Investigating different Instrumentation Techniques in
the context of ESB Runtime Verification

Gabriel Dimech!, Christian Colombo®, and Adrian Francalanza®

University of Malta

With the increasing popularity of the service-oriented architecture, enterprise soft-
ware is increasingly being organised as a number of services interacting over an Enter-
prise Service Bus (ESB). The advantages of this arrangement are numerous, not least
the modularity and flexibility it affords and the ease with which multiple technologies
can be integrated [2].

Yet, the highly dynamic nature of ESBs — where components can be introduced,
replaced, or withdrawn transparently — brings with it a number of challenges, partic-
ularly to ensure the correct overall behaviour of the ESB [4]. In a flight booking ESB
application, such as that depicted in figure 1, back-end airline services may be swapped
at runtime, potentially causing unexpected behaviour. The reason for this may be that
during the testing phase not all banking services may have been tested thoroughly or
that the service experiences an update without the flight booking application being no-
tified.

3) Aggregate
T t 2) Forward Flight Prices
X
1) Client Requests e Requests
— Flight
Booking

7) Retum Confirmation | So™i°® 6) Book Flight

4) Return Flight
Prices

Banking
Service

5) Check Customer
Bank Details

H

ESB

H

Fig. 1: Flight Booking ESB Application

One way of ensuring that the ESB performs as expected is to check its behaviour at
runtime rather than attempting to preempt the possible scenarios the ESB might find it-
self operating in. While this approach, known as Runtime Verification (RV), introduces
an overhead, it ensures that anything which occurs at runtime adheres to a correctness
specification [3]. In the context ESB applications, one main concern is to ensure that
each incoming message is routed correctly [4]. For instance in the flight booking exam-
ple, each request must be successfully routed to the correct airline and banking services
before an acknowledgement is sent to the customer.

The correctness specification in the context of RV is typically specified in a math-
ematical notation and the runtime verifier is synthesised automatically. This introduces

Joshua Ellul
Text

more confidence that the verifier is itself correct. However, other than correctness con-
cerns, RV also raises overheads concerns which might have a negative impact on the
performance of the ESB [1].

Of particular concern in this regard are the overheads related to intercepting rele-
vant events which the runtime verifier would consider for correctness. This is because
while the checking itself can be delegated to other processing resources, detecting and
transmitting events to the verifier cannot. Through this work we attempt to investigate
different options which can be considered for ESB events gathering by comparing the
resulting overheads for each approach at runtime.

We start by identifying the different points at which relevant ESB events can be
intercepted. In particular, we identify Mule ESB on which to perform our research,
mainly due to its popularity amongst enterprises. Mule is a Java based open source ESB
supporting XML specifications of Flows which may be used to configure SOA-based
applications [5]. This arrangement exposes three different levels of event interception:

— One may intercept events at the source code level using techniques such as Aspect-
Oriented Programming (AOP). This is by far the most commonly used technique
for runtime verification of Java systems [6].

— At a higher level, one may include the verifier in the XML flow specification and
divert copies of the messages to the verifier component for scrutiny.

— Finally, at the opposite end of the spectrum, the ESB depends on lower-level com-
munication protocols such as HTTP, JMS, FTP etc. to connect components [5].
Thus, one could intercept such communication through a proxy and the verifier is
able to intercept events for checking.

Each of these modes of events gathering provides its advantages: Intercepting events
at the source code level provides full visibility of the ESB, including internal actions
which might not otherwise be visible through the other modes. On the other hand, inter-
cepting messages at the Flow specification level is an approach which allows the user to
specify correctness properties more easily. Finally, the proxy approach decouples mon-
itoring code from the ESB, making it easier to dynamically change which information
is intercepted whilst reducing direct impact on the ESBs resources.

Notwithstanding these aspects, in this study we choose to focus on the performance
issues of each approach. More precisely we consider two aspects of performance: the
resources required to support runtime verification and the impact of this resource take-
up on the end user experience.

Resource Consumption In this regard, we consider the CPU and memory used for
each of the approaches.

User Experience To estimate the impact on user experience we measured the latency,
i.e. the duration of time needed for a request to get a response, and the throughput,
i.e. how many requests can be handled for a particular period of time.

4e+06

Average Memory Usage (MB)

4e+08

3.5e+08

3e+08

2.5e+08

2e+08

1.5e+08

1e+08

5e+07

0

no-rv
L sourcecode
configuration

L proxy approach
proxy and system

0 5000
Number of Requests

(b) Memory Usage

Fig. 2: Resource Consumption Metrics

Throughput (Messages/Second)

10000 15000 20000 25000 30000

28 T T T T T
/*\\ no-rv. ——
26 M S source-code ——
24 |/ \\\&nflguratlon —
(— T proXy —=—
2 [, e ~
/ —
20 {/ T
I~]
18+ e
{ / TR
16 e
[“~ B
14 /7’ ~ ~_
12 |/ e
! T
10 §
8 L L L L L
0 5000 10000 15000 20000 25000

Number of Requests

(b) Message Throughput

Fig. 3: User Experience Metrics

- - - P
356406 | sourcecode ———
configuration ——
o 3e+06 | proxy approach —-=— 1
£ proxy and system /
S 25e+06 | ;
g)
1]
> 2e+06
2
o 1.5e+06
s
] 1e+06
500000 |
0
0 5000 10000 15000 20000 25000 30000
Number of Requests
(a) CPU Usage
3e+06 T T T T T
no-rv. ———
sourcecode ——
250406 | configuration " ;
@ proxy —=—~
é // P /
g 2e+06 /o
o il
= vl
2 Py
© 1.5e+06 yd -
4 o <
o S
@ 1e+06 A e
] s e
2 P
500000 | //f/:‘/ -
el
=
0 n n L L L
0 5000 10000 15000 20000 25000 30000
Number of Requests
(a) Message Latency
References

30000

1. E. Bodden. Efficient and Expressive Runtime Verification for Java. In Grand Finals of the

ACM Student Research Competition 2005, 03 2005.
2. D. A. Chappell. Enterprise Service Bus: Theory in Practice. O’Reilly, 2004.
3. M. Leucker and C. Schallhart. A Brief Account of Runtime Verification. JLAP, 78(5):293—

303, 2009.

4. M. Psiuk, T. Bujok, and K. Zielinski. Enterprise Service Bus Monitoring Framework for SOA
Systems. Services Computing, IEEE Transactions on, 5(3):450—466, 2012.
5. T. Rademakers and J. Dirksen. Open-Source ESBs in Action. Manning Publications Co.,
Greenwich, CT, USA, 2008.
6. J.Zhu, C. Guo, Q. Yin, J. Bo, and Q. Wu. A Runtime-Monitoring-Based Dependable Software
Construction Method. In Young Computer Scientists, 2008. ICYCS 2008. The 9th International
Conference for, pages 1093—-1100, Nov 2008.

