
Distributed High-Fidelity Graphics using P2P

Daniel D’Agostino

In the field of three-dimensional computer graphics, rendering refers to the
process of generating images of a scene from a particular viewpoint. There are
many different ways to do this, from the highly interactive real-time rendering
methods [1] to the more photorealistic and computationally intensive methods
[5].

This work is concerned with Physically Based Rendering (PBR), a class of
rendering algorithms capable of achieving a very high level of realism. This is
achievable thanks to physically accurate modelling of the way light interacts with
objects in a scene [7], together with the use of accurately modelled materials and
physical quantities.

Unfortunately, this realism comes at a cost. PBR computations are very
expensive, and it may take several hours to render a single image. Hence, it is no
surprise that most of the research in this field attempts to find ways to reduce
that cost, and produce images in less time.

In spite of their diversity, all physically-based rendering algorithms attempt
to solve the same problem: imitating the visual appearance of an environment as
it would look in real life. This problem is formulated as the rendering equation
[6]. Based on the principle of conservation of energy, this equation states that
the light leaving a surface comprises both the light emitted from the surface,
and that being reflected from other surfaces.

Due to factors relating to geometric complexity of the scene, it is not possible
to solve the rendering equation analytically [7]. This difficulty mandates the use
of numerical techniques, the most popular of which are Monte Carlo techniques.
These were introduced to PBR with distributed ray tracing [3], a technique based
on the ray tracing method [11] which could collect light arriving at a surface
from many different directions in order to include fuzzy phenomena (such as
soft shadows).

Irradiance caching [10] is a particularly useful technique that can be used in
conjunction with distributed ray tracing (as well as other algorithms). Based on
the observation that indirect diffuse lighting varies slowly over a surface [10], it
stores irradiance (view-independent lighting data) in a data structure (usually
an octree) and uses fast interpolation in order to speed up computation.

While one side of PBR research has been formulating more efficient algo-
rithms to render physically-based images faster, another has been exploiting
the embarrassingly parallel nature of ray tracing [4] in order to distribute the
rendering load on many processors or interconnected machines [9].

Research into parallel PBR has so far almost exclusively used the client/server
model. Although some rendering research based on the peer-to-peer (P2P) model
has recently emerged [8, 2, 12], at present (to the best of our knowledge) there is
none that is designed to improve physically-based rendering systems.

28



The method we are developing is based on the irradiance caching algorithm.
Given that irradiance stored by a renderer is view-independent, it is easy to share
with other machines, who can then use it directly without having to recompute
it locally. This makes it particularly suitable for use over a P2P network.

Aside from the obvious benefits of free computation resulting in overall
speedup, this novel way of sharing irradiance between peers is expected to
provide new and interesting scenarios in which PBR can be used for collab-
oration between several peers in the same scene, as opposed to the traditional
client/server model where the clients would do the rendering work and the server
would be the only one to see the final images.

References

1. Tomas Akenine-Möller, Eric Haines, and Natty Hoffman. Real-Time Rendering
3rd Edition. A. K. Peters, Ltd., Natick, MA, USA, 2008.

2. Azzedine Boukerche and Richard Werner Nelem Pazzi. A peer-to-peer approach
for remote rendering and image streaming in walkthrough applications. In ICC,
pages 1692–1697. IEEE, 2007.

3. Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing.
In Proceedings of the 11th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’84, pages 137–145, New York, NY, USA, 1984. ACM.

4. Thomas W. Crockett. Parallel rendering. Parallel Computing, 23:335–371, 1995.
5. P. Dutré, K. Bala, and P. Bekaert. Advanced global illumination. Ak Peters Series.

AK Peters, 2006.
6. James T. Kajiya. The rendering equation. In Proceedings of the 13th annual con-

ference on Computer graphics and interactive techniques, SIGGRAPH ’86, pages
143–150, New York, NY, USA, 1986. ACM.

7. M. Pharr and G. Humphreys. Physically Based Rendering: From Theory to Imple-
mentation. Morgan Kaufmann. Elsevier Science, 2010.

8. J. A. Mateos Ramos, C. Gonzlez-Morcillo, D. Vallejo Fernndez, and L. M. Lpez-
Lpez. Yafrid-NG: A Peer to peer Architecture for Physically Based Rendering.
pages 227–230.

9. I. Wald and P. Slusallek. State of the art in interactive ray tracing. STAR,
EUROGRAPHICS 2001, pages 21–42, 2001.

10. Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. A ray tracing
solution for diffuse interreflection. In Proceedings of the 15th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’88, pages 85–92, New
York, NY, USA, 1988. ACM.

11. Turner Whitted. An improved illumination model for shaded display. Commun.
ACM, 23(6):343–349, June 1980.

12. Minhui Zhu, Sebastien Mondet, Géraldine Morin, Wei Tsang Ooi, and Wei Cheng.
Towards peer-assisted rendering in networked virtual environments. In Proceedings
of the 19th ACM international conference on Multimedia, MM ’11, pages 183–192,
New York, NY, USA, 2011. ACM.

29



Fig. 1. The Sibenik Cathedral, rendered using our Irradiance Cache

Fig. 2. The Kalabsha Temple, rendered using our Irradiance Cache

30


