
Search Based Software Engineering

Mark Micallef

Department of Computer Science, University of Malta
mark.micallef@um.edu.mt

1 Motivation

Consider the following questions, which are posed by software engineers on a
daily basis:

1. What is the smallest set of test cases that will cover all statements in this
program?

2. What is the best way to organise classes and methods for this OO design?
3. What is the set of requirements that balances software development cost and

customer satisfaction?

Whilst these questions seem to be addressing di↵erent problems, they do
have some notable commonalities. Firstly, they form part of a large set of soft-
ware engineering problems which can each be solved by a multitude of potential
solutions. That is to say that if one were to ask the above questions to x equally
competent engineers, one would likely get back x di↵erent yet correct solutions.
Secondly, this class of problems is usually tasked with balancing a number of
competing constraints. A typical example here is maximising customer satisfac-
tion whilst keeping development costs low. Finally, whilst there is typically no
perfect answer (and indeed no precise rules for computing the best solution),
good solutions can be recognised.

When problems with similar characteristics were encountered in disciplines
other than software engineering, they were solved with a large degree of success
using search-based techniques. It was this realisation that gave rise to the field
of search based software engineering.

2 Search Based Software Engineering

Search Based Software Engineering (SBSE) is the name given to a body of work
in which Search Based Optimisation is applied to Software Engineering problems.
Although the literature reveals earlier work in the area, the term itself was coined
by Harman and Jones [1] in 2001, an event which seems to have legitimised the
area as a sub-field of software engineering and led to an explosion of interest in
the area.

Attempting to solve a problem using these techniques essentially requires
reformulating software engineering as a search problem. That is to say that for
a given problem, one needs to define:

CSAW'13 pg 13

2 Mark Micallef

– a representation of the problem which is conducive to symbolic manipulation
– a fitness function defined in terms of this representation

Consider the question “what is the smallest set of test cases that will cover

all statements in this program?”. Assuming for the sake of example that the
program is a method which takes two integers as parameters, one could propose
an encoding whereby test cases are encoded as ordered pairs hx, yi where x, y 2
Z. Furthermore, the fitness function can be defined as the function which takes
a set of integer pairs and returns a measure of coverage between 0 and 1.

f : P(Z⇥ Z) ! R

The problem is thus reformulated as a search problem whereby the goal is to
find the smallest list of integer pairs with a fitness function of 1.

Whilst the example is a simple one, it demonstrates that once you define an
encoding and a fitness function, it simply becomes a matter of applying known
techniques from search-based optimisation to find a solution to your problem.
Of course, defining an encoding and fitness function is not always straight for-
ward. In most non-trivial scenarios, one needs to deal with multiple goals to a
fitness function, conflicting goals, and ones which are not easily encodable in an
objective manner.

3 Talk outline

During my talk at the CSAW workshop, I will introduce the topic, discuss com-
monly used algorithms in this field and provide two or three concrete examples
to illustrate what can be achieved using these techniques. I will then outline
ongoing personal research work in this particular field.

References

1. Mark Harman and Bryan F Jones. Search-based software engineering. Information

and Software Technology, 43(14):833–839, 2001.

CSAW'13 pg 14

