
Integrating Mutation Testing into Agile Processes
through Equivalent Mutant Reduction via

Differential Symbolic Execution
Mark Anthony Cachia

Department of Computer Science
University of Malta

Msida, Malta
mcac0019@um.edu.mt

Mark Micallef
Department of Computer Science

University of Malta
Msida, Malta

mark.micallef@um.edu.mt

I. AGILE PROGRAMMING

In agile programming, software development is performed
in iterations. To ensure the changes are correct, considerable
effort is spent writing comprehensive unit tests [2]. Unit tests
are the most basic form of testing and is performed on the
smallest or smaller set of code [7].These unit tests have
multiple purposes, the main one being that of acting as a
safety net between product releases. However, the value of
testing can be called into question if there is no measure of
the quality of unit tests [2]. Code coverage analysis is an
automated technique which illustrates which statements are
covered by tests [4]. However, high code coverage might still
not be good enough as whole branches or paths could still
go completely untested which in turn leads to false sense
of security [8]. Mutation Testing is a technique designed to
successfully and realistically identify whether a test suite is
satisfactory. In turn, such tests lead to finding bugs within
the code. The technique behind mutation testing involves
generating variants of a system by modifying operators (called
mutants) and executing tests against them. If the test suite is
thorough enough, at least one test should fail against every
mutant thus rendering that mutant killed. Unkilled mutants
would require investigation and potential modification of the
test suite [3].

II. MUTATION ANALYSIS

Mutation analysis is a process which determines the effec-
tiveness of a test suite. This is achieved by modifying the
source of a program and ensuring that at least one test fails thus
ensuring the tests are sensitive to particular source changes. A
mutant who is detected by tests is called a killed mutant. In
mutation analysis, a large number of mutants are generated.
Mutants are programs which have been syntactically altered.
Sometimes, such alterations lead to the generation of Equiv-
alent Mutants. Equivalent mutants is a problem in Mutation
Testing and can be defined as the mutants “which produce the
same output as the original program” [3]. Performing Mutation
Analysis on Equivalent mutants is a waste of computation
time. As program equivalence is undecidable, automatically

MS =

∑
KilledMutants∑

(Mutants− EquivalentMutants)

Fig. 1. Equation representing the Mutation Score [3]

detecting equivalent mutants is impossible. The equivalent
mutant problem is a barrier that prevents Mutation Testing
from being widely adopted. The result of Mutation Analysis
is a ratio or percentage of the killed mutations divided by the
sum of equivalent mutants [3]; Figure 1 illustrates.

There are various reasons why mutants may be equivalent.
Grun et al. [1] manually investigated eight equivalent mutants
generated from the JAXEN XPATH query engine program.
They noticed four main reasons which cause a mutant to be
equivalent are

• mutants generated from unneeded code,
• mutants which improves speed,
• mutants which just alter the internal states, and
• mutants which cannot be triggered.

III. SYMBOLIC EXECUTION

Symbolic execution is the process of analysing a program
by executing it in terms of a symbolic parameter α instead
of a concrete instance. The class of inputs represented by
each symbolic execution is determined by the control flow of
the program based on branching and operations on the inputs.
Each branch leads to a unique path condition (PC). A PC is a
set of conditions which the concrete variables have to adhere
to for the execution to be in the given particular path; hence,
for any given set of concrete parameters, the given parameters
can reside into at most one path. Initially, the path condition is
true, however at each branch operation, the branch condition
is ANDed to the previous PC. In the else path, the NOT of
the branch condition is added to the current PC [5].

Symbolic execution takes normal execution semantics for
granted and is thus considered to be a natural extension of
concrete execution. At the end of symbolic execution, an
execution tree can be graphed illustrating all the possible paths

15



the program can follow. At each leaf, there exists a unique
PC which can be satisfied by a concrete input. The PC at
any of the leaves is distinct i.e. ¬ (PC1

∧
PCn). As symbolic

execution satisfies a commutative property (relative to concrete
examples, symbolic execution has the “exact same effects as
conventional executions” [5].

A. Differential Symbolic Execution

Differential symbolic execution is a technique introduced by
Person et al. [6] which efficiently performs Symbolic execution
on two versions of the same class. The aim of Differential
symbolic execution is effectively and efficiently determine
whether the two version of the code is equivalent; and if not,
characterise the behavioural differences by identifying the sets
of inputs causing different behaviour [6].

Differential symbolic executions works by symbolically ex-
ecuting each method version to generate symbolic summaries.
Symbolic summaries pair input values with the constraint (also
known as the branch condition) together with the operation on
a symbolic value (the effect or operation). The summaries from
both versions are compared. If the summaries are equivalent,
the methods are considered functionally equivalent. Otherwise,
a behavioural delta (∆) which characterise the input values
where the versions differ.

IV. PROPOSED WORK AND EVALUATION

The proposed work is to combine Differential symbolic
execution to the most effective optimisations of Mutation
Testing. Direct bytecode manipulation as well as Localised
Mutation; a technique which only mutates modified code when
compared to previous versions as introduced in the FYP,
will be employed to ensure the utmost performance in the
generation of mutants. Differential symbolic execution, will
be used to perform efficient functional equivalence between
the mutated method and the original method to ensure the
method’s semantics have been altered. This determines if the
versions have the same black box behaviour as well as have
the same partition effects [6].

The evaluation under consideration will asses the effec-
tiveness of equivalent mutant reduction in Mutation analysis.
The evaluation will be performed in two iterations with two
different algorithms;

1) Mutation testing with the most efficient optimisations
2) Mutations testing with the most efficient optimisations

as well as equivalent mutant reduction using Differential
symbolic execution.

Various metrics are envisaged to be utilised. Such metrics
currently include the execution time to perform the complete
Mutation analysis and the time taken for the developer to
implement enough tests until a satisfactory Mutation score
is achieved. Another aim of this work is to find the most
efficient point in the software life cycle at which it is ideal to
start performing mutation analysis. Particularly, if it’s worth
performing in just one chunk at the very end of the cycle or
if it is most feasible to perform incremental Mutation testing
during the whole development process. It is planned that the

interval at which Mutation analysis is ideal to commence and
at what interval the analysis should be performed (such as per
commit or by some other heuristic) will be also determined
during the empirical evaluation.

REFERENCES

[1] Bernhard J. M. Grün, David Schuler, and Andreas Zeller. The impact of
equivalent mutants. In Proceedings of the IEEE International Conference
on Software Testing, Verification, and Validation Workshops, ICSTW ’09,
pages 192–199, Washington, DC, USA, 2009. IEEE Computer Society.

[2] Sean A. Irvine, Tin Pavlinic, Leonard Trigg, John G. Cleary, Stuart Inglis,
and Mark Utting. Jumble java byte code to measure the effectiveness
of unit tests. In Proceedings of the Testing: Academic and Industrial
Conference Practice and Research Techniques - MUTATION, TAICPART-
MUTATION ’07, pages 169–175, Washington, DC, USA, 2007. IEEE
Computer Society.

[3] Harman M Jia Y. An analysis and survey of the development of mutation
testing. ACM SIGSOFT Software Engineering Notes, 1993.

[4] Nguyen H Kaner C, Falk J. Testing computer software. 1999.
[5] James C. King. Symbolic execution and program testing. Commun. ACM,

19(7):385–394, July 1976.
[6] Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina S.

Pǎsǎreanu. Differential symbolic execution. In Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software
engineering, SIGSOFT ’08/FSE-16, pages 226–237, New York, NY,
USA, 2008. ACM.

[7] R S Pressman. Software engineering: a practitioner’s approach (2nd ed.).
McGraw-Hill, Inc., New York, NY, USA, 1986.

[8] Ben H. Smith and Laurie Williams. Should software testers use mutation
analysis to augment a test set. Journal of Systems and Software, page
2009.

16


