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Abstract. We propose an instrumentation technique for monitoring
asynchronous component systems that departs from the traditional run-
time verification set-up assuming a single execution trace. The technique
generates partitioned traces that better reflect the interleaved execution
of the asynchronous components under scrutiny, and lends itself well to
local monitoring. We provide argumentation for the qualitative benefits
of our approach, demonstrate its implementability for actor-based sys-
tems, and justify claims related to the applicability and efficiency gains
via an empirical evaluation over a third party component-based system.

1 Introduction

Few systems are constructed in monolithic fashion these days. Rather, a consid-
erable number are architected as asynchronous components [22,10,2] that execute
independently to one another without recourse to a global clock or shared state;
in place of the latter, components interact with one another via well-defined in-
terfaces and non-blocking messaging [20]. Such software organisations encourage
code reuse, ease incremental updates, naturally quarantine faults and engender
graceful degradation, thus improving time-to-market.

At the same time, component-based systems pose new challenges for ensur-
ing correctness. Their sheer size, dynamic structure, use of third party compo-
nents, and inherent concurrent execution, complicate the use of traditional pre-
deployment verification techniques, at times rendering them ineffective. Runtime
Verification (RV) [24,14] is a lightweight post-deployment verification technique
that circumvents a number of these obstacles, making it an appealing compro-
mise when ascertaining software correctness. It uses monitors that incrementally
analyse the behaviour of the running system (exhibited as a sequence of trace
events) up to the current execution point, in order to determine whether a cor-
rectness specification is satisfied or violated.

Recent work [15,4,8,28,16] studies the application of online RV to general
specification properties describing the branching structure of the system under
scrutiny. This is of particular relevance to concurrent (component) systems with
multiple executions. Since RV is not as expressive as exhaustive pre-deployment
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Fig. 1. Local monitors attached to independently executing components.

techniques such as Model Checking, this body of work is concerned with identify-
ing monitorable (i.e., can be verified at runtime) subsets of properties. But even
for monitorable properties, the analytical power of the ensuing monitor analysis
is still at the mercy of the trace the system decides to exhibit at runtime.

Example 1. Consider the logging system, Sys, consisting of two independently-
executing components, F and N. Component F handles file logging operations,
and is permitted actions open (o), close (c) and write (w), whereas component N
manages network logging activities through send (s) and receive (r) messages.
Additionally, both components may signal file or network-related problems by
issuing error (e) actions. A possible correctness property is one that “forbids
Sys from sending messages at start-up”. When Sys exhibits the trace s.o.w.r,
the monitor can detect a violation of this property. However, for a different
execution interleaving (e.g. one producing the witness trace o.s.w.r where s is
not the first event) the typical RV analysis would not be able to detect the fact
that the system is capable of performing the initial action s. �

In component architectures, there are instances where additional traces can
be inferred from an observed trace; whenever these inferred traces are relevant to
the correctness specification of interest, they help mitigate the aforementioned
lack of precision of the technique. In the case of E.g. 1, we know that (i) the
system consists of two components F and N whose execution can be arbitrarily
interleaved, (ii) the trace events o,c and w can be uniquely attributed to F,
whereas s and r can be accredited to N. A monitor can use this extra system
information to permute the order of events in a witness trace. For example, from
trace o.s.w.r, event o (generated by F) can be permuted with s (generated by
N) to obtain the trace s.o.w.r which is also a valid trace that can be generated
by the system and, crucially, provides evidence that Sys violates the property
stated in E.g. 1. Inferring traces may also increase RV’s expressive power. For
instance, the property

At start-up, Sys can neither send messages nor can it open files (1)

is shown not to be monitorable in the setting of [15,16]: to detect a violation,
it requires at least two witness execution traces, one showing that action s can



be performed at start-up, another showing that o can be performed at start-up.
Monitorability in traditional RV settings typically assumes one execution trace.
For the case of F and N, from trace o.s.w.r, a monitor can infer the second trace
s.o.w.r and together these can be used to determine the violation verdict.

Despite the benefits discussed above, trace inference for component-based
systems induces additional runtime overheads and may require unbounded buffer
space to record past trace events. Both aspects afflict the feasibility of the RV
analysis, which often requires overheads to be kept to a minimum.

Contributions and synopsis. This paper argues that the aforementioned
problems stem from the fact that traditional RV set-ups treat component-based
systems as one monolithic block, artificially recording executions as one univer-
sal trace. Instead, we study instrumentation techniques that generate multiple
traces, whereby events are partitioned to better reflect the asynchronous compo-
nent structure of the system under scrutiny. As depicted in Fig. 1a, our proposed
instrumentation technique would report the runtime execution of F and N as the
partitioned traces o.w and s.r. These may be seen as a more compact represen-
tation of a number of universal traces in a traditional RV set-up, denoting both
traces o.s.w.r and s.o.w.r mentioned earlier, but also other potentially relevant
traces such as o.s.r.w and s.r.o.w.

Partitioned traces are better suited to monitor decentralisation. For instance,
Prop. 1 could be evaluated using two submonitors as in Fig. 1a, one analysing
whether F starts by issuing event o, and another that checks if N produces s;
these would then alert one another accordingly when independent detections
are made. In the case of the property from E.g. 1, partitioning also allows us
to localise monitoring to the subsystem of interest, as shown in Fig. 1b: this
lowers runtime overheads since the local monitor needs to process less events to
reach its verdict. Apart from making a case for partitioned traces and localised
monitors, our contributions are:

– A unifying account of the types of runtime monitoring approaches that can
be applied to generic instantiations of component-based systems, discussing
the advantages enjoyed by local monitoring in this setting in Sec. 3;

– An investigation of the implementability of local monitoring in Sec. 4;
– A case study for a third-party component-based system validating our pro-

posed technique from a performance standpoint in Sec. 5.

We conclude by discussing future and related work in Sec. 6.

2 Monitors and Specification

Runtime monitors are typically synthesised from property specifications ex-
pressed in a high-level formalism or logic. These specifications finitely and un-
ambiguously describe the behaviour of interest for the system under scrutiny.
Monitor verdicts are definite non-retractable judgements reached after analysing
a finite prefix of the system execution trace, and correspond to property satis-
factions or violations from which the monitor is synthesised. The monitor may



Syntax

ϕ, φ ∈ sHML ::= tt | ff | ϕ ∧ φ | [e]ϕ | maxX.ϕ | X

Semantics

JttK def
= Sys JffK def

= ∅ Jϕ ∧ φK def
= JϕK ∩ JφK

J[e]ϕK def
=
{
p | ∀p′, α.

(
p

α
=⇒p′ and match(e, α) = σ

)
implies p′ ∈ JϕσK

}
JmaxX.ϕK def

=
⋃
{S | S ⊆ Jϕ[X 7→ S]K}

Fig. 2. The syntax and semantics of sHML.

also reach an inconclusive verdict whenever the trace exhibited by the system
does not yield the necessary information for it to reach a definitive judgement.

Following [15,16], this paper uses the safety fragment of the branching-time
logic µHML [23,1], called sHML (Safety HML), which has been shown to be
monitorable and maximally expressive w.r.t. the constraints of runtime moni-
toring. The sHML syntax, given in Fig. 2, assumes a countable set of logical
variables X,Y ∈ LVar, allowing formulae to recursively express largest fixpoints
using the construct maxX.ϕ; this binds free instances of the variable X in ϕ. In
addition to the standard constructs of truth, tt, falsehood, ff, and conjunction,
ϕ ∧ φ, the logic includes a necessity modality construct, [e]ϕ, where the term
e can contain event patterns consisting of free variables that are matched and
bound dynamically at runtime to specific system events α that carry data.

As in [15,16], the semantics of sHML, defined for closed formulae (i.e., with-
out free variables) is interpreted over Labelled Transition Systems (LTSs) —
graphs modelling the branching behaviour of systems (see Fig. 3 for examples).
Formally, a LTS is comprised of the triple 〈Sys,Act,−→〉, consisting of a set
of system states p, q ∈ Sys, a set of actions µ ∈ Act containing a distinguished
silent action τ (used to represent unobservable actions) and visible actions α
ranging over Act \ {τ}, and finally, a ternary transition relation between states
labelled by actions, p µ−→q. We use p=⇒q to denote p( τ−→)∗q, whereas p α

=⇒q is
written in lieu of p =⇒ · α−→· =⇒ q. Formula tt is satisfied by all system states,
whereas ff is satisfied by none. Conjunctions bear the standard set-theoretic
meaning of intersection. Necessity formulae [e]ϕ state that for all system exe-
cutions producing event α (possibly none), pattern e must match α, yielding a
set of bindings σ, and the subsequent system state must then satisfy ϕσ (i.e., ϕ
substituted with the bindings in σ). The recursive formula maxX.ϕ is defined
as the union of all the post-fixpoint solutions S ⊆ Sys of ϕ; see [23,1] for details.
A system state p satisfies formula ϕ whenever p ∈ JϕK; conversely, it violates
ϕ whenever p /∈ JϕK. In [15,16], the authors show that any sHML formula is
monitorable for violations exclusively (i.e., the monitor for ϕ can reach a rejec-
tion verdict whenever p /∈ JϕK). We note in passing that the full logic µHML
contains other logical operators, such as disjunctions, ϕ ∨ φ, with the expected
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Fig. 3. Two LTSs depicting different behaviours of the file logging component in Sys.

interpretation; [15,16] show that disjunctions such as ϕ ∨ φ are not monitorable
for violations, even when the subformulae ϕ and φ are. Consult [15,16] for more
details.

Example 2. Fig. 3 depicts the LTSs of two possible implementations for compo-
nent F from E.g. 1. The first one, rooted at state p1, satisfies property ϕ1 below:
informally ϕ1 describes implementations where, after opening (o) a logfile and
performing an arbitrary number of writes (w), do not write to it once closed (c).

ϕ1 = [o]
(
maxX.([w]X ∧ [c][w]ff)

)
Interested readers can indeed check that p1 ∈ Jϕ1K. The second implementation,
rooted at q1, describes non-deterministic behaviour once the logfile is closed,
whereby it can either reach the inert state q3 or state q5, which allows further
write operations. Although q1 /∈ Jϕ1K, the synthesised monitor for ϕ1 of [15,16]
depends on the runtime trace exhibited to determine the violation, where: (i) it
reaches the violation verdict whenever q1 produces a trace of the form o.w*.c.w+,
(ii) reaches an inconclusive verdict (and stops) if it sees the trace e, and (iii) con-
tinues monitoring for future events for traces of the form o.w*.c. �

Example 3. The property stated in E.g. 1 is expressed as [s]ff in sHML, whereas
Prop. 1 from Sec. 1 is expressed as [o]ff ∨ [s]ff in the full logic µHML; in [15,16]
this is shown to be non-monitorable. �

3 The Approach

Standard RV set-ups consist of the system under scrutiny, the instrumentation
extracting and reporting the execution trace, and the monitor analysing this
trace. As shown in Fig. 4a, execution events are typically collected as a single
universal trace that describes the running system in its entirety. We propose
an alternative instrumentation approach for asynchronous components whereby
the individual execution of the constituent components is reported separately as
partitioned traces, as depicted in Figs. 4c and 4d.

A partitioned trace gives an exclusive localised view for a subset of the sys-
tem under scrutiny, delineated by the underlying system structure. Partitioned
traces may be analysed individually, whenever this local view suffices, or in con-
junction with other partitioned traces to form a combined trace. Note that in
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Fig. 4. Four architectural set-ups characterising component-based runtime monitoring.

asynchronous settings, the merging of all the partitioned traces does not yield
a unique combined trace, but rather a set of possible combined traces. Trace
partitioning is advantageous whenever the correctness of a system comprised of
asynchronous components is considered from a global view. First off, it does not
taint the monitors’s view of the system behaviour by reporting artificial order-
ings, which in turn impinge on the monitor’s analytical precision (e.g. moni-
toring for [s]ff from E.g. 1). Instead, since the aggregation of partitioned traces
(efficiently) encode a set of combined (universal) traces, our proposed instrumen-
tation provides additional information about the system’s behaviour. This leads
to more expressive RV set-ups in terms of the properties that can be monitored
for at runtime (e.g. [o]ff ∨ [s]ff from Prop. 1 can be monitored in set-ups like
Figs. 4c and 4d but not in classic set-ups like Fig. 4a); see Sec. 1 for discussion.

Second, trace partitioning yields other benefits in the form of local moni-
toring. Particularly, it permits the specification of local properties that describe
the behaviour of a subset of components. Local monitors synthesised from these
properties need only analyse events from single trace partitions in order to reach
a verdict relating to the local property being considered. Note that local monitors
may also execute w.r.t. a universal trace.

Example 4. Property [s]ff from E.g. 1 can be seen as a local property describ-
ing the behaviour of component N. In fact, a local monitor can be synthesised
from [s]ff accordingly; this, in turn, is able to reach a rejection verdict just by
analysing the partitioned trace for N. Property ϕ1 from E.g. 2 can also be seen
as a local property that describes the behaviour of component F from E.g. 1. �



Executing a local monitor on a universal trace, as shown in Fig. 4b may
still lead to detections in cases where the component interleaving prioritises the
events of interest (e.g. the universal trace s.r.o.w permits a violation detection for
the local property [s]ff), but extraneous events may affect precision, as discussed
in Sec. 1. In practice, one may be able to regain degrees of precision via trace
filtering at the monitor level, where conceptually, this equates to converting a
local property into a global one that accounts for the events of other components.

Example 5. The precision of monitoring for the local property [s]ff over a uni-
versal trace in E.g. 1 can be enhanced by converting it into the global property
maxX.([o]X ∧ [w]X ∧ [c]X ∧ [s]ff) that handles extraneous events from F, and
reverting to the monitoring set-up of Fig. 4a from that of Fig. 4b. By contrast,
monitoring for [s]ff on the partitioned trace of N as in Fig. 4d does not require
any trace filtering, lowering runtime overheads. Note that the constructed global
property maxX.([o]X ∧ [w]X ∧ [c]X ∧ [s]ff) evaluated over a universal trace
still does not attain the precision of [s]ff monitored locally, due to the common
event e that may be generated by either of components F or N. Since one can-
not infer its provenance at the level of a universal trace, e cannot be filtered out
and, correspondingly, an “ignore e” subformula [e]X cannot be added as another
conjunction to the global property maxX.([o]X ∧ [w]X ∧ [c]X ∧ [s]ff) without
compromising correctness. Contrastingly, in Fig. 4d, event e is automatically
suppressed when exhibited by F, but considered when exhibited by N. �

The benefits of local monitoring over partitioned traces are enjoyed when
global properties can be reformulated in terms of local properties. Whenever
global properties cannot be fully localised due to dependencies across the various
components, these can still be synthesised in a decentralised fashion to exploit
the underlying partitioned trace instrumentation set-up. We illustrate this next.

Example 6. Consider the global sHML formula [o]ff ∧ [s]ff stating that, “on
start-up, the system can never produce an open event, nor can it produce a send
event”. For the set-up in Fig. 1, the property is violated whenever F produces
event o or N produces event s. Accordingly, [o]ff ∧ [s]ff can be reformulated as
two local properties, [o]ff and [s]ff, that are runtime verified by two independent
local monitors analysing the respective partitioned trace of interest, as in Fig. 4d,
and flagging as soon either one detects a violation from its local trace.

Moreover, recall the formula [o]ff ∨ [s]ff from E.g. 3. Although it cannot
be synthesised in terms of local monitors (that reach verdicts by exclusively
analysing their own trace partition), one can still runtime verify the formula
in a decentralised fashion using monitors that individually analyse subformulae
[o]ff and [s]ff, and communicate with each other once a detection is made by
both. Decentralised monitors can collaboratively reach a violation verdict only
when separate local detections have been made by participating monitors and
are shared with others. This arrangement constitutes an instance of Fig. 4c. �

A general approach to localising monitoring over partitioned traces begets
further advantages. Decomposing global properties into smaller local subprop-
erties improves the maintainability of specification scripts, since the latter tend
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1ei2 ej1 e1

1ej2· · · · · · · · ·

MonϕC1 MonϕCi MonϕCj
· · ·
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Fig. 5. Local monitoring for interacting components using partitioned traces.

to be less complex and more lightweight to instrument. In an effort to increase
precision, global properties may be reformulated to account for the potential in-
terleaving due to the underlying asynchronous structure (e.g. changing [o]ff∨[s]ff
into [o][s]ff ∧ [s][o]ff); this however tends to complicate specifications.

Property decomposition also makes scripts extensible, since changes in exist-
ing correctness requirements do not necessitate substantial refactoring of global
formulae, but merely amendments that are administered to specific local formu-
lae; adding new components into the system carries similar benefits. Segregated
monitors over partitioned traces as in Fig. 4d are better equipped to handle
failures which, in component systems, typically affect only a component subset.
For instance in E.g. 6, the failure of component F does not prevent the monitor
at N from making its detections; this renders the whole set-up fault-tolerant. By
constrast, global monitoring relies on a central trace processing model that can
be crippled by the smallest of partial system failures.

Component interaction synchronises the involved parties, and this interac-
tion is often recorded in the respective traces as an event and its dual (e.g. a
write event in one partitioned trace and a corresponding written event in the
other). This establishes a partial ordering on events across partitioned traces.
For instance, Fig. 5a depicts components Ci and Cj generating event sequences
ei1.ē.ei2 and ej1.e.e

j
2 resp., where event e is the dual of ē. In a combined trace of

these partitioned traces, events ei1 and ej1 may occur in any order relative to one
another; the same applies to events ei2 and ej2. However, event e

i
1 must always

precede ej2, and similarly ej1 must always precede ei2, where the synchronising
events ē and e act as a delimiter for the possible permutations.

In a partitioned trace set-up, the problem of monitoring for properties that
span over multiple communicating components can be circumvented by choosing
to treat the interacting components as one component subset generating a single
partitioned trace for the respective components. This then allows them to be
locally monitored, as shown in Fig. 5a with Monϕ(Ci,Cj) monitoring for the local
property concerning these components. Alternatively, individual monitors can
also be attached to Ci and Cj as shown in Fig. 5b, though these must then



communicate between themselves in order to determine the relative ordering of
the events exhibited by each component in relation to ē and e. In the sequel, we
favour arrangement Fig. 5a since this leads to local monitoring of Fig. 4d.

4 The Implementability of Local Monitoring

We demonstrate the implementability of our local monitoring approach by con-
sidering actors in Erlang [3,9] which constitute an instance of asynchronous
component systems. Erlang is a general-purpose, concurrent programming lan-
guage where actors are concurrent units of decomposition that do not share
any mutable memory. They interact with one another via asynchronous mes-
sages and change their internal state based on the messages received. Actors
are implemented as lightweight processes that are identified via unique process
IDs (PIDs). Every actor owns a message queue, called a mailbox, to which mes-
sages are sent in a non-blocking fashion; subsequently, these messages can be
selectively consumed by the the recipient actor at any stage.

Our implementation conveniently utilises the tracing mechanism proffered
by the Erlang Virtual Machine (EVM) to obtain local trace events. Tracing via
the EVM [9] makes it possible to observe actor behaviour without modifying
the system through commonly used instrumentation techniques such as Aspect-
Oriented Programming (AOP). It can be selectively applied to specific groups of
actors simultaneously, enabling one to independently target different subparts of
the system and attain partitioned traces as described in Sec. 3. A traced actor
generates event messages describing the nature of the trace events (e.g. function
calls, message sends and receives, etc.). These trace messages are directed by the
EVM to the mailbox of a specifically designated tracer actor. Tracing serves as
the basis for a number of utilities, including Erlang’s text-based tracing facility
dbg [3], and the third-party monitoring tool Recon [18].

The set-up in Fig. 4d can be naturally phrased in terms of Erlang actors.
In our tool implementation, actors are used to represent both the system com-
ponents C1, . . . ,Cn and their associated monitors MonϕC1

, . . . ,MonϕCn
: trace

event collection is handled by the EVM as explained above, where the role of
tracers is assumed by monitor actors. Our tool also handles dynamic reconfigu-
ration of component systems by adjusting the local monitoring set-up of Fig. 4d
accordingly. In fact, actor systems typically are not static, since actors may termi-
nate and new actors may be spawned. Our implementation can either terminate
or dynamically assign new local monitors to the spawned actors, thereby scaling
the monitoring organisation accordingly. A rudimentary implementation of this
monitoring mechanism can give rise to race-conditions. Specifically, system (ac-
tor) components that require monitoring may spawn and forge ahead executing
before their associated monitors have been properly attached, potentially leading
to a loss of trace events. To avoid this, the tool opts for a synchronous monitor in-
stantiation procedure that pauses the components that require monitoring until
their associated monitors have been created and started correctly. Synchronisa-
tion takes place via instrumented source code instructions inside the monitored



components which communicate with a special coordinating actor that manages
the initialisation sequence of components and their corresponding monitor ac-
tors. We have integrated our implementation within the detectEr tool [4] which
synthesises monitors from property descriptions expressed as sHML formulae.

We conjecture that such an implementation arrangement does not favour any
particular language or property specification formalism, nor is it tied to the unit
of decomposition employed by the host language’s programming paradigm. In
the absence of a tracing mechanism such as that offered by Erlang, one can resort
to instrumentation techniques including intermediate code-level (e.g. AspectJ) or
proxy-based (e.g. Spring AOP) weaving [25].

5 Experimental Evaluation

Local monitoring over partitioned traces induces lower performance overheads.
We substantiate this claim through a series of empirical experiments performed
over an Erlang third-party component-based software called Ranch [19]. Ranch is
a socket acceptor pool for TCP protocols that can be used to build custom net-
work applications (e.g. the Cowboy HTTP web server [19] uses Ranch to manage
its client connections). Our evaluation permits us to: (i) explore the applicability
of local monitoring by identifying cases where it can be used (non-artificially) to
monitor third-party software, and also (ii) investigate whether it can be feasibly
applied to real-world scenarios.

5.1 Monitoring for the Ranch Connection Protocol

Performance tests on Ranch were conducted using a number of sHML prop-
erties designed to push the application to its limits, the better to assess how
local monitoring behaves under usages typical of production environments. The
properties target various aspects of Ranch, and focus mainly on communication
exchanges, i.e., sends and receives (denoted by ! and ?), that take place between
different components inside Ranch.

For instance, the following recursive local property describes behaviour for
a fragment of the Ranch connection protocol used by acceptor components and
the connections supervisor, from the acceptor’s point of view:

maxX.
(

[ConnsSup ! {ranch_conns_sup, start_protocol,Acpt, Sock}] 3

([Acpt stp killed]ff ∧ [Acpt ? ConnsSup]X 5 )
) (2)

In this protocol (see Fig. 6), acceptors wait on a port for incoming connec-
tions. When a connection is established 2 , the acceptor exchanges its newly
acquired client socket information with the connections supervisor pid_r 3 .
Consequently, a protocol handler is spawned by the connections supervisor so
that ownership of the client socket is transferred to the handler 4 , permitting it
to engage in direct communication with the client from that point onwards 6 .
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Fig. 6. The Ranch connection protocol used to handle incoming client connections.

Upon successful creation of the protocol handler, the connections supervisor
acknowledges back to the acceptor 5 . Fig. 6 shows a Ranch configuration con-
sisting of n acceptors with its first acceptor with PID pid_1 servicing a new
client connection.

Prop. 2 employs pattern matching as explained in Sec. 2 to dynamically bind
the formula variables to the process and socket identifiers. Concretely, the pat-
tern [ConnsSup ! {ranch_conns_sup,start_protocol,Acpt, Sock}] matches
the client socket information sent by acceptor pid_1 (encoded as the Erlang
tuple {ranch_conns_sup, start_protocol, pid_1, s_num}) to the supervisor
pid_r, binding the pattern variables ConnsSup, Acpt and Sock to the respec-
tive values pid_r, pid_1 and s_num 3 . Following this, the acceptor may either
crash, thus matching the second necessity subformula [pid_1 stp killed]ff vi-
olating Prop. 2, or receive an acknowledgement message from the connections
supervisor, matching the third necessity subformula [pid_1 ? pid_r] 5 .

5.2 Experiment Set-up and Design

Our evaluation focusses on global properties that can be cleanly decomposed
into a set of local properties which can be verified against a partitioned trace.
Each experiment was conducted as a series of performance benchmarks where
local properties were monitored over individually executing components, and the
results were in turn compared against those yielded by monitoring the original
global property over the entire system. Global properties were monitored using
the detectEr tool developed in [4], whereas their decomposed local constituents
were handled by the tool extension reported in Sec. 4. These two set-ups corre-
spond to Fig. 4a and Fig. 4d resp. Performance was judged on: (i) the system’s
memory consumption in MB, (ii) its CPU usage, given as a percentage, and
(iii) the system response time in milliseconds. Each experiment is presented in
Fig. 7, plotting the results of the performance parameter (e.g. CPU utilisation)
under consideration (y-axis) against the local and global monitoring benchmarks
(x-axis). We also include the unmonitored system measurements as a baseline.



Data Collection and Precautions. An experiment refers to a set of ten per-
formance benchmarks, each performed by load testing individual system config-
urations (e.g. the system with local monitors, etc.) using a series of concurrent
requests, commencing at 200 and progressing up to 2000 in steps of 200 (i.e.,
200, 400, . . . , 2000). Results for repetitions of sets of ten experiments were aver-
aged to obtain the plots shown in Fig. 7. A number of precautions were taken to
ensure the accuracy and repeatability of our results: (i) ten repeated readings for
each experiment were taken, after calculating the coefficient of variation (i.e.,
σ
x̄ × 100) for different sets of experiment repetitions (e.g. five, ten, fifteen, etc.)
showed negligible variability between the data sets obtained with ten repetitions
and above, (ii) optimisations such as garbage collection were switched off so
that the readings obtained clearly underscore the differences between local and
global monitoring, (iii) performance spikes in the initial set of data points due
to the lazy start up of the internal VM infrastructure were eliminated by issuing
a series of warm-up requests before the actual benchmarks tests were performed.

5.3 Results and Analysis

Fig. 7 shows the experiment results for monitors synthesised from formulae such
as Prop. 2 using two Ranch configurations: one with a hundred acceptors, and one
with four. All experiments were conducted on a 3.1 GHz Intel Core i7 processor
with 16GB of memory.

Realistic Ranch configuration. We first applied local monitoring to the rec-
ommended Ranch set-up configured with one hundred acceptors [19]. The plots
for the unmonitored and locally monitored Ranch set-up in Fig. 7a show that the
memory and CPU-related overheads induced by local monitoring are reasonably
low and exhibit an analogous rate of change to those of the unmonitored system.
This suggests that the resource consumption overheads due to local monitoring
follow those of the unmonitored system, and in such cases, one would be able
to forecast the extra system resource requirements that would be introduced by
local monitoring. Response times measure the observable impact of monitoring
on the behaviour of the system; the plot in Fig. 7a shows that the performance
impact of local monitoring is imperceptible for the benchmarks considered. Note
that for all three parameters, evaluating global monitoring on this Ranch set-up
was not possible because it consistently led to resource exhaustion.

Other configurations. Our attempts at evaluating global monitoring on Ranch
configured with one hundred acceptors were stymied by the high amount of over-
heads. To investigate which settings would permit us to test global monitoring
suitably, we used various Ranch configurations with different numbers of ac-
ceptors. These trials revealed that only Ranch configurations having less than
five acceptors could be reliably benchmarked without crashing. Fig. 7b shows
the memory, CPU and response time plots for Ranch with four acceptors (in log
scale). Whereas the overheads induced by global monitoring are infeasibly higher
than the baseline, those resulting from local monitoring are decidedly closer to
the measurements obtained for the unmonitored system. Specifically, in Fig. 7b
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Fig. 7. Memory, CPU and response time benchmarks for two Ranch configurations.

we achieved an average memory overhead of 4.54% and an average CPU overhead
of 14.22%. The response time plot in Fig. 7b additionally displays the percentage
of request failures, where each value represents the ratio of failed requests that
resulted when the benchmarked system was unable to cope with the number
of concurrent requests due to errors such as TCP connection refusals, timeouts
and broken pipes. Global monitoring degrades response behaviour both quan-
titatively (response times) and qualitatively (failed responses), whereas local
monitoring induces negligible overheads without provoking any failed requests.



6 Conclusion

We have presented a novel monitoring technique for asynchronous components
that generates partitioned traces reflecting the interleaved execution of the con-
stituent components under scrutiny. We argued how this yields benefits on many
fronts. In particular, we demonstrated that the proposed instrumentation set-
up lends itself better to local monitoring. Our approach is, in part, inspired by
distributed monitoring settings where partitioned traces come about naturally
due to physical constraints such as the absence of global clocks. In our case,
however, we have the added benefit of controlling the trace partitioning level,
coalescing tracing for tightly coupled components so as to attain local monitoring
(see discussion for Fig. 5a) — this cannot be achieved for physically distributed
components such as those in [26]. Local monitoring is used in a variety of ap-
plication domains such as session types [7,21], where monitors are attached to
individual channel endpoints. To our knowledge, the overhead gains of such a
set-up, as opposed to a global approach, have never been validated for these
domains and we expect our results to be applicable. As future work, we plan to
extend our study to distributed settings and investigate aspects such as trace
reconstructions that increase RV’s precision and expressivity.

Related Work. There are various RV approaches for asynchronous components
where trace events are collected globally and monitors analyse system behaviour
as a single universal trace [4,17]. Even though these monitors decentralise their
analysis via concurrent submonitors, the correctness of the system in question is
still perceived globally, and thus they classify as the set-up depicted in Fig. 4a.

Parameteric Trace Slicing (PTS) [11,5] is a monitoring technique whereby
a universal trace is projected into subtraces called trace slices, based on para-
metric specifications, i.e., properties that are specified in terms of parametrised
symbolic events whose parameters are bound to values from concrete events in
the universal trace. Slicing is mainly concerned with filtering events from a uni-
versal trace so as to obtain local monitors as in Fig. 4b. PTS differs from our
work in these respects: (i) projection is not partitioning since an event may
be assigned to multiple subtraces (i.e., their local monitors may overlap w.r.t.
events), (ii) subtraces are described at the specification level whereas partition-
ing works at the instrumentation level, (iii) parametric specifications typically
describe replicated component behaviour sharing a common structure, whereas
we are able to partition non-replicated components, (iv) since PTS works on a
universal trace, events that cannot always be attributed to a unique component
(e.g. event e in F and N of E.g. 1 and E.g. 5) cannot be filtered as selectively.
ELarva [13] can be seen as an instance of PTS applied to asynchronous compo-
nents. It also targets Erlang actors and is implemented using the EVM’s native
tracing mechanism as in Sec. 4. However, ELarva relies on a universal trace, and
through an application-level routing mechanism, multiplexes events from the
trace to monitors attached to different components. The parametric properties
specified per spawned actor facilitate dynamic monitor creation, but the cen-
tralised trace processing mechanism induces unnecessary bottlenecks that may



hamper gains obtained from monitor parallelism. We are unaware of any PTS
used for branching-time specifications of asynchronous components.

The closest work to ours is [6,12] where global LTL formulae are monitored
locally over partitioned traces. The authors propose and evaluate a decentralised
approach that decomposes a given global LTL specification into smaller subprop-
erties that analyse separate trace partitions and communicate amongst them-
selves to handle subformula dependencies accordingly, as depicted in Fig. 4c.
They also show that local monitoring yields lower monitoring overheads. The
work differs from ours w.r.t. the following aspects: (i) they consider synchronous
systems, governed by a global clock that yields a unique combined trace from the
respective partitioned traces; asynchronous settings are richer and typically yield
multiple combined traces, (ii) the logic considered describes execution traces
whereas we consider a logic describing properties over programs; we show how the
multiple combined traces inferred in asynchronous settings can be exploited to
increase the monitor’s precision and monitorability of such properties, (iii) they
require a complete partitioning of trace events in order to automate formula
decentralisation, whereas we allow components to share trace events (e.g. com-
ponents F and N from E.g. 1 can both exhibit event e), (iv) the evaluation
in [6,12] focusses on decentralised communicating monitors that still regard cor-
rectness from a global perspective (analogous to [o]ff ∨ [s]ff from E.g. 6); our
evaluation rather concentrates on properties that can be cleanly decomposed
into local ones that fully capitalise on trace partitioning, (v) their tool assumes
a fixed number of components that remains constant throughout execution as
opposed to ours, which can handle dynamic partitioning as well.

Partitioned traces are also used for monitoring shared-state concurrency pro-
grams such as [27], where decentralised monitors attached to different executing
threads collect and analyse events locally and actively collaborate in order to
build a combined representation of the present system state. The data exchange
between monitors takes place when shared variables are accessed (for reading or
writing) by the executing threads; this can be seen as an instance of the set-up
depicted in Fig. 4c. By contrast, our work concentrates on studying local moni-
tors over such partitioned traces, as discussed in Fig. 4d. In particular, we assess
the performance impact of local monitoring, whereas performance issues are not
a focus of [27]. Instead they study the detection and prediction of particular
types of safety properties. As in earlier work by the same authors [26], the in-
vestigation is conducted in terms of a linear-time epistemic logic that describes
execution traces, whereas we consider a logic describing the branching program
behaviour as a computation graph, which gives us scope for inferring other parts
of the computation graph from the path observed at runtime.
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