
Mobile Erlang Computations to Enhance Performance,
Resource Usage and Reliability

Adrian Francalanza and Tyron Zerafa

University of Malta

1 Introduction

A software solution consists of multiple autonomous computations (i.e., execution threads)
that execute concurrently (or apparently concurrently) over one or more locations to
achieve a specific goal. Centralized solutions execute all computations on the same lo-
cation while decentralized solutions disperse computations across different locations to
increase scalability, enhance performance and reliability.

Every location affects its executing computations both directly (e.g., the lack of a
resource may prohibit a computation from progressing) and indirectly (e.g., an over-
loaded location may slow down a computation). In a distributed environment, appli-
cation developers have the luxury of executing each computation over its best-fitting
location; the location (a) upon which the computation can achieve the best performance
and (b) which guarantees the computation’s livelihood. Ideally, the decision to execute
a computation over a location instead of another also load-balances the use of available
resources such that it has the least impact over other computations (e.g., a computa-
tion should not execute over an already overloaded location further slowing down its
computations).

Application developers can only execute computations over their best-fitting loca-
tion if their distributed programming language provides abstractions that allow them to
control the locality of computations both before they are started and during their ex-
ecution. In the rest of this document, section 2 briefly justifies why these two forms
of locality control are required and section 3 outlines the issues that arise, and will be
tackled in the talk to be held at CSAW 2014, by them.

2 Control over Locality

The ability to determine the requirements of a computation (and hence its best-fitting
location) before it starts executing depends on the computation’s type (i.e., whether it
is of a functional or reactive nature).

Any computation of a functional nature is deterministic (i.e., its execution can be
completely established from the computation’s executed code and its initial inputs).
For instance, the execution of the factorial algorithm is of a functional nature since it
cannot be affected by any other computation; this is just a mathematical function. Thus,
it is possible to application developers to determine its requirements (e.g., processing
power) and initialize it over the best location (e.g., the most lightly-loaded location).



Any computation of a reactive nature is non-deterministic (i.e., its execution de-
pends on the input it receives from other computations). For instance, the execution
of a publish-subscribe server is of a reactive nature since its behaviour can only be
determined at runtime as it starts receiving requests. This inability to foresee the exe-
cution of a reactive computation before it starts executing limits application developers
from foreseeing all its requirements and initializing it over its best-fitting location (e.g.,
although frequently communicating computations are best co-located on the same lo-
cation to reduce communication overheads, it is impossible to start the execution of
publich-subscribe server closer to its clients’ since these can only be determined at run-
time).

Reactive computations can never be initialized over their best-fitting runtime sys-
tems since their requirements can never be determined before their execution starts.
Furthermore, the runtime system best-fitting a (functional or reactive) computation may
change throughout the computation’s lifetime (e.g., the factorial algorithm may im-
pose a huge processing load on its location which affects the execution of the publish-
subscribe server) or fail (e.g., the failure such location would terminate both the server
and factorial computations). In such cases, the performance and reliability measures of
a computation can be greatly enhanced through mobility: the ability to dynamically
relocate an executing computation from one location to another. This additional level
of flexibility over immobile computations allows application developers to dynamically
adapt their solutions to the ever-changing nature of distributed systems (e.g., by relo-
cating the executing server computation closer to its new clients that are determined at
run-time so as to reduce communication overhead), enhance load-balancing (e.g., by
relocating the executing server computation to a lighter-loaded location) and increase
fault tolerance (i.e., by relocating both executing computations away from a location
that is about to fail to a more stable location).

3 Talk Overview

The ability to control the locality of a computation both before it is started and during
its execution gives rise to a number of important questions. Erlang, a language designed
specifically for distributed systems, only offers rudimentary support for code and com-
putation mobility which greatly limit the flexibility of this language. The talk that will
be presented at CSAW 2014 will discuss some of the issue surruounding mobility in
the context of Erlang and outline how such functionality can enhance performance, re-
source usage and reliability of Erlang-developed solutions. Specifically, this talk will try
to answer the following questions: (1) What is the desired semantics of a computation
that is initialized over (or relocated to) a remote location? (2) How can mobile compu-
tations be referenced (and located) at run time? (3) Can mobile computations preserve
the same message-passing semantics supported by Erlang for immobile computations?
(4) Do conventional synchronous error-handling abstractions suffice for mobile compu-
tations? (5) Is it feasible to relocate computations?

This work is carried out following the award of a STEPS scholarship which is part-financed
by the European Union - European Social Fund (ESF) under Operation Programme ll - Cohesion
Policy 2007-2013.


