
Improving the Gherkin Specification Language using
Aspect-Oriented Techniques

John Aquilina Alamango1, Christian Colombo1, and Mark Micallef1

University of Malta

In the highly dynamic markets in which software customers operate, it is crucial that
the software development process is able to incorporate the customers in the feedback
loop, supporting the evolution of specifications and ensuring that software is according
to the customers’ requirements.

A specification language frequently used for this purpose is Gherkin [1] — a very
simple language with three main keywords: Given, When, Then. The semantics of these
keywords are loosely defined as given some precondition, when a particular event oc-
curs, then some postcondition is expected to hold. Other than these three keywords,
the specification writer can use natural language and it is then up to the developer to
translate the specification into executable tests.

While Gherkin has become a mainstream tool in contemporary software develop-
ment, one cannot help but notice a significant problem: the simplicity and flexibility
which have made Gherkin so popular amongst non-technical industrial customers, are
the same aspects which makes the resulting scripts highly repetitive. Each given-when-
then statement — known as a scenario — will typically be written over and over again
albeit with just a different parameter.

1: Feature: Testing Country Charges

2:

3: Scenario: Test Incoming Phone Call Fee

4: Given I am receiving a phone call from Australia

5: When I answer the call

6: Then I should charged at 0.00c per minute

7:

8: Scenario: Test Incoming Phone Call Fee

9: Given I am receiving a phone call from United Arab Emirates

10: When I answer the call

11: Then I should charged at 0.00c per minute

After having considered a number of industrial case studies, we noted two main
repeating patterns: (i) As in the above example, a number of scenarios where identical
except for one or more parameters (ii) In other cases, apart from the parameters, a
scenario might have one or more extra postconditions which are not present in the other
scenarios.

In view of the identified recurring patterns in Gherkin scripts, our aim is to con-
strain the flexibility of Gherkin just enough so that the user can be afforded just enough
automatic support in the writeup of the scripts. In the rest of the paper we describe our
approach in tackling the two identified issues.

Set theory to the rescue Our first part of the solution is to introduce the notion of col-
lections of objects — sets — enabling the script writer to collate related objects
into a set and then allowing one to refer to all the individual set elements at once.
Furthermore, we observed that using set operators, one could define sets as follows:

1: EUCountry = {Malta, UK}

2: NonEUCountry = {Australia, United Arab Emirates}

3: AnyCountry = EUCountry + NonEUCountry

Resulting in reduced repetition in the definition of the scenarios:

1: Scenario: Test Incoming Phone Call Fee

2: Given I am receiving a phone call from <NonEUCountry>

3: When I answer the call

4: Then I should charged at 0.00c per minute

Aspect-oriented programming [2] While set theory concepts greatly helped in struc-
turing Gherkin specifications, a number of examples couldn’t benefit because the
scenarios of the set elements would gave a single line which would be different.
To this end, we propose an aspect-oriented programming extension to Gherkin, al-
lowing the injection of the extra line to be done automatically. For instance, if a
entry should be added in the log for every call (irrespective of whether it originates
from a NonEUCountry or an EUCountry), then using the code below, we would be
checking the log for every scenario without adding extra lines.

1: Matching: {"When I answer the call"}

2: [Then call should be registered in call log]

When we applied the proposed set-theory-extended-Gherkin to our industrial case
studies, in three out of the four cases1 we observed a significant reduction in the size
of the script without any major impact on their readability. Perhaps more contentious is
the aspect-oriented programming extension where more than one script file would have
to be consulted in order to read a single scenario. This however could be alleviated with
the right tool support where any matching aspects could be highlighted whilst browsing
the corresponding scenario in another window. In the future we aim to provide such an
editor which would ultimately enable the user to go from the Gherkin flavour presented
here to the original Gherkin, providing backward compatibility while making the task
of script writing easier.

References

1. Gherkin wiki. Accessed: 2013-12-8.
2. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview

of AspectJ. In ECOOP, pages 327âĂŞ–354, 2001.

1 Two of the industrial case studies were performed at Ascent Software and Betclic respectively,
while the other two were performed at companies who do not wish to disclose their identity.

