
Modelling and evaluation of complex scenarios
with the Strategy Game Description Language

Tobias Mahlmann, Julian Togelius, and Georgios N. Yannakakis

Abstract— The Strategy Game Description Game Language
(SGDL) is intended to become a complete description of all
aspects of strategy games, including rules, parameters, scenar-
ios, maps, and unit types. Our aim is to be able to model a
wide variety of strategy games, simple ones as well as complex
commercially available titles. In our previous work [1] we
introduced the basic concepts of modelling game rules in a tree
structure and evaluating them through simulated playthrough.
In this paper we present some additions to the language and
discuss and compare three methods to evaluate the quality of
a set of game rules in two different scenarios. We find that the
proposed evaluation measures are complementary, and depend
on the artificial agent used.

I. INTRODUCTION

Game mechanics normally play a vital part in a game’s
success and appeal to players. In a time where almost every
commercially produced game observes certain standards of
(audio)visual quality, it is often the differences in game
mechanics (in particular the originality) that differentiate
the popular (and commercially successful) titles from the
unpopular ones. It therefore stands to reason that a working
algorithmic method for automating or assisting game rule
design would be of immense use not only to game devel-
opers, but also to game researchers interested in exploring
the roles and limits of game mechanics [2]. Methods for
automatically generating various types of game content are
developed and studied in the field of procedural content
generation (PCG) [3], [4].

However, unlike the creation of other assets — levels,
landscapes, weapons, textures etc. — the creation of game
mechanics has only recently gained some attention from
research within the procedural content generation (PCG)
community. That this has not gained more attention in
the past is somewhat surprising for us, as we believe that
computer aided design of game rules or dynamic, even player
tailored, may be a valuable and vital tool to help a game’s
success. It is an ongoing debate in the creative community
debates if software can be really be creative or just perceived
as such [5], but our position is that rule-generation systems
will at least extend and augment a game designer’s creativity.
SGDL may therefore also used as a rapid prototyping system.

We propose to approach this problem from a search-based
perspective. Within search-based PCG, the main challenges
lie in representing the search space and in evaluating possible
solutions [4]. Various representations for rules for different
types of games been proposed in the past, as well as several

The authors are with the Center For Computer Games Research, IT
University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen,
Denmark (email: {tmah, juto, yannakakis}@itu.dk).

measurements of quality. We will discuss some of them in
this paper.

In our previous work we proposed the Strategy Game
Description Language (SGDL), a solution to represent the
properties and mechanisms of (computer) strategy games. We
are aiming for a level of abstraction appropriate for this par-
ticular domain inasmuch as it allows us to represent a large
variety of strategy games but few games outside this domain.
We believe that our general approach within a specific genre
of games may allow us to express such games in a succinct
and hopefully readable manner, avoiding the verbosity that
results from a too domain-general description language. To
ensure that, we define strategy games as a genre that include
a spatial map where one or more players own and take
turns to move different units, and which might additionally
include e.g. obstacles, resources and buildings. While the
theming and visual representation may differ, the underlying
games are similar, have often the same base mechanics. In
this respect, the strategy games genre can be compared to
classical board games such as Checkers, Go and Chess. In
theory, SGDL will be able to express commercial available
games like Sid Meier’s Civilization. The main challenge
would probably lie in modelling the meta-mechanics (such as
the space race or research in general). For the lack of space,
we did not include a formal definition of the language in
this paper. We would like refer the reader to the project’s
homepage1 for additional details instead.

In the following, we will first highlight other approaches to
describing game rules, as well as some fitness measures for
game mechanics that we believe may be useful. We will then
briefly re-introduce the main idea and features of SGDL as
well as the additions we have made in the current version.
We will conclude this paper with the presentation of data
and observations we’ve made when we tried the highlighted
fitness functions on our extended game scenario using the
SGDL framework. Particular attention will be given to how
much the various fitness/evaluation functions we investigate
correlate with each other, and across different agent types.

II. RELATED RESEARCH

Before we discuss other research related to modelling
and evaluating game mechanics, we would like to point
out that we’re always working on the premise that the
ludologic system [6] can be decoupled from its audiovisual
presentation. To what extent theming is necessary for an
enjoyable game is an ongoing debate in the computer game

1http://game.itu.dk/sgdl/

design community and beyond the scope of this paper [7].
But seeing them as abstract games makes it reasonable to
compare them to traditional combinatorial games (such as
board games) as they are also finite and discrete. Computer
games only differ from Browne’s categorization (please see
below) in such that they are not necessarily deterministic and
sometimes involve the aspect of hidden information.

Since SGDL is meant to describe the rules of a game, it is
natural to put it into the context of other Game Description
Languages (GDL). The probably most well-known GDL was
developed by Love et al. at the University of Stanford [8].
It is intended to be able to represent any game playable
with and by a computer that is discrete and with complete
information, and is built on first-order logic (to be more
specific, it is a dialect of Datalog). The vast generality lead
to vast verbosity and lacking readability; for example, three
pages of text is needed to express a game as simple as Tic
Tac Toe.

A few other, less domain-general approaches have been
introduced in the recent past. Smith and Matheas [9] de-
veloped the Variations forever system which models game
mechanisms as logical rules, expressed in AnsProlog. The
use of AnsProlog makes it possible to use Answer Set Pro-
gramming to automatically answer specific questions about
the game design. Variations forever was primarily meant as
a design support tool, but the system was developed into the
Ludocore game engine together with Nelson [10].

In 2008 Togelius and Schmidhuber proposed a simple
description structure for discrete PacMan-like games for use
in their experiment in automatic game design. The exper-
iment introduced the evaluation of the quality of generated
game mechanics through learnability testing: a reinforcement
learning algorithm is used as a model of human learning, and
game mechanics with smooth learning curves (those that are
neither trivial nor non-learnable) are preferred [2].

More recently, in 2010, Salge and Mahlmann [11] pro-
posed the measurement of relevant information as a quality
measurement, saying that a game is more refined if the
minimum amount of features observed by players to achieve
a certain performance is higher. Although it can be used as
a method to evaluate arbitrary game mechanics, Salge and
Mahlmann focus more on the quality evaluation then the
modelling of the game rule space.

In 2008 Browne proposed his Ludi framework [12]. The
genre in focus was two-player combinatorial games (“board
games”). He also discussed several possible metrics to mea-
sure the aesthetics and quality of a game as a base for auto-
matic evolution. One of Browne’s fitness measurements that
we will concern ourselves with here is based on the move-
and lead history during the game. It records the players’
performances (scores) throughout the game and counts how
many times the leading player changes. According to Browne
a game is more thrilling the more lead changes it has.

The tension (or uncertainty, the term is used interchange-
ably here) calculation on a per-turn basis was first proposed
by Iida et al. in 2006 [13]. Like Browne, Iida et al. focused on

two-player board games and proposed that the uncertainty of
the outcome (player one wins, player two wins or stalemate)
may be a good approximation of the abstract quality of
a game mechanic: a game becomes uninteresting once its
winner is obviously determined. Therefore a fast decrement
of the uncertainty should only occur in a late phase of the
game. The uncertainty of a game’s outcome can be calculated
using Shannon’s famous definition of entropy as commonly
used in information theory [14]: −

∑n
i=1 p(xi) logb p(xi)

whereas p(xi) is the probability of the outcome xi. For
two player games only two outcomes are possible (three
if the game rules permit a draw). The proposed method to
approximate the entropy per step is to record the outcome
of a certain number of self-play games. However, depending
on the computational complexity of the game, this may lead
to problems generating enough data to calculate the entropy
(Iida et al. proposed 4,000 games per turn).

The initial case study, using the game “Hex” [13], created
the impression that the uncertainty should be monotonically
decreasing throughout the game since every step reveals
information. This can be falsified by taking into account that
the winner of the game is not determined right at the start
of the game. If it were, the game could only point it out
more in every game turn. In fact, players can make moves
that increase their chances of winning. Hence the outcome
uncertainty can increase throughout the game, as we will
present later in this paper.

III. THE STRATEGY GAME DESCRIPTION LANGUAGE

Before we reveal what additional features we added to
SGDL, we will briefly re-introduce the main elements of the
description language and what games it may apply to.

We define ”strategy game“ as a battle of war seen from
the general’s perspective: the player looks down on the field
of battle, deciding where their units and buildings should be
deployed. Each player has his unique goals, often including
the elimination of all other players’ assets. Since the player
observe the game from a bird’s eye view, he is removed from
the immediate action and often only interacts with the game
world through his units and buildings.

Strategy games can be decomposed in three different
layers:

1) The mechanics layer. This layer determines the funda-
mental rules of the game, such as what an attack action
is, what it does mean to win the game and in what type
of game environment units are placed on (e.g. on a 2D
grid).

2) The ontology layer. This layer specifies the types of
key elements that may exist in the game (e.g. rivers,
mountains, tanks and factories) as well as their proper-
ties (e.g. mountains have movement cost 5 for ground
units).

3) The instance layer. The setup of an individual match,
campaign or battle are specified within this layer: the
layout of the map, initial placement of units, and any
particular conditions that might apply (e.g. the fog of

war2 gets lifted after 50 turns and the battle is lost if
enemy survives after 100 turns).

We propose to describe at least the mechanics and on-
tology layers using a tree-based representation, similar to
the most common representations used in genetic program-
ming (GP) [15]. GP is an evolutionary computation technique
for evolving program code. In most applications of GP,
expression trees are used to model and evolve programs that
fulfil a pre-defined task. The core idea is to model atomic
instructions into tree nodes whereas child nodes serve as
parameters for their parents. One common application of GP
trees are mathematical equations where numerical values are
passed as literals into the leaf nodes. Whenever we refer to
nodes in this paper, we mean nodes in an SGDL tree.

We started out attempts to model strategy games with the
mechanics layer, focussing on detailed modelling of the units.
In most strategy games, units are the most important game
elements the player interacts with, and can be compared to
the pieces of a board game such as Chess. Furthermore, the
challenge of the game is increased since units usually belong
to different classes which provides them with dissimilar
abilities and properties. A game often uses its theme to
make it more intuitive what the differences are, e.g. tanks
and airplanes are intuitively seen as objects with different
properties. Units (or objects on the map in general) have
properties (called attributes in the following) and abilities
(called actions in the following). While having some basic
attributes are mandatory (like spatial positioning), having
actions is not: debris, lying scattered on the map, may serve
the game as obstacles for other units while having no power
to act themselves.

To give you an example, we briefly discuss the SGDL
fragment of a unit class. In Figure 1 we can see the unit type
“A” that has two attributes in its right branch of the SGDL
tree: x and y. Without any further reference, these variables
have no explicit semantics. Only the action “goNorth” in
the left branch of the tree assigns meaning to them. Once
an instance of that class (an actual unit on the battlefield,
identified as OBJECT(0) in the tree) invokes that action, and
its condition that there must not be another unit at the map
tile north of the unit is fulfilled, its y attribute is decreased by
one. Naturally, an application that would like to visualize the
current game state has to interpret x and y as coordinates on
a map to calculate the position of an object’s representation
in the visual space.

A. Additions in this version

To draw nearer to our goal to model complete strategy
games in SGDL without the need for any hard-coded game
rules, we made several additions to the description language:

• non-deterministic nodes that represent a random num-
ber generated within certain parameters each time the
value is queried. These can be used within conditions

2fog of war: only a portion of the map is visible, depending on the players’
units’ positions

(a) Complex Rock Paper Scissor

(b) Rock Wars

Fig. 2. Two exemplary screenshots from our different scenarios.

to model probabilities or consequences to create non-
deterministic effects.

• the ability to create new objects on the map. This is
an essential mechanic that most games require. Even
if the game does not permit the creation of new units,
creation nodes can be used to model temporary objects
e.g. projectiles that exists over several game turns.

• we divided the set of consequences of an action into
several indexed layers. This allows us to script sequen-
tial consequences without having to cascade a huge tree
of actions

• both the global game state and the players got their own
set of attributes and actions. That enables us to integrate
more functionality of the ontology layer into SGDL.

IV. GAME SCENARIOS

We test our proposed fitness in two different scenarios in
this paper; one is relatively simple and has been tested in a
previous paper of ours, the other is more complex and relies
on the newly introduced SGDL features.

A. Complex Rock Paper Scissors (CRPS)

For our previous work [1] we designed a very simple
strategy game for our studies. The game takes place on
a 10 × 10 quadratic map. The main goal of the previous

Fig. 1. An SGDL fragment that defines a units ability to move north on the map

experiment was to find complementary unit sets, where one
unit beats another but is beaten by a third, and where it is
advantageous to use diverse sets of units rather than homo-
geneous armies. As the classic children’s game “rock, paper,
scissors” is perhaps the most complementary game ever
devised (rock beats scissor beats paper beats rock) we will
refer to this scenario throughout the paper as “Complex Rock
Paper Scissor” (CRPS). For a better understanding of the
following game description we provided a screenshot using
our development version of our game engine in figure 2(a).

Each player has three units, and those start evenly spaced
out on opposite sides of the map. Each turn, one player can
move or attack with one of his units. A unit can move one
step north, south, east, west, or attack one of the enemy units.
Units cannot move outside the map or attack a unit which is
not within their range. Each unit type has seven attributes:
health (range [0, 100]), ammunition ([0, 100]), three attack
values ([0, 100]) and both maximum and minimum attack
range ([0, 6]). The attack values determine the damage that
can be done by one shot on each of the enemy unit types.

For CRPS we sampled a number of ca. 7000 uniformly
generated games using a heuristic we created for our ex-
tended scenario (please refer to section V-B and ca. 900
games using our Monte Carlo Agent. The differing number
of samples was simply caused by the different computation
costs.

B. Rock Wars (RW)

On major flaw in our previous experiment was the limited
complexity of the game mechanics, apparently disallow-
ing deep gameplay and high-level skill differentiation. To
increase the complexity of the game and make it more
appealing to human players, we increased the map size
to 20x30 and randomly placed impassable rock objects on
10% of the map tiles. Rocks could be of course any other
object that would fit the theming, but we will refer to our
new scenario in this paper as “Rock Wars” (RW) for the
sake of clarity. Strictly speaking, we would need to check
if the non-deterministic creation of the scenario does not
create unplayable games (even if the configuration is valid)
e.g. through creating impassable barriers, but in practice
non-playable maps have never been observed. For a better
understanding of the game mechanics please refer to the
screenshot in figure 2(b).
Instead of a pre-assigned army, players start with single
factory object (blue in the screenshot) that is able to spawn
new units. Each unit type has an additional unique cost
attribute, the value of which is subtracted from the acting
player’s global amount of resources (called money here
but could be anything else e.g. ore or crystal like seen in
popular commercial games). The money variable is part of
the newly introduced player attributes. The goal of the game
is extended with the rule, that a player will loose if he has
no more units (excluding the factory, which is indestructible)

and no more money left to buy a new unit. If this rule is
triggered, the other player will win. The condition for the
maximum number of turns was left unaltered at 100 turns
before a game is considered as a draw. One might add that
it would have been simple to give each player a certain
amount of money back, to simulate an economy, but our test
showed that if a game SGDL model (if generated or mutated
with unfavourable attributes) may allow never ending games
where players can always buy new units. These cases would
still be detectable through our fitness function but would
be very costly to evaluate since they would always hit the
maximum turn limit.
Another important difference between the CRPS and RW
scenarios is the move order. In CRPS, the player can only
move one unit each turn, whereas in RW all units can be
moved each turn. This makes RW more similar to mainstream
computer strategy games, whereas CRPS has the move order
of classic board games like chess.
The move restriction in CRPS was due to our initial approach
to let agents use the MiniMax game tree search algorithm
with Alpha-Beta pruning. The increased number of actions
per move available in RW increased the branching factor of
the game tree exponentially to xyz

, whereas x is the number
of possible actions per unit, y is the number of units they
own and z is the search depth. This complexity made it very
hard to run many experiments in a realistic time frame, using
the MiniMax algorithm, and we therefore had to devise new
agents capable of handling this complexity.

V. GAME-PLAYING AGENTS

All of our fitness functions rely on automatic playthrough,
and we therefore need agents capable of playing the devised
strategy game scenarios with some skill and preferably with-
out too high computational complexity. As we will evaluate
a wide variety of game configurations, the agents cannot be
specifically tailored to any particular configuration.

A. MCTS Agent

Our first agent is based on Monte-Carlo Tree Search
(MCTS), as this is a high-performing game-playing method
for many board games, and currently the world-leading
algorithm for computer Go [16]. The basic Monte Carlo
decision algorithm works by, for each possible action each
turn, making a number of random playthroughs until the end
of the game and choosing the action that leads to the best
outcome on average. MCTS improves on this by building
up a tree of approximated state values as it carries out
simulations, in order to reduce the need for evaluating less
promising move sequences.

Still, the MCTS agent is very complex, and as the branch-
ing factor increases (more actions are available to the player)
ever more simulations are necessary to achieve reasonable
performance. The playing style of this agent can be described

as quite cautious, as it will usually try to avoid fights which
it is not likely to win.

Our initial approach was to repeat the evolutionary (to find
complementary unit configurations) run with our new RW
game, but it proved to be impractical to sample a multiplicity
of games in reasonable time due to the time it took our agent
to play the game.

To see how the increased complexity affects the fitness
values, and to be able to put CRPS and RW into relation,
we therefore limited our experiment to a number of 100
configurations based on the three configurations previously
found, only varying the new parameters (start money and
cost value of each of the three classes) with ranges 0-10
for the unit costs and 0-100 for the start money, and 600
uniformly samples games using our heuristic (please refer to
section V-B for details).

B. Heuristic Agent

We also devised a purely heuristic agent, that plays very
aggressively but with some rudimentary target selection. The
very low computational complexity of this agent allows us
to run experiments with complex scenarios in manageable
time. It also allows us to test the effect of a very different
playing style on the fitness functions, as the heuristic agent
has a markedly different “temperament” to the MCTS agent.
The heuristic can be described in pseudocode thus:

for all units do
if unit can attack then

attack where most damage caused (the unit against
which the current unit is most effective)

else if next step towards nearest enemy is not blocked
then

move towards nearest enemy
else

do a random move
end if

end for

VI. FITNESS FUNCTIONS

A. Balance

The aim of this fitness function is to find a suitable
configuration (here: sets of attribute values for attack, health
etc. In RW this also includes the unit cost variables) of
the three classes that fulfilled our definition of “balanced”
unit type set. A balanced, or complementary, set is one
where the nontransitive power relations between units make
it advantageous to compose or armies of diverse units rather
than homogeneous ones. The balance of a unit set was
measured as followed: six battles were played for each unit
type set. Balanced unit sets with units of all three types
(denoted ABC) played against unbalanced sets with units of
only one type (AAA, BBB and CCC). In RW this denotes
the unit types that a player could build through the factory
object.

Three games where played where the balanced unit set
started the game, and three games where the unbalanced
set started. The fitness was defined as the minimum fitness

achieved by the balanced set in any of the six games. To
minimize noise, the fitness calculation was averaged over
200 trials (t). The configurations found by our evolution-
ary algorithm from our previous work [1] can be seen in
tables I, II and III.

B. Tension

The second fitness we used was the self-play method of
evaluating tension, as proposed by Cincotti and Iida [13]. As
we have already briefly introduced it in section II, it is based
on the computational intelligence definition of quantifiable
information [14]. The more information is revealed about the
run of play, the clearer the outcome of the game becomes.
The later the decision point (the last lead change) of who
will win the game occurs, the better. It is therefore desirable
that the uncertainty of the game outcome stays high until a
very late phase of the game.
To calculate the outcome uncertainty throughout the game,
we used Iida’s proposed method with 1000 roll-outs per turn
to approximate the outcome probability. We then used the
graph (normalized over the game length, ranging from 0.0
to 1.0 in both dimensions) to create a fitting of the actual
uncertainty graph with the least-squares method, increasing
the degree of the curve until the standard error was be-
low 0.01. Following the stipulation that the final drop of
uncertainty (final game phase) should occur as late in the
game as possible, we numerically computed the distance d
of the nearest point on the curve close to the point 1.0, 1.0
(the maximum uncertainty, game length). Since we try to
minimize this distance, the resulting fitness function is 1−d.

C. Lead changes

Another thing that should correlate with tension is thrill.
Following Browne [12], a thrilling game requires that the
leading player changes several times throughout the game.
The worst case is that the starting player always wins, if
he just plays a perfect game (Tic Tac Toe is a well known
example). Hence we consider a game more thrilling, the
higher the average number of lead changes is.

To determine the number of lead changes for a certain
playthrough of a two-player game, each player’s score is

Health Ammo Attack 1 Attack 2 Attack 3 Min range Range
A 53.0 33.0 60.0 20.0 92.0 10.0 0.0
B 82.0 78.0 85.0 60.0 62.0 0.0 23.0
C 39.0 45.0 37.0 100.0 12.0 0.0 0.0

TABLE I
A UNIT TYPE SET WITH BALANCE FITNESS 0.0 IN THE CRPS SCENARIO.

Health Ammo Attack 1 Attack 2 Attack 3 Min range Range
A 46.0 69.0 61.0 71.0 71.0 2.0 5.0
B 6.0 43.0 22.0 90.0 22.0 3.0 5.0
C 36.0 82.0 40.0 47.0 6.0 2.0 4.0

TABLE II
A UNIT TYPE SET WITH BALANCE FITNESS 0.24 IN THE CRPS

SCENARIO.

Health Ammo Attack 1 Attack 2 Attack 3 Min range Range
A 6.0 82.0 39.0 2.0 67.0 0.0 3.0
B 4.0 31.0 92.0 79.0 3.0 1.0 5.0
C 64.0 79.0 94.0 1.0 90.0 0.0 2.0

TABLE III
A UNIT TYPE SET WITH BALANCE FITNESS 0.57 IN THE CRPS

SCENARIO.

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20 25

N
o
r
m
a
l
i
z
e
d

G
a
m
e

S
c
o
r
e

Game Turns

Player A Player B Lead graph

Fig. 3. The normalized scores (red and green) for two players of an
exemplary game. The lead graph (blue) indicates the current leading player.

recorded in each game turn. After the game has ended, the
score is normalized between 0 and 1, whereas 1 represents
the maximal score recorded. A third graph (the lead graph) is
created representing the difference between the two players’
scores. Given that the two score graphs range between 0
and 1, the lead graph can only range between −1 and 1. Is
the first player leading the game, the lead graph will have a
positive data point in that turn, a negative data point if the
second player leads. The example in figure 3 illustrates this
more clearly: red and green are each player’s performance
graph normalized to the maximum score. Blue represents the
difference between the score graphs. Every time the sign of
the lead graph changes, the leading player changes.

For all our games the players’ scores were recorded for
every game turn. As a score heuristic we used the health of
all units on the battlefield:

Sp =

Up∑
up

healthup
−

Uo∑
uo

healthuo

Where the score Sp of the player p is defined as the difference
between the sum of health of all (Up) his units and the sum
of health of all (Uo) his enemy’s units. The actual fitness
of the game is the number of lead changes divided by the
number of game turns (the average number of lead changes).

VII. RESULTS

In this section we present how we applied the previ-
ously introduced fitness measures to our two game scenarios
(CRPS and RW) and how they correlate to each other. We
conclude this section with a detailed analysis of the fitness
recordings on three RW configurations that base on the

(a)
Balancing Lead changes Turns

Uncertainty 0.04 −0.08 −0.12
Balancing 0.01 −0.1
Lead changes −0.17

(b)
Balancing Lead changes Turns

Uncertainty 0.17 0.09 −0.16
Balancing 0.19 −0.36
Lead changes −0.53

TABLE IV
THE CORRELATION BETWEEN DIFFERENT PROPERTIES OF SAMPLED

GAMES OF CRPS. 7000 GAMES WERE SAMPLED USING THE HEURISTIC

(A) AND 900 USING THE MCTS AGENT (B). SIGNIFICANT VALUES WITH

GRAY BACKGROUND.

Balancing Lead changes Turns
Uncertainty 0.01 0.22 0.03
Balancing 0.02 −0.03
Lead changes −0.19

TABLE V
THE CORRELATION BETWEEN DIFFERENT PROPERTIES OF CA. 675

SAMPLED GAMES OF Rock Wars USING THE HEURISTIC. SIGNIFICANT

VALUES WITH GRAY BACKGROUND.

configurations previously found in the evolutionary run and
presented in tables I, II and III.

A number of experiments were made, where hundreds of
games were played using both scenarios and agents. For
each combination of scenario and agent, all three differ-
ent fitness measures were calculated, and the correlation
between the different fitness measures calculated. We tried
to aggregate as much data as possible for each experiment
in reasonable time, whereas different computational costs
lead to a different number of simulation results for each
agent/game combination: 7000 for Complex Rock Paper Scis-
sors using the heuristic and 900 using the Monte-Carlo agent.
For Rock Wars we sample 675 games using our heuristic.
Unfortunately we were not able to simulate a significant
number of Rock Wars games using our Monte-Carlo agent.

Looking at the data presented in tables VII and V we
observe several interesting correlations. Some of them can
be discarded as non-significant. Correlations are given as the
Pearson correlation coefficient (r), while their significance
was tested against the null hypothesis (> 95% confidence):

t =

√
n− 2

1− r2

whereas r is the correlation coefficient and n the number of
games played.

Although these are rather small, we would like to focus
on three details here: A) the correlation between the game
lengths and the number of lead changes shows a significant
correlation in both games. This is rather expected as we
assume that the rate of lead changes is a constant property

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

O
u

tc
o

m
e

 u
n

ce
rt

ai
n

ty

Game Turns

Low score (0.0)

Mediocre score (0.24)

Best score (0.57)

Fig. 4. The outcome uncertainty in RW. The configurations were based on
our CRPS configurations found in our evolutionary experiment.

of the game mechanics. It is only natural, that the total per-
centage of lead changes decreases with an increasing game
length. Therefore a negative correlation can be observed. B)
There is a weak correlation between the uncertainty mea-
surement and the number of lead changes in “RockWars”,
while in “CRPS” there is not. While a correlation between
tension throughout the game is to be expected to depend on
the number of lead changes, we believe that we don’t see any
correlation in CRPS as it is basically to simplistic to be able
to create tension and there are not many lead changes due to
the short game length. We discard the negative correlations
of −0.08 (Heuristic) and 0.09 (MCTS) as non-significant.
C) The simple CRPS scenario shows a significant negative
correlation between the uncertainty and the game’s length
(−0.12/−0.16). We assume that a game is either over very
fast, or it is in a non-functional configuration where the game
end is only prolonged due to the fact that no party can win
(e.g. only having units with a range of zero left).

While the values for the Lead changes and uncertainty
behave very similar between the two agents for CRPS,
we observe several differences in the other correlations,
especially in those that base on the game length. We believe
that this is connected to the increased average game length:
20 turns (heuristic) versus 60 turns (MCTS). The MCTS
agent is certainly more versatile than the heuristic, which
is hand-crafted to work with the current scenarios, but has
a markedly different and more cautious playing style. Note
that there is no straightforward relation to playing style.

The sampling of RW configurations based on our previous
findings proved to be interesting as well: figure 4 shows an
example of the development of the outcome uncertainty for
our three different configurations as described in section VI.
We see that each configuration generates its own unique
graph. All three graphs show a very stable first part until the
first shots are fired. Graph A) shows that the game is decided
immediately once a shot is fired, hence the uncertainty
drops to the base level of 0. That there are several turns
more needed to end the game could have one of several
explanations: either the game requires that the remaining
units have to be simply cleared from the battle field to trigger

the win condition (e.g. in the first Command & Conquer [17]
game a player had to clear all opponent’s passive structures
like walls and sandbags to win a multi-player match. Even
if the opponent was unable to fight back at all since he
had already lost his production facilities and units.) or that
there exists an obvious action (killer- or finishing-move)
that an agent has to take but due to its non-deterministic
nature does not pick. B) shows a slight decrease of the
uncertainty in the beginning until the graphs starts oscillating
heavily. While we consider A) merely a pathological case
(since the configuration is basically non-function since two
unit types have a range of zero) and B) simply a “bad”
configuration, does C) show a graph we would suspect from
a well working configuration. What is surprising here is,
that the fittest configuration from our previous experiment
shows the slowest decrease of uncertainty in this experiment.
Following our measurement of the smallest distance to the
point 1.0, 1.0, this fitness is rather low (0.5) compared to the
mediocre (0.38) and bad configurations (0.46).

VIII. CONCLUSION AND FUTURE WORK

In this paper we described a number of additions to
the Strategy Game Description Language that permit the
modelling of more complex game mechanics and scenarios.
We also applied three different fitness measurements to two
scenarios, one simplistic and another inspired by complex
turn-based strategy games. The following fitness measures
were used:

• Our definition of balancing, calculating the win-rate of
heterogeneous unit sets versus homogeneous ones.

• Iida’s measurement of tension using the outcome uncer-
tainty per turn

• Browne’s proposed calculation of lead changes per
game.

We observed different properties using a large number of
uniformly randomly generated unit type configurations of
our two game scenarios using different agent controllers.
We also analysed the fitness of three hand-picked configura-
tions in detail. We found that certain fitness measurements
behave different in the two scenarios while others correlate
between scenarios. Our assumption is, that these three fitness
measurements are part of an overall approximation that can
determine the quality of a game mechanic and therefore its
appeal to human players.

We have also observed that the type of agent used has an
impact on the fitness measures, as the fitness measures differ
considerable for the same scenario depending on whether
a heuristic or MCTS agent was used. This leads us to the
question what sort of agent should be used to give a qualified
measurement of the properties of a game mechanics that
can be transferred to human player preferences. Intuitively,
it seems desirable to use an agent that plays the game in
a human-like manner and with human-level performance.
However, in which aspects the agent should be human-like
is an open research topic, as is the more fundamental topic
of how to play an unknown strategy game scenario and unit

type configuration reasonably well. We are currently putting
considerable effort into investigating this.

There are a number of other conceivable fitness measures
for strategy games that could and should be investigate.
Especially Browne [12] offers several fitness measures for
board games that could relatively easily be adapted to work
with strategy games. It has yet to be investigate to what extent
our fitness measurements correlate with the preferences of
human players. It would also be interesting to investigate
what type of players a game will appeal to. Combining our
approach with player modelling is therefore an immediate
goal of this research project [3], [18]. Once a valid and
reliable predictors of player preference have been established,
these models can be used as fitness functions for evolving
new strategy games.

ACKNOWLEDGEMENTS

This work was supported in part the Danish Research
Agency (FTP) grant “AGameComIn”. Thanks to Christoph
Salge for insightful discussions.

REFERENCES

[1] T. Mahlmann, J. Togelius, and G. N. Yannakakis, “Towards procedural
strategy game generation: Evolving complementary unit types,” in Ap-
plications of Evolutionary Computation EvoApplications 2011, April
2011.

[2] J. Togelius and J. Schmidhuber, “An experiment in automatic game
design,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games (CIG), 2008.

[3] G. N. Yannakakis and J. Togelius, “Experience-driven procedural
content generation,” IEEE Transactions on Affective Computing, vol.
in press, 2011.

[4] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation,” in Proceedings of EvoApplica-
tions, vol. 6024. Springer LNCS, 2010.

[5] S. Colton, “Creativity versus the perception of creativity in compu-
tational systems,” in In Proceedings of the AAAI Spring Symp. on
Creative Intelligent Systems, 2008.

[6] J. Juul, “The game, the player, the world: looking for a heart of
gameness,” in DIGRA Conf., 2003.

[7] K. Salen and E. Zimmerman, Rules of Play: Game Design Fundamen-
tals. MIT Press, 2004.

[8] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth,
“General Game Playing: Game Description Language Specification,”
2008.

[9] A. M. Smith and M. Mateas, “Variations forever: Flexibly generating
rulesets from a sculptable design space of mini-games,” in Proceedings
of the IEEE Conference on Computational Intelligence and Games
(CIG), 2010.

[10] A. M. Smith, M. J. Nelson, and M. Mateas, “Ludocore: A logical
game engine for modeling videogames,” in Proceedings of the IEEE
Conference on Computational Intelligence and Games (CIG), 2010.

[11] C. Salge and T. Mahlmann, “Relevant information as a formalised
approach to evaluate game mechanics,” Proc. IEEE Conference on
Computational Intelligence and Games (CIG) 2010, August 2010.

[12] C. Browne, “Automatic generation and evaluation of recombination
games,” Ph.D. dissertation, Queensland University of Technology,
2008.

[13] A. Cincotti and H. Iida, “Outcome uncertainty and interestedness in
game-playing: A case study using synchronized hex,” New Mathemat-
ics and Natural Computation (NMNC), vol. 2, pp. 173–181, 07 2006.

[14] C. E. Shannon, “A mathematical theory of communication,”
SIGMOBILE Mob. Comput. Commun. Rev., vol. 5, pp. 3–55, January
2001. [Online]. Available: http://doi.acm.org/10.1145/584091.584093

[15] R. Poli, W. B. Langdon, and N. F. McPhee, A field guide to
genetic programming. Published via http://lulu.com and
freely available at http://www.gp-field-guide.org.uk,
2008, (With contributions by J. R. Koza). [Online]. Available:
http://www.gp-field-guide.org.uk

[16] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-carlo tree
search: A new framework for game ai,” in Proceedings of the Belgian-
Dutch Artificial Intelligence Conference, 2008.

[17] Wikipedia, “Command & conquer — wikipedia, the free
encyclopedia,” 2011, [Online; accessed 27-March-2011]. [On-
line]. Available: http://en.wikipedia.org/w/index.php?title=Command\
\%26\ Conquer\&\\oldid=420557245

[18] G. Yannakakis and M. Maragoudakis, “Player modeling impact on
player’s entertainment in computer games,” in User Modeling 2005,
ser. Lecture Notes in Computer Science, L. Ardissono, P. Brna, and
A. Mitrovic, Eds. Springer Berlin / Heidelberg, 2005, vol. 3538, pp.
151–151.

View publication statsView publication stats

https://www.researchgate.net/publication/224259874

