
Towards Gaze-Controlled Platform Games
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Abstract—This paper introduces the concept of using gaze as
a sole modality for fully controlling player characters of fast-
paced action computer games. A user experiment is devised to
collect gaze and gameplay data from subjects playing a version
of the popular Super Mario Bros platform game. The initial
analysis shows that there is a rather limited grid around Mario
where the efficient player focuses her attention the most while
playing the game. The useful grid as we name it, projects the
amount of meaningful visual information a designer should use
towards creating successful player character controllers with
the use of artificial intelligence for a platform game like Super
Mario.

Information about the eyes’ position on the screen and the
state of the game are utilized as inputs of an artificial neural
network, which is trained to approximate which keyboard
action is to be performed at each game step. Results yield
a prediction accuracy of over 83% on unseen data samples
and show promise towards the development of eye-controlled
fast-paced platform games. Derived neural network players are
intended to be used as assistive technology tools for the digital
entertainment of people with motor disabilities.

I. INTRODUCTION

The use of alternate modalities (to standard keyboard and

mouse) for interacting with computers and game consoles

is growing and it becomes beneficial for both the user and

the interaction design; typical examples of this trend include

the Wii1 console and the PrimeSense2 sensor technology. On

one side, gaze, speech, and video modalities (among others)

may engage larger masses of players with dissimilar abilities

and game needs. On the other side, games can benefit

from alternate modalities of user input since such input can

assist in building better gameplay mechanics and realize the

development of more believable artificial intelligence (AI) in

games.

Eye tracking technology offers information on where and

what players are looking at while playing and opens up

the aforementioned possibilities for both the player and the

game. Such information may reveal hidden knowledge of the

appropriate input to the AI that controls player characters

and assist in building more accurate and believable game

AI grounded on realistic human visual perception of the

game. Thus, the process of designing intelligent controllers

J. Muñoz, G. Gutierrez, A. Sanchis are with the Computer Science
Department, Universidad Carlos III de Madrid, Avda. de la Universidad 30,
28911 Leganés, Spain (emails: { jmfuente, ggutierr, masm }@inf.uc3m.es).
G. N. Yannakakis is with the Center for Computer Games Research, IT
University of Copenhagen, Rued Langgaards Vej 7 2300 København S,
Denmark (email: yannakakis@itu.dk). F. Mulvey and D. Witzner Hansen are
with the Innovative Communication Group, IT University of Copenhagen
(emails: { fbmu, witzner }@itu.dk)

1http://wii.com/
2http://www.primesense.com/

in games can only benefit from modern low-cost and efficient

eye tracking technology. Furthermore, and more importantly,

fast-paced action game characters can be fully controlled by

people with severe motor disabilities by utilizing eye tracking

as alternative means of player character control.

This paper introduces the concept of achieving full control

of player characters grounded solely on gaze and in-game

data which is built using an artificial neural network (ANN)

trained via standard back-propagation. For that purpose, a

user study of 12 participants is devised on the popular Mario

Bros platform game and gaze data, gameplay data and player

actions are collected. This initial study focuses on the data

of the best-performing player out of the 12 available. The

first analysis on the data shows that there exists a small grid

area around the player character, Mario, we name useful

grid within best players are mostly looking while playing

the game. This information grid drives the design of ANNs

that we train to control the player character, Mario, built on

eye tracking input and the current state of the game. The

ANNs are assessed via 10-fold cross validation. It is worth

noting that we do not consider a direct mapping between

the information obtained from the gaze tracking system and

the controls of the game. Instead, the paper investigates

the underlying function between gaze information, in-game

information and human player controls that a machine learner

would be able to approximate in order to perform human-

like movements of the player character. In other words, we

design AI that imitates human player keyboard actions by

processing real-time gaze position information of the player.

The paper presents two sets of experiments where the

impact of ANN input types and the information grid size

on the performance of the ANN is examined. Results ob-

tained show that it is possible to predict unseen keyboard

strokes with an accuracy of around 87% based on real-

time perception of eye tracked coordinates, level geometry,

enemies and objects position, and player character state.

Experiments across different information grid sizes show

that the information grid incorporating the 90% of the gaze

samples, defined by 35 cells around the character, is the

most efficient and computationally balanced information with

respect to network performance.

The paper structure is as follows: in Section II we provide

background for the state of the art on the eye tracking

and games. Then in Section III we describe the platform

game used for our experimentation followed by a descrip-

tion of the eye tracking system utilized in this paper (see

Section IV) and the data collection experiment followed

(Section V). In Section VI we go through the data pre-
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processing procedure followed and the inputs and outputs

of the controller. All experiments held and obtained results

are presented in Section VII while conclusions about the

experiments (Section IX) and discussion about future steps

of this work (Section VIII) conclude this paper.

II. USING GAZE IN GAMES

Eye trackers are devices capable of determining the real-

time positioning of the user’s eyes on a screen of a human-

computer interactive system. Since gaze position is calculated

on any 2D plane (usually a computer screen) gaze can also

be used for computer interaction tasks and for games [1],

[2]. The majority of studies relating gaze and video games

investigate the use of gaze directly as an alternative (or

supplementary) input modality to the games. The emphasis is

on comparing the mouse, keyboard and gaze for game control

[3], [4], [5]. For example Dorr et al. [5] show that gaze

control has an advantage over mouse control when playing

Pong.

In [6] gaze-based interaction is established for specific

locomotion, fighting and equipment tasks in World of War-

craft; the resulting gaze-controller performs at a beginner

player’s skill level. On the same basis, Smith and Graham

[7] investigate the use of gaze as a interaction modality in

dissimilar games; in that study aiming is controlled via gaze

in Quake II and a fast-paced arcade shooting game.

Alternatively, the impact of gaze interaction on player

experience is examined in [8]. According to that study, gaze

— when replacing the mouse in a FPS (First Person Shooter)

game — increases player immersion but, nevertheless, lowers

the efficiency and accuracy of the interaction.

In comparison to other studies, we embed full-control over

the player’s character by using gaze indirectly as a source

of implicit and strategic information about the game play

rather than as a direct control mechanism. As far as we are

aware, this is the first study to take advantage of the implicit

and strategic information available in eye movement data. It

makes sense that eye movement data would provide useful

information to the NN to predict the proper actions, since

eye movements represent the strategic, moment to moment

gathering of information for the actively processing brain,

effected both by the bottom-up properties of the stimulus and

the higher order goals of winning the game [9]. Therefore,

the eye movement information stream represents a trace of

which visual information the brain selected as most infor-

mative for the goals of game play, with temporal resolution

of over a hundred samples per second. This rich information

stream offers many opportunities to model play behaviour.

However, gaming and interaction technologies which take

advantage of this aspect of eye movements data are absent

or only emerging. In this study, gaze pointing is utilized as

an alternative input to a machine learner that would be able

to accurately control the game character.

Furthermore, the tasks of aiming, locomotion in 3D

environments and accessing the inventory reported in the

literature are rather simple for a good eye-tracking device to

control in real-time. Full gaze-control of a player character

in a platform game like Super Mario Bros is a far more

challenging task with respect to reaction times and fine-

grained movements required of the player [10].

III. TEST-BED GAME: MARIO BROS

The game we have selected as a benchmark for our

experiments is a version of the popular platform game Mario

Bros (Fig. 1). In particular, we utilize the Infinite Mario Bros3

version developed by Markus Persson. Infinite Mario Bros

allows for procedural generation of non-deterministic game

levels based on a random seed and a difficulty parameter

corresponding to the number of gaps and enemies in the

level. This version of Mario Bros has been already used in

the Mario AI competition 4. This competition provides the

state of the art of AI-controlled Mario players; however, none

of the Mario players generated for the competition attempts

to imitate a human playing or uses alternate modalities of

control, so results obtained in this study cannot not be

comparable.

Fig. 1. Screenshot from the Infinite Mario Bros test-bed game.

The gameplay in Mario Bros consists of moving the

player-controlled character, Mario, through two-dimensional

levels, which are viewed from the side. Mario can walk

and run to the right and left, duck, jump, and (depending

on which state he is in) shoot fireballs. Gravity acts on

Mario, making it necessary to jump over holes (or gaps)

to get past them. Mario can be in one of three states: Small

(at the beginning of a game), Big (can crush some objects

by jumping into them from below), and Fire (can shoot

fireballs).

The main goal of each level is to get to the end of the

level, which means traversing it from left to right. Auxiliary

goals include collecting as many coins as possible, which

are scattered around the level, clearing the level as fast

as possible, and obtaining the highest score, which in part

depends on the number of collected coins and killed enemies.

3http://www.mojang.com/notch/mario/
4http://www.marioai.org/
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The interested reader can find an extended description of the

game in [11].

The game screen refresh frequency (game step) is set at

24 Hz corresponding to 24 actions per second (which in

turn categorizes Mario Bros as a fast-paced game). Available

Mario actions are: move left, move right, run, jump and duck

(only when in Big or Fire mode). The player performs the

actions by pressing or releasing the keys of the keyboard.

Any machine learning mechanism applied should be able to

perform the same actions efficiently in real-time.

Mario Bros is picked as the initial test-bed game for the

study of indirect gaze control of action game characters due

to its popularity as a game and its increasing popularity as

an AI benchmark as well as its simplicity with regards to

gameplay and mechanics. As already mentioned, the task

of imitating human playing behavior in a fast-paced action

game, which requires 24 actions per second, using gaze input,

is rather challenging; any additional complication forced into

the machine learner via a more complex 3D game would be

inappropriate at this initial stage.

IV. GAZE TRACKING SYSTEM

The EyeFollower5 gaze tracker is used for the experiments

presented in this paper. The EyeFollower is a remote gaze

tracker with two infrared cameras mounted on a pan-tilt head,

mounted under the monitor, and a webcam on top of the

monitor to track head position (see Fig. 2). The device is able

to locate the PoR (point of regard) on the monitor, and allows

for totally free head movement without the need to wear

headgear. The eye tracker detects the pupil and the reflections

of IR (infra red) light sources on the cornea to be able to

determine the PoR. Gaze trackers need to be calibrated to

each individual prior to use by having the user look at a

set of on-screen targets. Calibration is needed to be able to

infer person-specific parameters. Without calibration the PoR

estimates could vary several degrees.

Fig. 2. A subject playing Super Mario Bros.

The EyeFollower is highly accurate, able to sample gaze

position and the pupil size at a rate of 120 samples per

second (60 Hz per eye). This is equivalent to approximately

5 samples per game tick/step. Note that the game sampling

5developed by LC Technologies, Inc. — http://www.eyegaze.com/

frequency (24 Hz) is five times lower than that of the eye-

tracker system (120 Hz); this indicates the need for data pre-

processing prior to training the controller on data from both

modalities.

V. DATA COLLECTION EXPERIMENT

This section presents the experimental protocol used for

user data collection. Twelve subjects participated in the

experiment reported in this study. Subjects start the exper-

iment by filling in an on-line demographic questionnaire.

Information is asked about age, gender, potential vision

problems as well as game skill questions relating to computer

games in general and specifically to Mario Bros. Then each

subject plays a set of 6 games of different difficulty levels;

the first three games are played in increasing difficulty order

whereas the remaining three games are played in all possible

difficulty order permutations. Given the proposed experimen-

tal protocol twelve subjects cover all possible permutations

of three games (i.e. 6 permutations) twice.

The reason for adopting such a two-phase experiment

scheme is both to train all players in the same (increasing

difficulty) first phase gameplay scenario and, during the

second phase, to minimize order effects with respect to

learnability and gameplay difficulty. Gaze 2D coordinates

and pupil size are stored at a frequency of 60 Hz per each

eye reaching the maximum sampling rate (120 Hz) of the

eye tracker used.

Each person has its own vision characteristics and proper-

ties which make the eyes behave dissimilarly under the same

environment conditions [1]. These dissimilarities increase the

level of noise perceived through the eye tracker hardware.

Although the gaze system used is very robust with respect

to hardware noise reduction, there is still data noise caused

or data lost due to hardware setup, environmental causes

and real-time vision particularities. Usual reasons for missing

data include eye blinking and various forms of light reflection

which prevent the eye tracker system to retrieve gaze data.

In addition, data is lost due to the fact that the game and the

eye gaze system run under the same CPU. Resulting gaps

in the data streams obtained vary from 200 milliseconds to

maximum 1 second and accumulatively amount to less than

1% of the total gaze position samples. We consider this data

loss percentage rather insignificant. Since any form of data

interpolation is not appropriate for gaze data, those small

sections of corresponding gameplay data are not considered

for further investigation.

In addition to missing data there are also valid data sam-

ples that do not provide any useful information. For instance,

it is well known that there is no information processing by

the human brain during a saccade (movement between two

fixations) [1]. In a fast-paced game like Mario Bros players

use their gaze mid-term or long-term planning of future

actions to be performed. In such occasions the player is fixing

her gaze at a particular point on the screen while performing

actions to a far distant point; this gaze behavior happens

often in Mario Bros players since real-time event prediction

is crucial for playing the game successfully. Such gaze-data
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particularities challenge any machine learning approach that

attempts to imitate human playing behavior based on human

visual perception.

Delays in gaze sampling may reach 25 milliseconds and

occur due to 1) processing time of the eye image taken

and 2) the use of sockets for enabling data communication

between the game and the eye tracker. Although these delays

are important in real time applications, we have to bear in

mind that delays also happen in the brain, and also, that the

game-step (≈ 40 milliseconds) is greater than the delay.

VI. IMITATING MARIO VIA GAZE

As previously mentioned, our desire is for users to be able

to control the Mario character solely by using information

retrieved from the eye tracking system and in-game data. On

that basis, the behavior of Mario needs to be similar to a

human playing behavior and the Mario controller needs to

encapsulate the actions a human would perform in certain

situations. Imitating Mario players on the grounds on eye

position information is a rather complex task. We believe

that the underlying function between eye positioning, in-

game state information and keyboard actions could be ap-

proximated via the use of an ANN trained on data retrieved

from human players. There are other supervised learning

algorithms that one could attempt; however, ANN is a good

initial match for this problem due to their good real time

performance and their universal approximation capability

[12], [13].

A. Data pre-processing

The first step we have followed towards achieving this

goal is to retrieve a good set of human playing patterns to

train the ANN which is obtained via data pre-processing. The

first and last 4 recorded seconds of each level are removed

to minimize noisy data retrieved while the screen fades in

and out from a black screen to the level. In addition, levels

with very few number of samples are not taken into account.

The samples when the player looks out of the game are not

considered either.

From the 12 subjects that played the game, we eliminate

players with significant amounts of missing data due to

malfunction of the eye tracker, and players showcasing poor

playing performance. Thus, data retrieved from the best

performing player that depicts no significant eye position

data loss are used for the experiments presented in this initial

study. Player performance is assessed via the total number

of times the player died, hurts while on Fire or Large mode

and enemies killed in all 6 levels played. The player picked

as best died and was hurt 3 and 9 times, respectively (both

numbers being the minimum among all players), and killed

the maximum amount of enemies (45). In addition to space

considerations the reason for selecting this particular player

in this initial analysis is obvious: we feel it is very important

to report on the type and amount of visual information

retrieved when a hardcore gamer plays Mario Bros levels

since both the game AI and the gaze tracking studies can

benefit from such knowledge. Furthermore, we decided to

use the first four levels of the best performing player since

the last two levels played were way too complex for the

player and eye position data are lost more often in those two

levels due to the tiredness of the player.

Real-time eye positioning when playing games is of vital

importance for a player controller since it may determine,

up to a good degree, the amount and type of information

necessary to control the player character efficiently. For this

purpose we discretize the screen in cells of the same size of

Mario and analyze the times a human would look at those

cells. Fig. 3 presents the game cells, relative to Mario, the

best player looks at when playing levels of varying difficulty.

Results show that such a player focuses in the vast majority

of gameplay time in a small grid around Mario which we

name useful grid. A hill-climbing search algorithm — the

cell around the current selected cells with more samples is

selected next — yields 22, 27 and 36 cells around Mario

that cover more than 80%, 85% and 90% of the samples

respectively. Eye position relative to Mario suggests the

existence of important information in those cells that an

imitation algorithm can exploit in the process of learning to

play Mario. Thus it is our intention to use information about

enemies, the environment (gaps and blocks) and objects

(mushrooms, coins, flowers) represented as information grids

relative to Mario [14] within the useful grid as depicted in

Fig. 3.

Fig. 3. Grid showing the percentage of gaze samples in each cell relative
to the main character, Mario. The cell’s size equals Mario’s size (16 × 16
pixels). Regions containing the 80%, 85% and 90% of the gaze samples are
also depicted.
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B. Inputs and Outputs of the ANN

This section discusses the input and output representation

of the ANN considered in this study. In particular, a multi-

layer perceptron employing sigmoid (logistid) activation

functions at each neuron is trained via back-propagation as

discussed later in Section VII. The outputs of the ANN are

defined as the actions that Mario can take and are as follows:

• Move to the left

• Move to the right

• Run (when Mario is in fire mode this action also fires

a fireball)

• Jump

The duck action, that can be only executed when Mario

is in big mode, has been removed from the outputs of the

network since it is rarely used from the Super Mario players

of our study. In particular, the best player we examine here

has never used the duck action.

An action is executed when the output of the ANN for

this action is above the threshold 0.5; note that the outputs

fire a value between 0 and 1 (neurons employ the logistic

activation function).

On the other hand, the inputs of the ANN should somehow

relate to the gaze information and the current state of

the game; the remaining of this section discusses possible

inputs that an ANN controller could use in order to predict

accurately human playing actions (keystrokes).

One class of possible inputs for the ANN is the cell where

the player is looking at with respect to Mario consisting of

the x and y coordinates of the point. Note that if the eye

samples are not valid it is assumed that the player is looking

at Mario. Other four possible ANN inputs include the type

of information existent in the point that the player is looking

at: there could be an enemy, the type of the enemy (whether

it can be killed via stomping on it or not) or a useful object.

The current state of Mario could also be considered by the

ANN. In addition to the 3 states Mario could be (small, big

and fire), we also consider a state if Mario is up in the air

(due to a previously executed jump), and an additional state

if Mario is carrying a shell resulting to five possible Mario

states (5 possible inputs for the ANN).

Landscape information appears to be a vital input for

the ANN since it would allow the ANN to take an action

decision based on the current game landscape (e.g. gaps,

hills etc.). Landscape information is given to the ANN as

a binary representation of grid cells relative to Mario’s

position; each cell represents a binary value which equals 1

if there is ground on the corresponding cell or 0 otherwise.

The number of inputs is dependent on the size of the grid a

designer considers. Enemies may form another information

grid showing the existence of enemies with respect to the

position of Mario. Each cell contains the value of 1 if there

is one or more enemies, or 0 otherwise. Likewise, objects that

appear on the screen can be represented in a similar fashion:

the value of 1 in a cell represents the existence of an object

on that particular cell. Objects can be one of the following:

coins, mushrooms, flowers and blocks which contain objects

that have to be hit by Mario to release the object.

VII. EXPERIMENTS

This section summarizes the main results obtained from

our experimentation attempts. We run two types of experi-

ments. In the first set of experiments we use different types

of ANN input derived from a constant grid around Mario

whereas in the second set of experiments we explore the

impact of the size and shape of the grid on prediction

accuracy.

For this study we use fully-connected feed-forward ANN

[12] trained through the standard backpropagation algorithm.

There are a total of 6902 data patterns for training the

ANN derived from the best-performing player. For all the

experiments presented here we split the training data in

10 folds and use 10 fold cross-validation to assess the

performance of the trained ANNs.

The folds were created dividing the data into groups of

24 consecutive samples (1 second of game play), shuffling

the data and grouping it into 10 folds with same number

of samples. The groups of 24 consecutive samples were

made in order to not split the actions of the player. Since

the game state and the action of the human player do not

almost change between two consecutive game steps, we keep

consecutive samples of the game in the same fold instead of

using consecutive game samples for both train and test sets.

We chose one second as a reasonable number of samples for

the initial groups; experiments with smaller and larger time

windows led to similar results.

The number of epochs each ANN is trained on equals

1000 with a constant learning rate of 0.001. The ANN have

one hidden layer with 10 neurons. The selection of these

parameters is based on experiments held for maximizing the

performance of the ANNs.

A. Experiments across different ANN input vectors

For the first set of experiments we use a rectangular grid

based on the useful grid information depicted in Fig. 3. and

investigate the impact of dissimilar types of input to the

performance of the ANNs. The grid chosen is of size 6×7

cells with Mario in the middle as illustrated in Fig. 4 covering

the vast majority (86.1%) of gaze samples (see Fig. 3).

Table II shows the input sets used for each experiment

held with this information grid. The first column, Experiment,

provides an encoded name for the experiment and the last

M

Fig. 4. The 6×7 grid used; M represents Mario.
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column, Inputs, represents the number of ANN inputs. The

remaining columns of the table represent the various classes

of ANN inputs used: Eyes are the x and y coordinates of the

cell the player is looking at relative to Mario; Grid represents

the information grids for Landscape, Enemies and Objects

containing 41 inputs each (the cell where Mario is, is not

considered); Object at view is information relative to what

the player is looking at (4 inputs – see Section VI-B);

and, finally, Mario State represents the five possible state

of Mario.

Table III shows the results of the experiments with the

inputs described in Table II. The table presents 10-fold cross-

validation accuracy for each output of the ANN and on

average (Average column) for all outputs. The last column,

Std. Dev., depicts the standard deviation values of the average

performances. Bottom rows of the Table III are a default

behavior called always right where only the Right action is

executed all the time and a random behavior, both included

for comparison purposes.

By observing the performances of the different ANNs

attempted the left and run action are predicted correctly

around 90% and 93% of the time respectively also in the

always right behavior. On the other hand, the right action is

predicted correctly between 63% and 67% of the time and

the jump action is predicted correctly between 75% and 80%

of the time. It is also apparent that the two actions with the

highest variation in the prediction accuracy are the right and

jump actions.

A corrected resampled t-test [15] over each of the outputs

in the experiments of the Table II shows that there is not

a significant difference among the experiments for the left

and run actions. However, there is statistical significance

for the right action between the experiments that uses the

eyes input and the complete grid of the landscape, objects

and enemies (e leo, e leo l, e leo m, e leo l m) and the

remaining experiments (e, e l, e e, e o, leo m). For the

jump action there is also a statistical significance between the

experiments whichs uses the mario state as input (e leo m,

e leo l m, leo m) and the remaining experiments.

Table I presents the percentage of time each available

Mario action is taken for the best-performing player. As it

can be seen, left and run actions are fired less than 10% of

the time.

The low frequency of the left and run actions make

them very well predicted by ANNs, with accuracy of more

than 90%. On the other hand, the jump action is predicted

well (accuracy is significantly higher than 75%) when the

ANN’s input vector includes the state of Mario. For the

right action, it is worth noticing that ANNs incorporating

TABLE I
BEST-PERFORMING HUMAN: PERCENTAGE OF TIME EACH ACTION IS

EXECUTED.

Left Right Jump Run

9.14 49.45 24.73 6.71

the eye coordinates and the three grids (landscape, enemies

and objects) as inputs reach accuracy values higher than

66%. These results indicate both the difficulty in predicting

the right and jump actions (which are the most frequent

in Mario Bros) but also that the existence of particular

types of ANN perception, such as eye tracked coordinates

and level landscape which are crucial for the successful

prediction of player actions. Overall, the best average ANN

performance (82.63%) is obtained when all the inputs are

included (experiment code: e leo l m 134).

B. Experiments across different information grid sizes

The second set of experiments presented in this paper 6

investigates the impact of the information grid size to the

performance of the ANNs. Table IV shows the performance

of the ANN containing all inputs, across different grid sizes.

In particular, we utilize a 6×7, a 4×5 and a 8×9 grid with

Mario placed in the middle of the grid as depicted in Fig. 4,

as well as the 80%, the 85% and the 90% useful grids

depicted in Fig. 3.

While large performance differences among the different

grids are not observed, there appears to be a slight improve-

ment in some ANNs for the right action. The only statistically

significancet difference can be found in right action between

the 4×5 grid and the other grids. A grid bigger than 4×5

seems to be neccesary to achieve a good perforance for the

right output.

C. Contingency Table

Table V presents the contingency table of the best ANN

(experiment codename e leo l m with the 6 × 7 grid). The

table shows the number of correctly and wrongly classified

samples for each action. In particular there are four possibil-

ities:

• True Positive: the action is executed and the ANN

predicts it.

• True Negative: the action is not executed and the ANN

predicts it.

• False Positive: the action is not executed but the ANN

predicts it is executed.

• False Negative: the action is executed and the ANN

predicts it is not executed.

Table V also shows the precision value (rate of correct

positive predictions among all times the ANN predicts the

action is fired) and the recall value (rate of correct postive

predictions among all times the action is fired).

The accuracy of Left and Run actions is more than a

90% but their recall values are small (high number of false

negative samples). There are so many samples where the

action is executed but the ANN does not predict it. The ANN

does not learn it and almost always predicts that the action is

not executed, most likely because there are very few samples

for training the ANN where the action is executed compared

with the total number of samples (see Table I).

6A different fold set were used in these experiments, therefore the value
of the 6×7 grid experiment is slightly different in Table III and IV
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TABLE II
ANN INPUT SETS USED IN OUR EXPERIMENTS A 6×7 INFORMATION GRID IS USED FOR THE EXPERIMENTS PRESENTED HERE.

Grid Player Mario Number of
Experiment Eyes Landscape Enemies Objects Looking State Inputs

e 2 x 2

e l 43 x x 43

e e 43 x x 43

e o 43 x x 43

e leo 125 x x x x 125

e leo l 129 x x x x x 129

e leo m 130 x x x x x 130

e leo l m 134 x x x x x x 134

leo m 123 x x x 123

TABLE III
ANN ACCURACY (%) OVER EACH POSSIBLE MARIO ACTION AND ON AVERAGE. A 6×7 INFORMATION GRID IS USED FOR ALL EXPERIMENTS

PRESENTED HERE. VALUES IN BOLD INDICATE THE HIGHEST ACCURACY OBTAINED FOR THE PARTICULAR ACTION OR ON AVERAGE. BOTTOM ROWS

ARE THE DEFAULT BEHAVIOR OF ALWAYS MOVING RIGHT AND A RANDOM BEHAVIOR.

Experiment Left Right Jump Run Average Std. Dev.

e 2 90.41 60.40 75.54 93.13 79.87 1.33

e l 43 90.49 63.48 75.38 93.13 80.66 1.97

e e 43 90.41 62.52 75.55 93.13 80.40 1.35

e o 43 90.41 62.65 75.55 93.13 80.43 1.46

e leo 125 90.80 66.96 75.27 93.02 81.51 1.69

e leo l 129 90.36 66.28 75.67 93.13 81.36 1.81

e leo m 130 90.37 66.52 79.92 92.99 82.45 2.20

e leo l m 134 90.66 67.58 79.27 93.00 82.63 2.15

leo m 123 90.57 64.64 79.81 92.91 81.98 2.27

always right 90.86 49.45 75.27 93.29 77.22 -

random 49.23 48.28 50.12 49.91 49.39 -

TABLE IV
ANN ACCURACY (%) ACROSS DIFFERENT GRID SIZES; ANN INPUT CONSISTS OF ALL INPUTS CONSIDERED (EXPERIMENT CODENAME e leo l m).

VALUES IN BOLD INDICATE THE HIGHEST ACCURACY OBTAINED FOR THE PARTICULAR ACTION OR ON AVERAGE.

Grid ANN Inputs Left Right Jump Run Average Std. Dev.

4×5 68 90.76 65.78 80.66 93.23 82.61 1.36

80% 74 91.05 66.26 80.98 93.21 82.87 1.27

85% 89 91.02 68.31 80.47 93.19 83.25 1.61

90% 116 90.80 68.36 80.63 93.02 83.20 1.58

6×7 134 91.02 68.14 80.80 93.15 83.28 1.28

8×9 241 90.81 66.26 81.08 93.19 82.83 1.49

TABLE V
CONTINGENCY TABLE FOR THE BEST ANN (EXPERIMENT CODENAME e leo l m WITH THE 6× 7 GRID, SAME AS TABLE IV). THE CELLS SHOW THE

NUMBER OF TRUE POSITIVE (TP), TRUE NEGATIVE (TN), FALSE POSITIVE (FP) AND FALSE NEGATIVE (FN) CLASSIFICACIONS OF THE ANN; AND

THE VALUES OF PRECISSION ( TP

TP+FP
), RECALL ( TP

TP+FN
) AND ACCURACY (

(TP+TN)·100
TP+TN+FP+FN

).

Correct Predictions Wrong Predictions
Action TP TN FP FN Precision Recall Accuracy (%)

Left 31 6251 10 610 0.7561 0.0484 91.02

Right 2335 2368 1141 1058 0.6717 0.6882 68.14

Jump 666 4911 322 1003 0.6741 0.3990 80.80

Run 6 6423 15 458 0.2857 0.0129 93.15

2011 IEEE Conference on Computational Intelligence and Games (CIG’11) 53



The accuracy of Right and Jump actions is lower than

the accuracy for the other two actions but their recall and

precision values are closer to the best value. Unlike the Left

and the Run actions where the ANN learnt the actions that

are not executed, for the Right and the Jump action the ANN

extracted some information and is able to generalize and

predict if the action is executed or not with an accuracy

of 68.14% and 80.8%, respectively. The samples are more

balanced for these actions (see Table I).

VIII. DISCUSSION AND FUTURE WORK

This study introduces the concept of fully gaze-controlled

games realizing playability of fast-paced platform games for

people with severe motor disabilities. Evidently the gameplay

experience alters for the players that are able to use the

keyboard and the mouse [16], [8]; nevertheless using eye

tracking as an alternative control modality introduces new

possibilities for game design.

The first obvious step for improving the generality of our

findings is to consider more player data which will allow

us to examine different gameplay styles and their affect to

the training of the ANN; but also to investigate differences

in eye movement patterns among the differen players. By

observing the way different people play Mario Bros and

look at different elements of the game we expect that a

number of dissimilar Mario controllers will be required. Thus

prior to allocating a controller for a specific player, a player

modeler (e.g. via emergent self-organizing maps [17]) could

be trained to accurately classify the player. Player modeling

under this study constitutes an important research step per

se: that is, to be able to recognize playing behavior and skill

based solely on gaze data.

Furthermore, we plan to increase the number of training

samples the ANN is trained on so that the samples are, if

possible, evenly distributed among different actions. This will

guide the ANN training to treat all possible Mario actions in

a fair manner and learn to execute them correctly.

Another obvious step to take is the use of recurrent (instead

of feed-forward) ANNs for imitating human play thereby

exploiting the ability of recurrent ANN in learning spatio-

temporal relationships which appear to be significant in our

case study. Moreover, one may attempt to learn combinations

of key presses rather than the key press per se. Doing so will

decrease the sample size and might ease the learning task.

IX. CONCLUSIONS

This initial study towards building gaze-controlled plat-

form game characters revealed a number of important conclu-

sions for future research. First, it appears that there is an vital

grid area around the player character that the player looks

at most of the time which furthermore assists in imitating

human playing style. Thus, there is a consistency between

where players are looking at when playing a game and

the information an AI controller would require to learn to

play that game. Second, it appears that both real-time eye

coordinates and gameplay data are beneficial as ANN inputs

for the training of the player controllers. Third, ANNs are
performing well on the task of imitating a well-playing

human player grounded on both eye information an game-

play data. Results reveal a 83.3% accuracy on unseen data

which provides evidence for the appropriateness of ANNs as

predictors of human playing actions.
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