
L. Aceto, A. Francalanza and A. Ingolfsdottir (Eds.): Workshop on
Pre- and Post-Deployment Verification Techniques (PrePost2016)
EPTCS 208, 2016, pp. 54–63, doi:10.4204/EPTCS.208.5

c© A. Vella and A. Francalanza
This work is licensed under the
Creative Commons Attribution License.

Preliminary Results Towards Contract Monitorability

Annalizz Vella
CS, ICT, University of Malta

annalizz.vella.10@um.edu.mt

Adrian Francalanza
CS, ICT, University of Malta

adrian.francalanza@um.edu.mt

This paper discusses preliminary investigations on the monitorability of contracts for web service
descriptions. There are settings where servers do not guarantee statically whether they satisfy some
specified contract, which forces the client (i.e., the entity interacting with the server) to perform
dynamic checks. This scenario may be viewed as an instance ofRuntime Verification, where a
pertinent question is whether contracts can be monitored for adequately at runtime, otherwise stated
as themonitorability of contracts. We consider a simple language of finitary contracts describing
both clients and servers, and develop a formal framework that describes server contract monitoring.
We define monitor properties that potentially contribute towards a comprehensive notion of contract
monitorability and show that our simple contract language satisfies these properties.

1 Introduction

Web services [7, 6] typically consist of two types of computing entities.Serversoffer ranges of sequences
of service interactionsto clients, which in turn interact with these services and occasionally reach a state
denoting client satisfaction. The service interactions offered by a server typically follow some predefined
structure that may be formalised as a contract [6, 7, 15, 3]. Dually, the service interactions invoked by a
client may also be expressed within the same formalism.

The contract calculus defined in [15, 2, 5] is an abstract formalism equipped with an operational
semantics that provides an implementation-agnostic, high-level description of client-server interactions;
this permits formal reasoning about web services, such as whether a client is compatible with a server or
whether a server is able to satisfy the service interactionsrequested by the client. Such reasoning may,
for instance, be used by clients fordynamic service discovery, where a client decides to interact with a
server whenever the contract it advertises satisfies the requirements of the client.

Example 1.1. Consider the contract below describing the behaviour of an internet banking server:

login.
(

(valid.(query.0+ transfer.0))⊕ (invalid.0)
)

It states that the server first expects alogin service interaction followed by either avalid or invalid

service invocation; the operator⊕ denotes that the server decides autonomously whether to invokevalid
or invalid in response. If it branches to the latter, it terminates all interactions, denoted by0. However, if
it internally decides to invoke the service interactionvalid, it then offers a choice (denoted by the symbol
+) of service interactions: it either accepts (account balance)query interactions or else (fund)transfer
interactions. A contract describing the behaviour of a possible bank client is given below:

login.
(

(invalid.reason.1)+ (expired.1)+ (valid.query.1)
)

After a login service invocation, this client expects either of three responses: aninvalid interaction
prompting another service request that asks for areason why the login was invalid, a loginexpired

http://dx.doi.org/10.4204/EPTCS.208.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

A. Vella and A. Francalanza 55

invocation or else avalid login interaction that is followed by invoking aquery service request. All these
alternative sequences leave the client in a satisfied state,1. By analysing theresp. contracts, one can
deduce that interactions on thevalid service following a clientlogin interaction necessarily lead to a
query interaction, which then leaves the client satisfied. One canalso discern thatinvalid interactions
lead to a deadlock, whereby the client asks for areason service that is not offered by the server. One can
also note that theexpired option offered by the client is never chosen by the server. �

Within this framework, there still remains the question of whether a service behaviour actually ad-
heres to the contract it advertises. In general, static techniques (such as session-based type systems [9],
or state-based model-checking of compliance, must or fair testing inclusion [15, 2, 5]) are used to verify
before deploymentwhether a server implementation respects the contract thatdescribes it. However,
there are cases where this solution is not applicable. For instance, the client may decidenot to trust the
static verifier used by the server. Alternatively, in a dynamic setting where service components are down-
loaded and installed at runtime, pre-deployment checks cannot be made on the server implementation
since some components only become available for inspectionat runtime. There are also cases whereby a
server does not come equipped with a formal description at all.

In these circumstances, a client can check that a server respects an advertised (or expected) contract
by analysing the behaviour exhibited by the serverat runtime. There are a number of cases where such
a solution is adopted [4, 12], making use of dynamic monitoring, possibly in conjunction with other
verification techniques. This monitoring of systems may be seen as an instance of Runtime Verification
(RV) [13], a lightweight formal verification technique usedto check the current execution of a program
by verifying it against some properties. In a typical setup,the monitor observing the running system
raises a flag when aconclusiveverdict is reached, denoting that the property being checked for is either
satisfiedor violated.

An important question in any RV setup is that of themonitorability of the specification language
considered. Indeed, it is generally the case that not all aspects of a specification can be monitored for
and determined at runtime, as shown in [8, 1, 11] for specification languages such as LTL and the modal
µ-calculus. In this work, we start to investigate the monitorability of contracts which, in turn, sheds light
on the viability and expressiveness of the dynamic contractchecking setup discussed above. In contrast
to earlier work on monitorability, we donot rely on an external formal logic for specifying the properties
expected by a server contract,e.g.,a satisfaction relationp |= φ whereφ would be a formula from a logic
defined over server contractp through the semantic relation|=. Instead, we use the subcontract server
relationq⊑SRV p defined in [15] as arefinement semantic relationwhereq is an abstract description of
the expected properties of a server contractp, thus using the contract language itself as a specification
language. Within this setting, we investigate whether our monitoring mechanism is expressive enough to
verify whether a serverp indeed refines an abstract descriptionq.

The rest of the paper is structured as follows. Section 2 overviews our contract language and defines
our notion of contract satisfaction. Section 3 introduces our monitoring setup and Section 4 relates
verdicts reached by our monitored computations to the contract satisfactions discussed in Section 2.
Section 5 concludes by discussing related and future work.

2 Servers, Clients and Satisfaction

Figure 1 describes the syntax and semantics of (finite) servers and clients. Leta,b,c,d . . . ∈ NAMES be a
set of names denoting interaction addresses. Let· be a complementation operation on these names where
we refer to the complement ofa asa; the operation is an involution, wherea = a. The set of actions

56 Preliminary Results Towards Contract Monitorability

Syntax

p,q∈ SRV ::= 0 (inaction) | α .p (prefixing)

| p+q (external choice) | p⊕q (internal choice)

r,s∈ CLI ::= 0 | α .r | r +s | r ⊕s | 1 (success)

Dynamics

ACT

α .p
α
−→ p

SELL
p

µ
−→ p′

p+q
µ
−→ p′

SELR
q

µ
−→ q′

p+q
µ
−→ q′

CHOL
p⊕q

τ
−→ p

CHOR
p⊕q

τ
−→ q

Interaction

ASYS
p

τ
−→ q

r ‖ p
τ
−→ r ‖q

ASYC
r

τ
−→ s

r ‖ p
τ
−→ s‖ p

SYN
r

α
−→ s p

α
−→ q

r ‖ p
τ
−→ s‖q

Figure 1: Server and Client Syntax and Semantics

α ∈ ACT =
(

NAMES∪{a | a∈ NAMES}
)

includes all names and their complement. Letτ be a distinct
actionnot in ACT denotinginternal unobservable activity, where we letµ ∈ ACT∪{τ}.

Servers,p,q∈ SRV, consist of either the terminated server0, a prefixed serverα .p that first engages
in interactionα and then behaves asp, an external choicep+q that can either behave aspor q depending
on the interactions it engages in, or an internal choicep⊕q that autonomously decides to either behave
asp or q. Clients,r,s∈ CLI , have a similar structure but may also consist of the term1 denoting contract
fulfilment. The semantics of both servers and clients are given in terms of a Labelled Transition System

(LTS) where the labelled transition relationp
µ
−→ q is defined as the least relation satisfying the rules

in Figure 1; the definition of the transition relation for clients r
µ
−→ s is analogous and thus elided.

The definition is standard and follows that of related languages such as CCS [14]. For instance, the
term α .p transitions with (action) labelα to the continuationp; if p can engage in an interaction onµ
and transition top′, then an external choice term involvingp, e.g.,p+q may also transition top′ after
exhibiting actionµ ; by contrast, an internal choice involvingp, e.g., p⊕q may transition top without
exhibiting an external action (τ is used).

Servers and clients may be composed together to form a system, r ‖ p, so as to engage in a sequence
of interactions. Interactions are also defined as an LTS oversystems, through the rules ASYS, ASYC
and SYN in Figure 1. As is standard, silent transitions by either server or client allow them to transition
autonomously in a system. However, a client transition on anexternal action must be matched by a
server transition on the (dual) co-action for the transition to occur in theresp. system, denoting client-
server interaction.Computationsare sequences of system transitionsr0‖ p0

τ
−→ . . .

τ
−→ rn‖ pn, denoted

as r0 ‖ p0 =⇒ rn ‖ pn; the sequence may be potentially empty,n = 0, whereno transitions are made,
in which case we haver0 = rn and p0 = pn. A computationr0 ‖ p0 =⇒ rn ‖ pn is maximalwhenever

A. Vella and A. Francalanza 57

6 ∃r ′, p′ · rn‖ pn
τ
−→ r ′ ‖ p′.

Definition 2.1. A maximal computation, r‖ p =⇒ s‖q, is successful, whenever the client’s contract is
fulfilled, meaning that s= 1. A service psatisfiesa client r, denoted assat(p, r), wheneverymaximal
computation rooted at r‖ p is successful. �

Example 2.2. The server p= a.0+(b.a.0⊕c.0) may either transition as p
a
−→ 0 using rulesACT and

SELL from Figure 1, or silently transition as p
τ
−→ b.a.0 or p

τ
−→ c.0 via rules CHOL, CHOR and

SELR from Figure 1. It satisfies the client r= b.1+c.1, denoted assat(p, r), because the only maximal
computations possible are the following

r ‖ p
τ
−→ r ‖b.a.0 τ

−→ 1‖a.0 r ‖ p
τ
−→ r ‖c.0 τ

−→ 1‖0

both of which are successful. By contrast, server p doesnot satisfy clientb.1, denoted as¬sat(p,b.1),
nor does it satisfy the clientsb.1+b.0+c.1 andb.c.1+c.1. In each case, we can show this through the
unsuccessfulmaximal computations below.

b.1‖ p
τ
−→ b.1‖c.0 b.1+b.0+c.1‖ p

τ
−→ b.1+b.0+c.1‖b.0 τ

−→ 0‖0

b.c.1+c.1‖ p
τ
−→ b.c.1+c.1‖b.0 τ

−→ c.1‖0 �

The satisfaction predicatesat(−,−) induces a natural preorder amongst servers.

Definition 2.3 (Server Preorder [15]). A server p is a subcontract of server q, denoted as p⊑SRV q,
whenever, forall clients r,sat(p, r) impliessat(q, r). Dually, q is referred to as a supercontract of p.�

Intuitively, p⊑SRV q of Definition 2.3 means that we can substitute a serverp by a serverq, safe in
the knowledge that any client satisfied byp would not be affected.

Example 2.4. Definition 2.3 allows us to establish a number of useful server (in)equations such as

a.0⊕b.0⊑SRV a.0 b.a.0+b.c.0⊑SRV b.(a.0⊕c.0) b.(a.0⊕c.0) ⊑SRV b.a.0+b.c.0

but also justify subtle cases where substituting one serverfor another might break client satisfaction.
For instance, we have0 6⊑SRV a.0 because for the client(1⊕1)+a.0 we havesat(0,(1⊕1)+a.0) since
(1⊕1)+a.0‖0 τ

−→ 1‖0 is the only maximal computation (which is also successful),but also have
¬sat(a.0,(1⊕1)+a.0) due to the unsuccessful computation(1⊕1)+a.0‖a.0 τ

−→ 0‖0. �

3 Monitors and Monitored Computations

Figure 2 describes the monitoring framework used to analyseservers purporting to adhere to some adver-
tised contract. It defines the syntax of these monitors, which follow the general structure used in earlier
works [11, 1] whereby monitors may reach any one of the three verdicts VERD, namely acceptance,
rejection, or the inconclusive verdict. In addition to the basic prefixing patterns used in [11, 10], we here
also use action complementation,α , to denote any actionapart fromα . As in [11, 10], a monitor is
allowed to branch,m+n, depending on the actions observed at runtime. We also find itconvenient to
express a merge monitor operator that facilitates the composition of monitor specifications,m×n.

The semantics of a monitor is given in terms of the LTS defined by the rules in Figure 2. This is best
viewed as the evolution of a monitor in response to a (finite) execution tracet ∈ ACT∗, consisting of a
sequence of actionsα1, . . . ,αn. Verdicts are irrevocable when reached, and do not change upon viewing

58 Preliminary Results Towards Contract Monitorability

Syntax

v,u∈ VERD ::= Y (acceptance) | N (rejection)

| end (inconclusive)

θ ∈ PATTERNS ::= α (action) | α (complement)

m,n∈ MON ::= v (verdict) | θ .m (interaction)

| m+n (choice) | m×n (conjunction)

Dynamics

MVER

v
α
−→ v

MACT

α .m
α
−→ m

MNACT
β 6= α

α .m
β
−→ m

MSELL
m

α
−→ m′

m+n
α
−→ m′

MSELR
n

α
−→ n′

m+n
α
−→ n′

MCONJ
m

α
−→ m′ n

α
−→ n′

m×n
α
−→ m′×n′

Instrumentation

IMON
p

α
−→ p′ m

α
−→ m′

m⊳ p
α
−→ m′

⊳ p′
ITER

p
α
−→ p′ m 6

α
−→

m⊳ p
α
−→ end⊳ p′

IASY
p

τ
−→ p′

m⊳ p
τ
−→ m⊳ p′

Figure 2: Monitors and Instrumentation

further actions in the trace (ruleMVER). Prefixing releases the guarded monitor when the expected
pattern is encountered (rulesMACT andMNACT). The rulesMSELL andMSELR describe left and right
monitor branching as expected, whereas ruleMCONJ describes the synchronous evolution of merged
monitors.

A monitored server contractconsists of a serverp that is instrumented with a monitorm, denoted as
m⊳ p. The behaviour of monitored contracts is defined as an LTS through the rules stated in Figure 2,
and relies on theresp. LTSs of the monitor and the server. RuleIMON states that if a server can
transition with actionα and the monitor can follow this by transitioning with the same action, then in an
instrumented server they transition in lockstep. However,if the monitor cannot follow such a transition
the instrumentation forces it to terminate with an inconclusive verdict,end, while the process is allowed
to proceed unaffected; see ruleITER. Finally, rule IASY allows a contract to evolve independently
from the monitor when performing silentτ moves (which are unobservable to the monitor). We refer
to a sequence of transitions from a monitored contract as amonitored computationand use the standard
notationm⊳ p

t
=⇒ m′

⊳ p′ that abstracts overτ-moves in tracet.

A few comments are in order. First, we highlight the fact thatin the operational semantics for
monitored systems of Figure 2, the monitor doesnot have access to the internal state of the server
generating the trace, and its observations are limited to the execution that the server chooses to exhibit
at runtime. This is meant to model the RV scenarios mentionedin Section 1, where the source of the
executing system cannot be analysed: from the point of view of the runtime monitoring and verification,
the server description is merely used to generate traces. Second, we note that, in a monitored server setup,
any visible behaviour is instigated by the server, relegating the instrumented monitor to apassiverole

A. Vella and A. Francalanza 59

that merely follows the server actions. Stated otherwise, the serverdrivesthe behaviour in a monitored
system and dictates the execution path that the monitor can analyse at runtime.

In what follows, we explain how monitors work through a series of examples. The exposition focuses
on monitors that produce rejection verdicts, but the discussion can be extended to acceptance verdicts in
a straightforward manner.

Example 3.1. The monitora.N+a.b.N checks for violations from contracts that are expected to adhere
to (i.e.,be supercontracts of) the contracta.b.0. In fact, the monitor reaches a rejection verdict whenever
a contract either emits an action that is nota at runtime,a.N, or else emits an action that is notb
following action a,a.b.N. Consider the servera.c.0; when instrumented with our monitor we can observe
the following monitored computation whereby the monitor reaches a rejection verdict,N.

(

a.N+a.b.N
)

⊳ (a.c.0) a
−→ b.N⊳ c.0 c

−→ N⊳ 0

By contrast, when the servera.b.0 is instrumented with the monitor, no rejection verdict is reached; in

particular, the final transition below is derived using ruleITER because b.N 6
b
−→ .

(

a.N+a.b.N
)

⊳ (a.b.0) a
−→ b.N⊳ b.0 b

−→ end⊳ 0

We emphasise the fact that monitor termination through ruleITER is crucial to avoid unwanted detec-
tions. Consider a variant of the earlier monitor,a.b.N, which now reports violations whenever it observes
the trace consisting of the actiona followed by the action b. When composed with the systema.c.b.0 we
observe the following monitored computation.

a.b.N ⊳ a.c.b.0 a
−→ b.N ⊳ c.b.0

c
−→ end⊳ b.0 (**)

b
−→ end⊳ 0

At transition (**), the server can perform an action, c, thatthe monitor is not able to follow (i.e., it is
not specified how the monitor should behave at that point should it observe action c). Accordingly, the
semantics instructs the monitor to terminate (prematurely) with an inconclusive verdict. There are two
instrumentation alternatives that could have been adopted, both of which are arguably wrong from a
monitoring perspective. The first option would have been to prohibit the server from exhibiting action
c, which goes against the tenet that the monitor should adopta passive role and not interfere with the
execution of the program it monitors. The second option is arguably even worse: we could have let the
server transition and left the monitor in its present state,i.e., b.N ⊳ c.b.0 c

−→ b.N ⊳ b.0, but then this

would have led to anunspecified/erroneousdetection at the next transition b.N ⊳ b.0 b
−→ N⊳ 0. �

Example 3.2. The servera.b.0⊕c.b.0 is not a supercontract ofa.b.0 according to Definition 2.3. Cru-
cially, however, in an RV setting, monitor detection depends on the runtime behaviour exhibited by the
server. This contrasts with other forms of verification which may be allowed to exploreall the execution
paths of a server under scrutiny.1

(

a.N+a.b.N
)

⊳
(

a.b.0⊕c.b.0
) τ

−→
(

a.N+a.b.N
)

⊳ (a.b.0) a
−→ b.N⊳ b.0 b

−→ end⊳ 0
(

a.N+a.b.N
)

⊳
(

a.b.0⊕c.b.0
) τ

−→
(

a.N+a.b.N
)

⊳ (c.b.0) c
−→ N⊳ b.0 b

−→ N⊳ 0

1In the general case, a pre-deployment verification technique may also analyseinfinite paths.

60 Preliminary Results Towards Contract Monitorability

In the first monitored computation above, the server exhibits the behaviour described by the trace
ab
=⇒ ,

which prohibits the monitor from detecting any violations.However, the same server exhibits a different

trace
cb
=⇒ in the second monitored computation which permits monitor detection. The rejection verdict is

in fact reached after the first visible transition on action c, and then preserved throughout the remainder
of the computation. �

Example 3.3. We can monitor for violations of the contracta.b.0+ c.0 by composing two submonitors
that monitor for the constituents. Specifically, since the monitor c.N+ c.end checks for violations of
contract c.0 and, the minimally extended monitora.N+ a.(b.N+b.end) checks for violations ofa.b.0
as discussed in Example 3.1, we can construct the composite monitor (a.N+a.(b.N+b.end))× (c.N+
c.end) to monitor for violations ofa.b.0+c.0.

(

(a.N+a.(b.N+b.end))× (c.N+c.end)
)

⊳ a.b.0+c.0 a
−→ b.N+b.end×N⊳ b.0

b
−→ end×N⊳ 0

(

(a.N+a.(b.N+b.end))× (c.N+c.end)
)

⊳ a.b.0+c.0 c
−→ N× end⊳ 0

When the composite monitor is instrumented with the contract it is expected to monitor for, we note that
it does not reach a rejection alongevery(parallel) submonitor.

(

(a.N+a.(b.N+b.end))× (c.N+c.end)
)

⊳ b.0 b
−→ N×N⊳ 0

By contrast, the violating contract above generates a rejection along every submonitor. �

Example 3.3 clearly suggests a definition of monitor rejection.

Definition 3.4 (Rejection). A monitor m is in a rejection state, denoted asrej(m), whenever it is of the
formN× . . .×N. We overload this predicate to denote a server p being rejected by a monitor m, defined
formally as

rej(p,m)
def
= ∃t, p′ · m⊳ p

t
=⇒ m′

⊳ p′ andrej(m′)

Example 3.5. The monitor c.N+ c.end rejects server b.0, rej(b.0,(c.N+ c.end)) as well as server
c.0+ b.0, rej((c.0+ b.0),(c.N+ c.end)) because both may exhibit an execution trace that leads the
monitor to a rejection state. By contrast, c.N+ c.end doesnot reject server c.0. Recalling monitor
m=

(

(a.N+a.(b.N+b.end))× (c.N+c.end)
)

from Example 3.3, we can also state that it rejects server
b.0, rej(b.0,m). �

4 Preliminary results towards Monitorability

Monitorability may be broadly described as the relationship between the properties of a logic specifying
program behaviour and the detection capabilities of a monitoring setup instrumented over such programs.
It is therefore parametric with respect to the logic and monitoring setup considered. In what follows,
we sketch out preliminary investigations that focus on the monitor rejections defined in Section 3, and
attempt to relate them to violations of the server preorder defined in Section 2.

We have already defined enough machinery to be able to state formally two important properties.
Definition 4.1 states that a monitorm soundly monitorsfor a server contractp if and only if, whenever
it rejects a serverq, it is indeed the case thatq is not a supercontract ofp. In a sense, the dual of this is
Definition 4.2, which states that a monitorm completely monitorsfor a server contractp if and only if
everyq that is not a supercontract ofp is rejected bym.

A. Vella and A. Francalanza 61

Definition 4.1 (Rejection Sound). smon(p,m)
def
= ∀q· rej(q,m) implies p6⊑SRV q. �

Definition 4.2 (Rejection Complete). cmon(p,m)
def
= ∀q· p 6⊑SRV q impliesrej(q,m). �

We can also extend these monitorability definitions to a specification language of contracts (i.e.,a set of
contracts).

Definition 4.3 (Language Rejection Monitorability). A set of contractsC is:

• sound rejection-monitorable iff∀p∈ C · ∃m∈ MON · smon(p,m)

• complete rejection-monitorable iff∀p∈ C · ∃m∈ MON · cmon(p,m)

• rejection-monitorable iff∀p∈ C · ∃m∈ MON · smon(p,m) andcmon(p,m) �

We can readily argue in a formal manner that the contract language SRV of Figure 1cannot be
rejection-monitorable. Consider as an examplea.0+b.0∈SRV. If this language is rejection-monitorable,
then there must exist a monitorm such thatsmon(a.0+ b.0,m) and cmon(a.0+ b.0,m). We argue
towards a contradiction. From Section 2 we know thata.0+ b.0 6⊑SRV a.0, and thus, bycmon(a.0+
b.0,m), it must be the case thatrej (a.0,m). Now this rejection predicate holds if eitherm reaches a
rejection state immediately or else reaches rejection after observing actiona. In either case, this monitor
would also reject the contracta.0+b.0 as well, which would make the monitor necessarily unsound,i.e.,
¬smon(a.0+b.0,m), since, by the reflexivity property of the preorder, we havea.0+b.0⊑SRV a.0+b.0.

We deem sound rejection to be the minimum correctness requirement to be expected from the con-
tract monitors we consider. Note, however, that the contract language SRV of Figure 1 is trivially sound
rejection-monitorable via the monitorend; this monitor never reaches a rejection state and thus trivially
satisfyingrej (p,end) for any p∈ SRV. However, we argue that this monitor,end, is not very useful.

We attempt to go one step further and define an automated monitor synthesis function that returns a
monitor forevery serverin the contract language SRV. We argue, at least informally, that these synthe-
sised monitors are, in some sense, useful because they perform a degree of violation detections. Impor-
tantly, however, we show that these synthesised monitors are rejection sound, according to Definition 4.1.

Definition 4.4 (Monitor Synthesis). The functionJ−K : SRV → MON synthesises a monitor from a server
contract description, and is defined inductively on the structure of this contract as follows:

J0K
def
= end Jα .pK

def
= α .N+α .JpK

Jp+qK
def
= JpK× JqK Jp⊕qK

def
= JpK× JqK �

A few comments on Definition 4.4 are in order. First, note thata number of the monitors considered
earlier in Section 3 are in fact instances of this translation. For instance, we have

Ja.b.0K = a.N+a.(b.N+b.end) and Ja.b.0+c.0K = (a.N+a.(b.N+b.end))× (c.N+c.end)

from Example 3.3. Secondly, note that the monitor synthesisdoes not attempt to perform any detection
violation for the contract0. Since0 is in some sense a bottom element in the preorder, no supercontract
of 0 is allowed to perform any visible action. Thus, in cases where all the actions permissible in SRV

are known up front as afinite set{α1, . . . ,αn}, we can improve the precision of our synthesis through
the alternative definitionJ0K

def
= α1.N+ . . .+αn.N for the case wherep = 0. Third, note that the syn-

thesis for both internal and external choice constructs coincide which, in a sense, is due to the inherent
discriminating limits of RV. Consider, by way of example, the monitor syntheses below:

Ja.0+b.0K = ((a.N+a.end))× ((b.N+b.end)) = Ja.0⊕b.0K

62 Preliminary Results Towards Contract Monitorability

The serverc.0 is rejected by the monitor((a.N+a.end))× ((b.N+b.end)) and accordingly it isneither
a supercontract ofa.0+ b.0 nor of a.0⊕ b.0. However, the servera.0 is not rejected by the monitor
((a.N+ a.0))× ((b.N+ b.0)); whereas it is correct to do so in the case of monitoring for the internal
choice contracta.0⊕ b.0 becausea.0⊕ b.0 ⊑SRV a.0, it leads to lack of precision in the case of the
external choicea.0+b.0 sincea.0+b.0 6⊑SRV a.0. In spite of these limitations, we are able to show that
our proposed monitor synthesis is sound.

Theorem 4.5(Synthesis Soundness). For every server specification p∈ SRV, every server implementa-
tion q∈ SRV, and the monitor synthesis functionJ−K of Definition 4.4:

Wheneverrej(q,JpK) then it is necessarily the case that p6⊑SRV q

Proof. By structural induction on the server specificationp.

5 Conclusion

We have presented preliminary investigations relating to the monitorability of contracts, high-level de-
scriptions for web services. We developed a monitoring framework that complements the operational
semantics of server contracts. We then focused on the rejection expressivity of the monitors within this
framework and related it to cases where it is unsafe to replace one server (contract) with another. Within
our simple framework, we were already able to identify limits with respect to monitor detection powers,
and were able to diagnose problems with a proposed automatedmonitor synthesis procedure. We were
also able to formally prove that, in spite of its limit, the monitor synthesis considered is, in some sense,
correct (Theorem 4.5).

Related and Future Work The language of contracts for web services has been discussed in several
other works prior to ours, such as [2, 5, 15, 7]; although conceptually simple, it has been shown to
be expressive enough to capture the dynamicity of interactions specified by more elaborate contract
descriptions. The server preorder considered in this papercaptures the essence of the must preorder,
studied in [3] and the compliance preorder, studied in [15, 7]; in our simplistic case of finite servers
and clients, the two preorders coincide (modulo minor technical details regarding client satisfaction
and computation success). Our notion of monitorability is inspired by that presented in [11], which
relates process satisfaction of a branching-time logic,p |= φ , with detections of monitors synthesised
from formulas in this logic,JφK ⊳ p. The instrumentation relation considered in this paper is in fact an
adaptation to the one used in [11].

For future work, we aim to achieve a more comprehensive studyof monitorability than the prelim-
inary one presented in Section 4. In particular, we plan to consider monitor acceptances as a verdict in
addition to rejections, establish stronger results with respect to rejections and consider extended contract
descriptions similar to [3, 7] that include recursion and the potential for infinite computation. This will
lead to different notions of server refinements such as thoseresulting from compliance and fair test-
ing preorders [5, 15]. It will be interesting to study whether any of the aforementioned server preorder
variants are more monitorable than the others.

Acknowledgements: This research was partly supported by the project “TheoFoMon: Theoretical
Foundations for Monitorability” of the Icelandic ResearchFund.

A. Vella and A. Francalanza 63

References

[1] Andreas Bauer, Martin Leucker & Christian Schallhart (2011): Runtime Verification for LTL and TLTL.
TOSEM, ACM20(4), pp. 14:1–14:64, doi:10.1145/2000799.2000800.

[2] Giovanni Bernardi & Matthew Hennessy (2012):Modelling Session Types Using Contracts. SAC, ACM, pp.
1941–1946, doi:10.1145/2245276.2232097.

[3] Giovanni Bernardi & Matthew Hennessy (2015):Mutually Testing Processes. LMCS 11(2),
doi:10.2168/LMCS-11(2:1)2015.

[4] Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda & Nobuko Yoshida (2013):Monitor-
ing Networks through Multiparty Session Types. In: FMOODS/FORTE, LNCS 7892, Springer, pp. 50–65,
doi:10.1007/978-3-642-38592-65.

[5] M. Bravetti & G. Zavattaro (2009):A theory of contracts for strong service compliance. MSCS 19(3),
doi:10.1017/S0960129509007658.

[6] S. Carpineti, G. Castagna, C. Laneve & L. Padovani (2006): A Formal Account of Contracts for Web Services.
In: WS-FM, LNCS 4184, Springer, pp. 148–162, doi:10.1007/1184119710.

[7] Giuseppe Castagna, Nils Gesbert & Luca Padovani (2009):A Theory of Contracts for Web Services.
TOPLAS, ACM31(5), pp. 19:1–19:61, doi:10.1145/1538917.1538920.

[8] Clare Cini & Adrian Francalanza (2015):An LTL Proof System for Runtime Verification. In: TACAS, LNCS
9035, Springer, pp. 581–595, doi:10.1007/978-3-662-46681-0 54.

[9] Mariangiola Dezani-Ciancaglini & Ugo De’Liguoro (2009): Sessions and Session Types: An Overview. In:
WS-FM, LNCS 6194, Springer, pp. 1–28, doi:10.1007/978-3-642-14458-51.

[10] Adrian Francalanza (2016):A Theory of Monitors (Extended Abstract). In: FoSSaCS, LNCS9634, Springer,
pp. 145–161, doi:10.1007/978-3-662-49630-59.

[11] Adrian Francalanza, Luca Aceto & Anna Ingólfsdóttir(2015): On Verifying Hennessy-Milner Logic with
Recursion at Runtime. In: RV, LNCS 9333, Springer, pp. 71–86, doi:10.1007/978-3-319-23820-3 5.

[12] Limin Jia, Hannah Gommerstadt & Frank Pfenning (2016):Monitors and Blame Assignment for Higher-
order Session Types. POPL, ACM, pp. 582–594, doi:10.1145/2837614.2837662.

[13] Martin Leucker & Christian Schallhart (2009):A brief account of runtime verification. JLAP 78(5), pp.
293–303, doi:10.1016/j.jlap.2008.08.004.

[14] Robin Milner (1989):Communication and Concurrency. Prentice Hall.

[15] Luca Padovani (2009):Contract-Based Discovery and Adaptation of Web Services. In: SFM, LNCS 5569,
Springer, pp. 213–260, doi:10.1007/978-3-642-01918-06.

View publication statsView publication stats

http://dx.doi.org/10.1145/2000799.2000800
http://dx.doi.org/10.1145/2245276.2232097
http://dx.doi.org/10.2168/LMCS-11(2:1)2015
http://dx.doi.org/10.1007/978-3-642-38592-6_5
http://dx.doi.org/10.1017/S0960129509007658
http://dx.doi.org/10.1007/11841197_10
http://dx.doi.org/10.1145/1538917.1538920
http://dx.doi.org/10.1007/978-3-662-46681-0_54
http://dx.doi.org/10.1007/978-3-642-14458-5_1
http://dx.doi.org/10.1007/978-3-662-49630-5_9
http://dx.doi.org/10.1007/978-3-319-23820-3_5
http://dx.doi.org/10.1145/2837614.2837662
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1007/978-3-642-01918-0_6
https://www.researchgate.net/publication/303534267

	1 Introduction
	2 Servers, Clients and Satisfaction
	3 Monitors and Monitored Computations
	4 Preliminary results towards Monitorability
	5 Conclusion

