
Using DSLs for Software Testing

Mark Micallef1 and Christian Colombo2

University of Malta

In her widely cited paper about the future of software testing, Bertolino [1] claims
that domain specific languages (DSLs) have emerged as an efficient solution towards
allowing experts within a domain to express specifications in that domain. She goes on
the claim that success of domain-specific approaches should be built upon and extended
to the testing stage of software engineering. An intuitive place to start would be to
explore DSLs in the context of software testing such that languages constructed by
domain experts can be leveraged to specify not only requirements but also test cases
which validate those requirements. In this talk, we present and discuss the outcomes of
three exploratory case studies which we carried out in order to investigate the utility of
DSLs as applied to specifying tests in different domains, with each case study focusing
on a particular aspect/characteristic of this application of DSLs. The three case studies
are as follows:

Android Application Testing - In this case study, the focus was on investigating the
possibility of designing a language which was able to express tests over the domain
of applications developed for the Android platform. The main characteristic of such
applications is that they exist in a domain, which is sufficiently different from other
domains (e.g. desktop applications) to merit a domain-specific approach yet whose
concepts are well-defined in official documentation [2] and understood by techni-
cal and non-technical stakeholders alike. In the study we developed a DSL which
merged concepts from the Android platform with concepts from the domain of
software testing thus allowing stakeholders to specify tests. Furthermore, we devel-
oped a prototype which implemented a subset of the features of the language as a
proof-of-concept that the approach is feasible.

Graphical Games Testing - Whilst existing approaches to test automation sufficiently
cater for the testing of “traditional” software systems which incorporate a stan-
dard set of user interface components, the same cannot be said when it comes to
graphical games. Such games do not provide standard user interfaces and there is
rarely any documentation which explicitly defines the domain. Hence in this case
study we investigated the challenges involved in designing a DSL that expresses
tests over a loosely-defined domain as well as the technical challenges involved
in the execution of tests over graphical games. This work lead to the design of an
extensible DSL for specifying tests over the domain of graphical games and the
implementation of a prototype which executed tests against two popular games in
the market.

Technology-Agnostic Test Automation for B2B Websites - Readers who purchase items
online from a variety of online stores are likely familiar with notions such as a prod-

uct search, a shopping cart, checkout process, and so on. These notions are basic
building blocks which are found in most B2B websites. Yet when it comes to speci-
fying and implementing automated tests in these domains, companies are forced to



start from scratch and build custom automation frameworks for their websites. In
this case study we explored the idea of designing a DSL which is generic enough to
express tests over B2B websites. We then used a classifier-based technique and pro-
totype which demonstrates that it is possible for one to specify and automatically
execute tests in the DSL without needing to be intimately familiar with the techni-
cal details of the website. This approach differs substantially from the current state
of the art in which test engineers need to use application-specific hooks in order
to implement automated tests. We believe this approach is likely to (1) encourage
more focus on what the application should be doing rather than how it is doing it
and (2) reduce the phenomenon of brittle tests whereby automated tests break as a
system evolves, even if evolution is of a cosmetic nature.

Future work in this area will proceed down two tracks. Firstly, at least in the short
term, we would like to maintain an exploratory mentality in which we carry out case
studies across a number of domains in order to make observations and identify inter-
esting research areas. Secondly, we would like to identify promising prototypes which
arise from this work and continue to invest time in making them more feature-complete
with a view of being able to apply them to real-life case studies with our industry col-
laborators.

References

1. A. Bertolino. Software testing research: Achievements, challenges, dreams. In 2007 Future

of Software Engineering, pages 85–103. IEEE Computer Society, 2007.
2. Google. Android user interface overview.


