
Assessing Design Patterns for Concurrency

Fikre Leguesse Adrian Francalanza
Department of Computer Science, ICT

University of Malta
{fleg0001,afra1}@um.edu.mt

Abstract

Design patterns are language-independent software-
engineering techniques for solving recurring problems
within a particular problem-context. Despite their gen-
erality, they have been primarily adopted by, and for
the most part developed within, the object-oriented
community. As a result, some pattern definitions are
sometimes expressed with objects-oriented machinery
in mind such as classes and inheritance.

We test the paradigm independence of these design
patterns and investigate the viability of adopting exist-
ing patterns from the object-oriented paradigm to the
message-passing concurrency setting. By porting these
techniques to the new programming paradigm, we ex-
pect to inherit the benefits associated with these design
patterns. We achieve these goals by implementing a
suite of design patterns as reusable modules in Er-
lang, an industry-strength message-passing language
for programming concurrent distributed systems.

Index Terms

Design Patterns, Concurrency, Message Passing,
Shared Memory, Erlang

1. Introduction

Design patterns are solutions to recurring problems
within a given context [1]. They provide documented
techniques for solving re-occurring problems allowing
for the reuse of quality design and time-tested standard
approaches. Over the years the object-oriented (OO)
community has successfully applied design patterns
in the implementation of large scale software appli-
cations. These patterns have provided the community
with a common problem solving mind set and a
common vocabulary for the articulation and expres-
sion of architectural and design concepts for software
solutions [1].

Despite this success within the OO community,
they have not been exploited as extensively in other
programming paradigm. It is often understood that
design patterns are only applicable to OO design [2]
and part of this misconception has been attributed to
the extensive amount of material found in the OO
community and the lack of related work in other
fields. Furthermore, prominent material in the field [1],
[3] tend to model patterns in terms of collaborating
objects, structured using OO machinery such as classes
and inheritance.

We concur with the commonly held view [2] that
this should not be the case. Patterns capture exper-
tise in a generic context. Since developers often en-
counter design problems that span across paradigms,
it is paramount that these patterns are paradigm-
independent, so as to allow problem solving expertise
to transcend these paradigms.

The aims of this report are two-pronged:

1) We test the paradigm independence of a number
of concurrency design patterns, by porting them
from the shared-state OO concurrent model to
the message-passing concurrent model, as this
constitutes a substantial shift in programming
paradigms. We choose an actor-based language
[4] called Erlang[5] as our message-passing lan-
guage, because of its maturity in terms of exist-
ing realistic Erlang code.

2) We explore the potential reuse of these patterns
by expressing them as Erlang behaviours i.e.,
higher-order code which teases apart the generic
component of the patterns from the specifics of
the pattern instantiation. This method of structur-
ing code follows standard software design prin-
ciples and is prevalent to OO pattern implemen-
tations through mechanisms such as inheritance
and interfaces.

The task is non-trivial mainly because it involves a
substantial switch in terms of the units of decomposi-



tion and methods for entity interactions of these design
patterns. More specifically, in the OO case, these
building blocks and glue tend to be objects, classes,
packages, interfaces and abstract classes, method calls,
field updates, monitors, inheritance and delegation, to
name a few. In the message-passing paradigm, partic-
ularly in the Erlang actor model, we will instead need
to use processes, modules and callbacks, higher-order
functions, asynchronous messages and mailboxes.

Despite these immediate obstacles, there are a num-
ber of benefits we expect to gain from our endeavour:

Broadening Expertise Capture: The expertise we
adopt, though already tried and tested [3], is at present
mainly targeted, thus only accessible, to the OO com-
munity. Our work contributes towards extending this
expertise to the message passing concurrency setting.
Standardizing Common Vocabulary: Across differ-
ent paradigms, programmers often use different terms
to refer to the same concepts and solutions. Our work
helps towards standardizing these cosmetic differences
by promoting a common vocabulary. Moreover, [6]
argues that to provide a common vocabulary, “there
should be some restriction on the amount of design
patterns in circulation, otherwise the social and cul-
tural benefits tied to patterns become faint.” By reusing
existing patterns rather than creating new ones, our
work also satisfies this criteria.
Inducing Universal Descriptions: Through applying
these patterns to a substantially different programming
paradigm, we indirectly provide a higher-level descrip-
tion of these patterns, where explicit references to OO
mechanisms are replaced with paradigm-independent
ones. This disciplines pattern-designers to provide uni-
versal pattern definitions that are easier to comprehend.
Encourage Pattern Adoption: Design patterns pro-
mote the use of standard approaches and time-tested
solutions to re-occurring problems. By structring them
as behaviours, thus abstracting unnecessary details, we
simplify their adoption and standardise code structure.
Design Reusability: Through behaviours, we also
facilitate their reuse, because the generic part is clearly
delineated and programmers need only recode the
specific parts to reuse a pattern.
Expedite Development and Maintenance: Design
patterns also provide maintainable solutions through
decomposition into reusable components with high
cohesion and low coupling. Clearly delineated com-
ponents can be plugged into place and replaced with
less effort and can be unit-tested in advance, which
simplifies the discovery of errors during code develop-
ment.

The rest of the paper is structured as follows. Sec. 2

outlines the design patterns we chose to port to Erlang.
To illustrate our approach, in Sec. 3 we focus on one
for these patterns, and show how this can indeed be
expresses in a message-passing paradigm. In Sec. 4
we go one step further and restructure this pattern
as a behaviour, also showing how this restructuring
facilitates pattern reuse. Sec. 5 comments on these
results and Sec. 6 concludes.

2. The Patterns

We have adapted five design patterns from [3], [1] to
Erlang, all of which are considered to be concurrency
design patterns. The decision to focus on concurrent
patterns was motivated by the fact that, since Erlang
targets concurrency, the eventual adaptations would
turn out to me more natural, thereby giving us more
ground for meaningful analysis.1 The patterns are:
Active Object: In OO programming, this pattern is
used to decouple the execution of a method from
its invocation and advocates that each entity executes
in its own thread of control, communicating using
asynchronous message passing. It is based on the actor
model for concurrency, which Erlang itself is based on,
which made the adaptation straightforward.
Acceptor/Connector: This pattern targets client-server
architectures where a server application must handle
requests from a number of clients communicating
over a network. It aims to decouple the connection
and initialization stages from the application specific
processing performed once a connection has been
established which provides the flexibility for services
to be added and removed transparently, without the
need to reimplement connection-establishment code.
Observer: This pattern allows multiple clients to ob-
serve the state changes on a server without the need
for the client to constantly poll the server. It provides
an efficient and scalable design for decoupling clients
from servers by having multiple observers registering
themselves with a subject which automatically for-
wards any state changes to registered entities. The
increase in efficiency stems from the inversion of
control, placing the responsibility on the server rather
than having multiple interested observers constantly
checking with the server for any updates.
Proactor: It provides a strategy for concurrently han-
dling asynchronous I/O events from multiple sources,
by decoupling concurrent I/O events from concurrent
processes. The pattern simplifies the dispatching of

1. We did in fact also implement more “traditional” patterns such
as the factory and singleton patterns, but they gave us more insight
into the functional aspect of the Erlang language rather than its
message-passing aspect.



completion events from asynchronous operations by
integrating the demultiplexing of completion events
and the dispatching of their corresponding event han-
dlers. A single proactor process is responsible for
receiving completion events from some asynchronous
event source, and spawning completion event handlers.
Leader/Followers: This architectural pattern provides
an efficient concurrency strategy for threads or pro-
cesses to coordinate themselves taking turns detecting,
demultiplexing and dispatching events from a shared
set of handles to the appropriate service request han-
dlers. It aims to minimize overhead when creating and
managing multiple processes sharing some resources.
A process pool is created once and processes are
recycled in order to minimize the overhead associated
with creating/destroying processes. The processes co-
ordinate themselves to ensure that only one process
(the leader) uses the resources at any given time.

A full explanation of our work relating to all of
these patterns can be found in [7]. Given the space
limitations, in what follows we only focus on the
Leader/Followers pattern.

3. Adapting Patterns to Message Passing

We outline how the Leader/Followers [8] pattern can
be smoothly implemented in terms of Erlang processes.
The pattern deals with three concurrency issues:

1) It provides a way of demultiplexing I/O events
on a source (such as a TCP socket handle) to its
appropriate service handlers.

2) it minimizes concurrency-related overhead by
making use of a process pool

3) it prevents race conditions from occurring by
coordinating the processes in the pool.

The pattern has three key participants: handles,
service handlers, and a process pool. The process pool
consists of a number of service processes that can be in
one of three states: leading, processing, or following.
Fig. 1 shows the possible process transitions. A leader
process waits for an event to occur on some shared
handle. Once an event is detected, the current leader
promotes a new leader from the process pool, and
becomes itself a processing process. Processing the
event involves dispatching the appropriate service han-
dler. Once processing is complete, the process becomes
a follower once again, waiting to be promoted. In
the special case where there is no current leader, the
processing process skips directly to the leading state.

Fig. 2 shows the module implementing the server
restricting concurrent active connections throught the
Leader/Followers pattern. If connection requests are

 

Figure 1. Process Transition for Leader/Followers

 

Figure 2. Echo Server (Leader/Followers).

received faster than the pool processes can handle
them, then the requests are queued up on the TCP
socket until an idle process is placed in the pool.
The application is a simple echo server, accepting
connections from multiple clients, echoing any data
received over the socket back to the client.

This module consists of three main functions (some
local functions omitted). The first two, start/2 (line
1) and pool_manager/1 (line 8), form the pool
manager process. The start/2 function provides the
initialization code while pool_manager/1 provides its
recursive loop. The third function process/1 (line 18)
describes a single process within the pool.

The start/2 function initializes the handle shared
by the processes, i.e., a TCP socket listener (line 2),
and spawns the processes forming the pool (line 3).
The create_processes/3 function is omitted and
takes the size of the pool (N) and the shared handle as
input parameters, spawning N processes which start as
followers. The start/2 function then selects a process
from the pool (line 4) and promotes it as leader by



sending it a start_listening message (line 5). This
function then calls the pool_manager/1 function (line
8) which provides the pool manager’s recursive loop.

The role of the pool manger is to coordinate
the processes within the pool. When it receives a
select_next_process message (line 10), it calls
function select_next_process/1 (line 11) which
selects a pool process, notifying it that it has been
promoted as leader. In the case where the pool is
empty, the request is ignored.

When the pool_manager process receives an
add_process message (line 13), it calls the
add_process/2 function (line 14). This adds the
process to the pool. In the case where there is no
current leader, the process is promoted to leader rather
than being added to the pool.

The function process/1 (line 18) implements a
single process within the process pool. This process
goes through a number of cyclic steps:

1) Once spawned, the process blocks on the re-
ceive statement (line 19) waiting to be pro-
moted as the new leader by receiving a
start_listening message (line 20).

2) Once the message is received, the process begins
to listen for events on the shared handle, i.e.,
accept events on the TCP socket (line 21).

3) Once an event occurs, the pool manager is no-
tified that it should promote a new leader (line
22) to listen for events on the handle.

4) The process then starts processing the event by
accepting some data over the created socket (line
24), logging the data and sending it back to the
client (lines 25-27).

5) Once processing is complete, the process notifies
the pool manger that it is ready to listen for other
events (line 32) and is placed in the process pool
waiting to be promoted once again.

The immediate benefits gained from adopting the
Leader/Followers pattern for dealing with multiple
clients are that, through standardized common vocab-
ulary and familiar higher-level code structures, the
overall architecture of the code is easer to comprehend.
Moreover, with the exception of the socket handle
initialization, the functionality provided by the pool
manager is generic and is common to any application
implementing this pattern. This functionality can there-
fore be abstracted away into a reusable module as will
be discussed in Sec. 4.

4. Patterns as Behaviours

We split the implementation of the Leader/Followers
server into two modules, teasing apart the generic

aspects of the pattern from the specific aspects of the
pattern instantiation. Abstracting the generic part of
the Leader/Follower into a single reusable module then
permits any application following the pattern to simply
extend this module.

The module encapsulating the generic operations
of Leader/Followers is called the behaviour module.
The client module using the behaviour is called the
callback module, and provides the application specific
aspects of the pattern which the behaviour delegates
back to when required, in the form of requests to the
callback functions. The behaviour is thus implemented
using higher-order functions which take the callback
module’s name as an input parameter as shown in line
1 of Fig. 3.

As discussed in Sec. 3, the functionality provided
by the function pool_manager/1 is common to all
servers implementing the Leader/Followers pattern.
Only the initialization of the handle is specific to the
application implementing the pattern and is therefore
the responsibility of the callback module. As for the
processes within the pool i.e., process/3, steps 2
and 4 (listening for events and processing the event)
are application specific whereas all other steps can be
captured by the behaviour module.

Fig. 3 shows the gen_leader_follower behaviour
(with some local functions omitted). This behaviour
defines the pool manager while also providing the
skeleton for a pool process. The start/4 function
and the pool_manager/1 function (lines 1 and 7),
which make up the pool manager, are almost identical
to Fig. 2, the only difference being that the shared
handle is initialized by the callback module. This is
passed to the function as a parameter (line 1) as it is
application specific.

Callback modules extending gen_leader_fol-
lower behaviour with specific behaviour need to im-
plement the following callback functions used by the
pool process:
• listen_for_events/2: returns {ok, Event}.

This is a blocking function that is called by the
leader process. Its role is to listen for an event
on a given handle. The function returns with the
received Event.

• handle_events/3: returns any(). This function
is called on to process the events received by the
process. It provides application specific services.

Pool processes are spawned by the pool_manager
process on initialization with the callback module
passed as a parameter. The pool process called by
the spawning process process/1, Fig. 3 (line 17),
in the gen_leader_follower behaviour, functions as
follows:



 

Figure 3. gen leader follower behaviour.

1) Initially, it blocks on the receive statement (line
18) waiting to be promoted.

2) Once promoted, the process calls its callback
modules function listen_for_events/2 (line
20) which returns with the event fired on the
handle.

3) The pool manager is then asked to promote
a new leader (line 21) while it handles the
event by dispatching to the service handler,
handle_events/3, also defined in the callback
module (line 22).

4) Once processing is complete, the process notifies
the pool manger that it is ready to listen for other
events (line 23), and is placed with the followers
in the process pool.

This behaviour captures the essence of the
Leader/Follower pattern. It can be analyses and tested
as a unit, independent of the application specific
details to be defined by the callback module. This
organisation facilitates design and code reusability.
To illustrate this point, we provide two examples of
callback modules with differing application specific
functionality.

The first example callback module is shown in
Fig. 4, and uses the gen_leader_follower behaviour
to provide an implementation of the echo server we
discussed earlier in Fig. 2. Fig. 4 shows the two
required callback functions, as well as a start/1
function. The start/1 function (line 1) initializes the
TCP listener handle (line 2), and calls the start/1
function on the behaviour module (line 3) passing the
callback module’s name (represented by the macro
MODULE) as the callback module. The function
listen_for_events/2 (line 5) is called on by the
leader process in order to detect a fired event on the
given handle. The function handle_events/3 (line 9)

 

Figure 4. Echo server - gen leader follower
callback module.

 

Figure 5. Time server - gen leader follower call-
back module.

is called by the same process once a new leader has
been promoted. This function receives data over the
socket, sending it back to the client.

The code for this module is significantly shorter and
easier to comprehend than the initial implementation of
Sec. 3. In fact, the original implementation (including
the omitted functions) spanned over 52 lines of code,
whereas the implementation using the behaviour is
simply 25 lines of code (including the missing direc-
tives).

Apart from shortening development times through
shorter code, the gen_leader_follower behaviour
provides more scope for reusability of pre-tested code.
In fact, implementing a new server process following
the Leader/Followers pattern simply involves creating
a new callback module. Figure 5 shows another server
application that implements the pattern.

This particular server allows clients connected over a
TCP network to request the current time. Once a TCP
connection is established (line 6), the client sends a
handshake (line 11). The server then sends the current
date and time over the TCP network to the client. The
use of the process pool ensures that the number of



concurrent clients is limited to a predefined number.
Comparing this code with the echo server module,

changes are made in the function handle_events/3
(line 9) in which the current time is determined,
formatted, and sent to the client (lines 12-15). The
use of the behaviour considerably reduces the amount
of code that needs to be developed. Had we not
used the gen_leader_follower behaviour, we would
have been required to implement the pool man-
ager once again, as well as the processes’ proto-
col. Moreover, with this new code organisation, the
gen_leader_follower behaviour abstracts the pool
and process management code away from the program-
mer.

5. Results

We have outlined through the Leader/Followers pat-
tern how we adapted concurrency patterns that were
originally designed in terms of passive objects commu-
nicating through method calls which are synchronised
using object monitors. Instead we implemented these
patterns using processes as our main unit of de-
composition and entities communicate asyncronously
using message passing and mailboxes. We substituted
OO mechanisms such as inheritance with delegation,
higher order functions, and polymorphism through the
use of first class functions, which are applicable to Er-
lang and other message-passing concurrent languages.
In addition, we use the module callback mechanisms
in Erlang to structure patterns as behaviours, thereby
promoting modular design, software abstraction and
code reuse.

In [7], we also tested the integration and usability
of the patterns through the implementation of a peer-
to-peer file sharing application, which requires a high
degree of concurrency to cater for multiple concurrent
clients while sharing files broken down into numerous
pieces. Figure 6 shows the patterns used by the peer-
to-peer application. The columns show the five design
patterns implemented as behaviours, while the rows
show the processes involved in the application. The
entries in the table show the role of each participant in
the design pattern it implements. These either extend
a behaviour or contribute in some way to the patterns’
protocol.

6. Conclusion

We have shown that concurrency design patterns
targetted to an OO paradigm can be feasibly adapted
to a message passing concurrency setting. Within this
setting, we found natural units of decomposition for

 

Figure 6. behaviours/patterns in the peer app.

these patterns as well as mechanisms for facilitating
modular design, encapsulation and code reuse. In fact,
in some cases, the adaptation of these patterns proved
to be more of a natural fit to a message-passing process
model as opposed to a shared-state model with passive
objects. As future work we plan to exploit the mod-
ular design of these behaviours to devise incremental
testing procedures using tools such as QuickCheck[9].

References

[1] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides,
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[2] J. Vlissides, Pattern Hatching: Design Patterns Applied,
ser. Software Patterns Series. New York, NY: Addison-
Wesley, 1998.

[3] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture, Volume 2, Pat-
terns for Concurrent and Networked Objects. New
York: John Wiley and Sons, 2000.

[4] G. Agha, Actors: A Model of Concurrent Computation in
Distributed Systems. Cambridge, MA, USA: The MIT
Press, 1986.

[5] J. Armstrong, Programming Erlang: Software for a
Concurrent World. Pragmatic Bookshelf, July 2007.

[6] E. Agerbo and A. Cornils, “How to preserve the ben-
efits of design patterns,” in OOPSLA 1998, Anaheim,
California, 1998.

[7] F. Leguesse, “Assessing design patterns for concurrency,”
CS Dept., ICT, University of Malta, Tech. Rep., 2009.

[8] D. Schmidt and C. O’Ryan, “Leader/Followers: A De-
sign Pattern for Efficient Multi-threaded Event Demul-
tiplexing and Dispatching,” in Proceedings of the 6th
PLoP, Monticello, IL, 2000.

[9] K. Claessen, M. Pałka, N. Smallbone, J. Hughes,
H. Svensson, T. Arts, and U. Wiger, “Finding race
conditions in erlang with quickcheck and pulse,” in
Proceedings of the 14th ACM SIGPLAN ICFP ’09. New
York, NY, USA: ACM, 2009.

View publication statsView publication stats

https://www.researchgate.net/publication/253949085



