experience and playing
skills). A computer game becomes interesting primarily
when there is an on-line interaction between the player
and its opponents who demonstrate interesting behav-
iors.

Given some objective criteria for defining interest in
predator/prey games presented in this paper we intro-
duced a generic method for measuring interest in such
games. We saw that by using the proposed on-line learn-
ing mechanism, maximization of the individual simple
distance measure (see (12)) coincides with maximization

of the game’s interest. Apart from being fairly robust,
the proposed mechanism demonstrates high adaptabil-
ity to changing types of player (i.e. playing strategies).
Therefore, we believe that such a mechanism will be able
to produce interesting interactive opponents (i.e. games)
against even the most complex human playing strategy.

On the other hand, for future work, we believe that the
methods used need to be tested on more complex Pac-
Man stages in order to provide more evidence for their
generality, and the interest measure proposed needs to
be cross-validated against human players.

References

Ackley, D. H. and Littman, M. L. (1992). Interactions
between learning and evolution. In Artificial Life II,
pages 478–507, Reading, MA. Sante Fe Institute Stud-
ies in the Sciences and Complexity, Addison-Wesley.

Haynes, T. and Sen, S. (1995). Evolving behavioral
strategies in predators and prey. In IJCAI-95 Work-
shop on Adaptation and Learning in Multiagent Sys-
tems, pages 32–37. Morgan Kaufmann.

Koza, J. (1992). Genetic Programming: On the program-
ming of computers by means of natural selection. MIT
Press.

Luke, S. and Spector, L. (1996). Evolving teamwork and
coordination with genetic programming. In Genetic
Programming 1996: Proceedings of the First Annual
Conference, pages 150–156. MIT Press.

Miller, G. and Cliff, D. (1994). Protean behavior in
dynamic games: Arguments for the co-evolution of
pursuit-evasion tactics. In Proceedings of the Third
International Conference on Simulation of Adaptive
Behavior (SAB-94), pages 411–420. MIT Press.

Rabin, S. (2002). AI Game Programming Wisdom.
Charles River Media, Inc.

Rosca, J. (1996). Generality versus size in genetic pro-
gramming. In Genetic Programming 1996: Proceed-
ings of the First Annual Conference, pages 381–387,
Stanford University, CA, USA. MIT Press.

Woodcock, S. (2001). Game AI: The State of the In-
dustry 2000-2001: It’s not Just Art, It’s Engineering.
Game Developer magazine.

Yannakakis, G. N., Levine, J., Hallam, J., and Papa-
georgiou, M. (2003). Performance, robustness and
effort cost comparison of machine learning mech-
anisms in FlatLand. In Proceedings of the 11th
Mediterranean Conference on Control and Automa-
tion MED’03. IEEE.

Yao, X. (1999). Evolving artificial neural networks. In
Proceedings of the IEEE, volume 87, pages 1423–1447.

View publication statsView publication stats

https://www.researchgate.net/publication/228736790

