
Towards a Formalisation of Erlang Failure and Failure
Detection

Audrianne Farrugia
CS Dept, ICT

University of Malta
afar0035@um.edu.mt

Adrian Francalanza
CS Dept, ICT

University of Malta
adrian.francalanza@um.edu.mt

ABSTRACT
This paper discusses preliminary investigations on the be-
haviour of the error handling mechanisms in Erlang, a par-
allel language which is renowned for its fault tolerant ca-
pabilities. A formal model is defined in order to provide
a precise and unambiguous description of the behaviour of
these mechanisms. The correctness of the model is evaluated
by considering a simple Erlang program and comparing the
behaviour as described by the formal semantics with that of
actual Erlang.

1. INTRODUCTION
Concurrent programming, popularised by recent technologi-
cal advances such as distributed computing over the Internet
and the proliferation of multi-core computing chips, lends
itself naturally to the construction of fault-tolerant code.
In this setting, failure - stemming from hardware faults as
well as from software programming errors - typically affects
only parts of the code, i.e., partial failure; the unaffected
code then attempts to recover from this failure through the
use of redundant resources or else degrade the computation
gracefully. One clear manifestation of this is code written in
the concurrent language Erlang[2, 3], an industry-strength,
dynamically-typed, actor-based, functional language equipped
with mature fault tolerance mechanisms.

1.1 Actors, Links and Failures
Concurrency in Erlang is based on the actor model [1],
whereby concurrent threads of execution interact through
message-passing rather than through the mutual access of
a common shared state. More precisely, when a concurrent
process, i.e., actor, wants to share data with another pro-
cess, it creates a copy of this data and sends it as a message
to the other process, identified by a unique process Id. Pro-
cesses are equipped with their own queue structure called a
mailbox, where incoming messages are received; this mail-
box acts as the process exclusive, local memory from which
messages can be selected to be read using pattern-matching.

Process A terminates with reason R:

(a) Process B terminates with reason R

(b) Process B traps the exit signal

Figure 1: Error Propagation

Erlang builds its fault-handling mechanism on top of this
messaging structure. For a start, when an Erlang process
fails, no memory is affected apart from its own local copy;
this simplifies the delineation of the fault effect. Moreover,
a failing process generates an exit message that is automat-
ically sent to other processes. The destinataries of the exit
messages are determined through the process linking mecha-
nism, where processes are explicitly linked to one another so
as to listen to each others’ termination messages. Finally,
Erlang processes can determine how to handle these exit
messages once received: by setting an appropriate flag, they
can decide whether to automatically fail upon the receipt of
an exit message, or else store this message in their mailbox
to be handled later on; the latter option is often referred to
as trapping exits, and the respective processes that do this
are termed system processes.

Figure 1 illustrates how the error-propagation mechanism
just described works. In both cases, processes A and B are
linked to one another. In Figure 1(a), process B is not trap-
ping exits and when process A terminates abnormally, i.e.,
it fails, the exit message will cause process B to automati-
cally terminate abnormally upon message receipt. In Figure
1(b) however, process B is a system process (denoted using

double lines); when the exit signal is received, process B
traps it to be able to carry out the necessary error handling
operations.

1.2 Local and Remote Error Handling
Erlang’s fault-handling mechanism suggests a fail-fast ap-
proach [7] to code design, whereby code passes the respon-
sibility for handling errors to other processes at a higher
design level. In fact, accepted Erlang code practices [3] dis-
courage defensive programming, i.e., code that tries to an-
ticipate and handle locally abnormal computation, because
it clutters the code and obfuscates the point from where the
error originates. Instead [10, 3] claim that a fail-fast ap-
proach leads to (i) a reduction in code that is (ii) easier to
debug and maintain, (iii) is less likely to erroneously per-
form irreversible or costly operations, and (iv) well-suited to
fault-tolerant organisations through the use of redundancy.

Program 1.1 Local Error Handling in Erlang

fun1(X,Y,Pid) ->
try

Pid ! X + Y
catch

error:badarith -> Pid ! invalid
end.

Program 1.1 is a a typical example of a defensive Erlang pro-
gram that attempts to handle errors locally. Function fun1

sends the sum of variables X and Y to the process identified
by the variable Pid. The try-catch statement is used to han-
dle any errors that may occur when computing the sum of
the two variables. Thus, if X or Y are bound to non-numeric
data, a badarith exception is raised; this exception is then
caught by the try-catch statement and the atom invalid is
sent to the process identifier bound to the variable Pid.

Program 1.2 Remote Error Handling in Erlang

fun1(X,Y,Pid) -> Pid ! X + Y.

ff_wrap(F,Args,Pid) ->
P = spawn_link(?MODULE,F,Args),
process_flag(trap_exit,true),
receive

{’EXIT’,P,{badarith,Stack}}
-> Pid ! invalid

{’EXIT’,P,normal} -> ok;
end.

Program 1.2 performs the same task as Program 1.1 while
avoiding any defensive programming. Here, fun1 sends the
sum of X and Y to Pid without attempting to anticipate pos-
sible misuses of the function; this keeps the function defini-
tion small and perspicuous. Abnormal computation is han-
dled by another process executing ff_wrap (a wrapper for
fail-fast functions), which listens for erroneous terminations
of a function execution of (the redefined) fun1 and reports
to process Pid the atom invalid whenever a badarith er-
ror is detected.1 The function ff_wrap is generalised as a

1The command spawn_link(M,F,A) spawns a new pro-
cess executing function F defined in module M instanti-
ated with arguments A, and links the spawned process

pattern2, and works with any function that may generate
a badarith error; this improves code reuse which, in turn,
leads to code reduction.

Intuitively, the two programs are meant to describe the same
behaviour. Because of the advantages discussed earlier in
Section 1.1, we would like to refactor Program 1.1 with Pro-
gram 1.2 and, accordingly, substitute calls to spawn pro-
cesses computing the addition of numbers N and M:

spawn(?MODULE,fun1,[N, M,self]) (1)

with the respective calls:

spawn(?MODULE,ff_wrap,[fun1,[N,M,self],self]) (2)

In order to carry out this refactoring in a safe manner, we
would need to determine whether the two sub-programs ex-
hibit the same behaviour under any context and for every
possible process interleaving. It turns out that Program 1.1
and Program 1.2 may indeed exhibit different behaviour
for certain process interleaving but, unfortunately, this fact
tends to be notoriously hard to determine in concurrent sys-
tem: (i) if such differing behaviour is discovered through
testing, the specific process interleaving leading to the vi-
olation may be hard to replicate in other test runs and,
moreover, (ii) the reason for the violation is often subtle
and determining the exact cause requires intimate knowl-
edge of how the constructs leading to the violation actually
work.

1.3 Aims and Objectives
This paper discusses preliminary results towards developing
a formal model for a subset of Erlang focussing on the error-
handling mechanism of the language. The formal model is
intended to help give a high-level understanding how certain
Erlang constructs work, without needing to go ‘under the
bonnet’ to see how these constructs are implemented. This
high-level understanding should, in turn, help us predict the
behaviour of Erlang processes and facilitate debugging of
subtle errors such as those discussed in Section 1.2. The
model will also guide the implementation of debugging tools
that analyse the behaviour of concurrent Erlang systems.
Ultimately, however, we expect this model to lay the neces-
sary foundations for the eventual development of a semantic
theory for the language that would enable us to determine
when two programs are semantically equivalent.

The rest of the paper is structured as follows. In Section 2
our formal model is presented. In section 3 this model is
used to analyse the behaviour of the programs discussed in
the Introduction; we also give a brief description of how the
formal model was animated through an evaluator. Section
4 overviews of how the correctness of the formal model was
assessed. Finally, Section 5 gives some suggestions for future
work and Section 6 concludes.

2. A FORMAL SEMANTICS
We define a calculus for modelling the computation of Erlang
programs. We assume denumerable sets of process identifiers

to the process executing the command. The command
process_flag(trap_exit,true) turns the process into a
system process.
2In our case, it will be passed the function name fun1 and
the list [X,Y,Pid] as the arguments F and Args, respectively.

i, j, h ∈ Prc and of variables x, y, z ∈ Var. We let s, t ∈
{•, ◦} range over actor trapping modes (status), where • and
◦ denote exit-trapping and non exit-trapping resp.

A,B ∈ Act ::= i[c / m]sl | i[v]l | A ‖ B
c ∈ Cmd ::= x= e, c | e

e, f ∈ Exp ::= v | self | e!e | rcvx in e | try e catch e

| e e | trap | spw e | spw lnk e | . . .
v ∈ Val ::= x | i | fun (x)c | exit | end(i, v) | . . .

A system is made up actors, Act, that are composed in
parallel, A ‖ B, whereby each individual actor/process may
be either active or terminated. A terminated actor, i[v]l, is
just a final value v (set to exit when termination is abnormal)
that is uniquely identified by i, and is linked to a list of
actors l. An active actor, i[c / m]sl , can be either trapping
exits (s = •) or not (s = ◦). It consists of a command, c,
executing wrt. a local mailbox, m, whereby, as in the case
of a terminated actor, this pair is uniquely identified by an
identifier, i, and linked to a list of other processes, l.

We let l, k ∈ Prc∗ range over lists of process identifiers,
which are used to denote links to other actors; the nota-
tion i : l denotes the link-list with process identifier i at the
head and l being the tail; dually, l : i denotes the link-list l
appended with process identifier i. Mailboxes, are also de-
noted by lists: we let m,n ∈ Val∗ to range over message
queues of values. Similar to link lists, v :m denotes the mail-
box with v at the head of the queue and m : v denotes the
mailbox m appended by v at the end.

Commands consist of a sequence of variable binding termi-
nated by an expressions, x1 = e1, . . . ,xn = en, en+1. Expres-
sions are expected to evaluate to values, and may consist
of self reference, self, output to another actor, e!e, input
from the mailbox, rcvx in e, function application, e e, trap-
exit setting, trap, process/actor spawn, spw e, and spawn
with linking, spw lnk e, amongst others. Values may consist
of process ids, i, functions, fun (x)e, exit exceptions,3 exit,
and termination reports, end(i, v), amongst others. Com-
mands and expressions also specify evaluation contexts for
our expressions, denoted as C[−] and defined as:

C ::= E [−] | x= E [−], c

E ::= [−] | E [−]!e | v!E [−] | try E [−] catch e

| E [−] e | v E [−] | spw E [−] | spw lnk E [−] | . . .

At command level, an expression is only evaluated when at
the top level variable binding or the final expression. We
do not fully list the expression level evaluation contexts, but
these are fairly standard.

The behaviour of our modelled Erlang programs is given
in terms of a reduction semantics over systems of actors.
Table 1 gathers the main rules relevant to us. Rule Cmd de-
scribes how command sequences act as let constructs where
a value binding, v for x, is substituted in the continuation c;
if however the value is an exception, CmdE, the remaining
commands are ignored. Rule Slf allows an actor to dy-
namically obtain its Id, since this cannot be known at com-
pile time. Communication happens in two step: the sender

3We elide the reason parameter in exceptions in this expo-
sition.

Cmd
v 6= exit

i[x= v, c / m]sl −→ i[c{v/x} / m]sl

CmdE
i[x=exit, c / m]sl −→ i[exit / m]sl

Slf
i[C[self] / m]sl −→ i[C[i] / m]sl

Snd
i[C[j!v] / m]sl ‖ j[c / n]tk −→ i[C[v] / m]sl ‖ j[c / n : v]tk

Rcv
i[C[rcvx in e] / v :m]sl −→ i[C[e{v/x}] / m]sl

Try
v 6= exit

i[C[try v catch e] / m]sl −→ i[C[v] / m]sl

Ctc
i[C[try exit catch e] / m]sl −→ i[C[e] / m]sl

App
i[C[(fun (x)c) v] / m]sl −→ i[C[c{v/x}] / m]sl

Trp
i[C[trap] / m]◦l −→ i[C[i] / m]•l

Spw
fresh(j)

i[C[spw e] / m]sl −→ i[C[j] / m]sl ‖ j[e / ε]
◦
ε

SpwL
fresh(j)

i[C[spw lnk e] / m]sl −→ i[C[j] / m]sl : j ‖ j[e / ε]
◦
i

Fin
i[v / m]sl −→ i[v]l

TrmS
v 6= exit

i[v]j : l ‖ j[c / m]◦k −→ i[v]l ‖ j[c / m]◦k−i

TrmE
i[exit]j : l ‖ j[c / m]◦k −→ i[exit]l ‖ j[exit]k−i

TrmT
i[v]j : l ‖ j[c / m]•k −→ i[v]l ‖ j[c / m : end(i, v)]•k−i

Table 1: Reduction Rules

first sends the message to the receiver’s mailbox, Snd, and
then the receiver reads it from its mailbox at some later
stage, Rcv.4 Try and Ctc describe local exception han-
dling whereas App describes standard function application.

The remaining rules are the most interesting. Rule Trp
sets the trap-exit flag, turning the actor into a system pro-
cess.5 The rule Spw launches a new actor executing e wrt.
the empty mailbox, ε while being assigned a unique process
identifier, j, automatically set not to trap exits and is not
linked to any other process, ε. The reduction of Spwl is sim-
ilar to that of Spw, but establishes a mutual link between

4Erlang uses pattern matching to select which message to
read from the mailbox, something we do not model here.
5To keep our exposition self-contained, trap returns the pid
of the actor, whereas in the actual Erlang JVM it returns a
boolean.

the newly spawned actor and the actor executing the spawn.
Fin describes the fact that once an actor executes down to
a value, then it transitions to a terminated actor. The final
three rules are related and describe how process termina-
tion and linking work. If a process terminates normally, i.e.,
v 6= exit, and the linked process is not trapping exits, then
the link is silently removed, TrmS. If the linked process
is not trapping exits but the actor terminates abnormally,
this will cause the linked process to terminate abnormally
as well, TrmE. Finally, if the linked process is a system
process, then the actor termination will generate the appro-
priate termination message at the linked process’s mailbox,
TrmT, thereby trapping its exit message.

3. USING THE FORMAL SEMANTICS
Assuming standard currying conventions,6 we can model the
Erlang program (1) from Section 1.2 as the expression7

e1
def
= spw

``
fun (x, y, z)try z!(x+ y) catch z!invalid

´
nm self

´
and program (2) as the expression8

e2
def
= spw

`
f (fun (x, y, z)z!(x+ y)) nm self self

´
where

f
def
= fun (x, y1, y2, y3, z)

0BB@
w=spw lnk

`
x y1 y2 y3

´
,

trap,
rcvx in if x = end(w, exit)

then z!invalid else ok

1CCA
For cases whereby n is an integer but m is not, and a context

C[−]
def
= [−],rcvx in e

we can observe that the actors i[C[e1] / ε]sε and i[C[e2] / ε]sε
exhibit different behaviour. In the first case, we can only
have the following reduction sequence:

i[C[e1] / ε]sε = i[e1,rcvx in e / ε]sε −→ (3)

i[spw
``

fun (x, y, z)try . . .
´
nm i

´
,rcvx in e / ε]sε −→ (4)„

i[j,rcvx in e / ε]sε ‖
j[
`
(fun (x, y, z)try . . .) nm i

´
/ ε]◦ε

«
−→ (5)„

i[rcvx in e / ε]sε ‖
j[
`
(fun (x, y, z)try . . .) nm i

´
/ ε]◦ε

«
−→3 (6)„

i[rcvx in e / ε]sε ‖
j[
`
try i!(n+m) catch i!invalid

´
/ ε]◦ε

«
−→ (7)

i[rcvx in e / ε]sε ‖ j[
`
try exit catch i!invalid

´
/ ε]◦ε −→ (8)

i[rcvx in e / ε]sε ‖ j[i!invalid / ε]◦ε −→ (9)

i[rcvx in e / invalid]sε ‖ j[invalid / ε]◦ε −→ (10)

i[rcvx in e / invalid]sε ‖ j[invalid]ε (11)

Reduction (3) is derived using Slf, instantiating self for i,
whereas reduction (4) describes the spawning of a new actor
using Spw. (5) is a trivial application of Cmd where no free

6The multi-argument function fun (x1, . . . xn)c is short-
hand for fun (x1)

`
. . .
`
fun (xn)c

´´
whereas the expression list

e1 e2 . . . en denotes the applications
`
(. . . (e1 e2) . . .)en

´
.

7We avoid using lists in our modelling so as to keep the
exposition self-contained.
8Expression sequencing e, c is shorthand for x= e, c when-
ever x 6∈ fv(c).

variables need to be substituted for j. This is followed by
three function application reductions using App, (6), substi-
tuting the function variables x, y, z for n,m, i resp. Since m
is not an integer, the evaluation of the expression i!(n+m)
generates a fault exception exit, (7), which is caught, (8), us-
ing rule Ctc. Local fault handling then sends invalid back to
the actor spawning the process, i.e., actor i, using Snd, (9)
followed by the spawned process j terminating using rule
Fin, (10).

The second actor, i[C[e2] / ε]sε , corresponding to a call to
Program 1.2, may however exhibit a different reduction se-
quence.

i[C[e2] / ε]sε −→
2 (12)

i[C[spw
`
f (fun (x, y, z)z!(x+ y)) nm i i

´
] / ε]sε −→ (13)„

i[j,rcvx in e / ε]sε ‖
j[f (fun (x, y, z)z!(x+ y)) nm i i / ε]◦ε

«
−→6 (14)0BBBB@

i[rcvx in e / ε]sε ‖

j

2664
w=spw lnk

(̀fun (x, y, z)z!x+ y) nm í ,trap,
rcvx in if x = end(w, exit)

then i!invalid else ok

/ ε

3775
◦

ε

1CCCCA−→2 (15)

0BBBB@
i[rcvx in e / ε]sε ‖

j

24 trap,
rcvx in if x = end(h, exit)

then i!invalid else ok
/ ε

35◦
h

‖ h[(fun (x, y, z)z!x+ y) nm i / ε]◦j

1CCCCA −→3 (16)

0BBBB@
i[rcvx in e / ε]sε ‖

j

24 trap,
rcvx in if x = end(h, exit)

then i!invalid else ok
/ ε

35◦
h

‖ h[i!n+m / ε]◦j

1CCCCA (17)

The first two reductions, (12), are instantiations of self to i,
whereas (13) is a spawn launching actor j. The six reduc-
tions that follow, (14), are function applications instantiat-
ing the variables x, y1, y2, y3, z for the values (fun (x, y, z)z!(x+
y)), n,m, i, i resp. in the body of f at actor j, interleaved by
an application of Cmd at actor i. Reductions (15) describe
the spawning of a third actor, h, followed by the substitu-
tion of h for w using Cmd; note that the spawned actor is
linked to actor j. The three reductions (16) is a series of
function applications at actor h. Some of the reductions in
(15) and (16) may interleave; they however still yield the
same system (17).0BBBB@

i[rcvx in e / ε]sε ‖

j

24 trap,
rcvx in if x = end(h, exit)

then i!invalid else ok
/ ε

35◦
h

‖ h[i!n+m / ε]◦j

1CCCCA −→2 (18)

0BB@
i[rcvx in e / ε]sε ‖

j

»
rcvx in if x = end(h, exit)

then i!invalid else ok
/ ε

–•
h

‖ h[i!n+m / ε]◦j

1CCA −→2 (19)

0BB@
i[rcvx in e / ε]sε ‖

j

»
rcvx in if x = end(h, exit)

then i!invalid else ok
/ ε

–•
h

‖ h[exit]j

1CCA −→ (20)

0@ i[rcvx in e / ε]sε ‖ h[exit]ε ‖

j

»
rcvx in if x = end(h, exit)

then i!invalid else ok
/ end(h, exit)

–•
ε

1A −→ (21)

0@ i[rcvx in e / ε]sε ‖ h[exit]ε ‖

j

»
if end(h, exit) = end(h, exit)

then i!invalid else ok
/ ε

–•
ε

1A −→ (22)

i[rcvx in e / ε]sε ‖ h[exit / ε]
◦
ε ‖ j[i!invalid / ε]•ε −→

2 (23)

i[rcvx in e / invalid]sε ‖ h[exit]ε ‖ j[invalid]ε

The next reduction step to be taken is however critical. The
system shown in (17) may execute the trapping command
at actor j, (18), making it a system process that traps ex-
its. Thus, when the computation at actor h fails and termi-
nates, (19), actor j can trap the exit message in its mailbox,
(20), using TrmT. The termination message can then be
read by j using Rcv, (21), processed, (22), and the failure
can be reported back to actor i, (23), as in (11) discussed
earlier.0BBBB@

i[rcvx in e / ε]sε ‖

j

24 trap,
rcvx in if x = end(h, exit)

then i!invalid else ok
/ ε

35◦
h

‖ h[i!n+m / ε]◦j

1CCCCA −→ (24)

0BBBB@
i[rcvx in e / ε]sε ‖

j

24 trap,
rcvx in if x = end(h, exit)

then i!invalid else ok
/ ε

35◦
h

‖ h[exit / ε]◦j

1CCCCA −→ (25)

0BBBB@
i[rcvx in e / ε]sε ‖

j

24 trap,
rcvx in if x = end(h, exit)

then i!invalid else ok
/ ε

35◦
h

‖ h[exit]ε

1CCCCA −→ (26)

i[rcvx in e / ε]sε ‖ j[exit]ε ‖ h[exit]ε
Alternatively, however, system (17) may have a different
interleaved execution of its parallel actors, exhibiting be-
haviour that differs from that reached in (11). In particular,
before actor j can execute the trap command enabling it
to trap exits, the spawned actor h may terminate abnor-
mally, (24) and (25). Since actor h is linked to actor j, this
may cause j to terminate abnormally with it, (26), instead
of handling the exit as in the previous reduction sequence,
thereby blocking actor i.

Program 3.1 Remote Error Handling in Erlang

fun1(X,Y,Pid) -> Pid ! X + Y.

ff_wrap(F,Args,Pid) ->
process_flag(trap_exit,true),
P = spawn_link(?MODULE,F,Args),
receive

{’EXIT’,P,{badarith,Stack}}
-> Pid ! invalid

{’EXIT’,P,normal} -> ok;
end.

Identifying this alternative reduction sequence allows us not

only to identify potential problems should we decide to refac-
tor Program 1.1 with 1.2, but also helps us determine the
root of the problem. In this case, the problem is caused
by a race condition at the execution point corresponding
to the system (17). We can avoid this by modifying Pro-
gram 1.2 to the one show in Program 3.1, which swaps the
order of commands P = spawn_link(?MODULE,F,Args) and
process_flag(trap_exit,true); this ensures that the pro-
cess is spawned after the spawning process is trapping exits.

3.1 A Tool Implementation
The Erlang semantics designed in Section 2 was animated
through a prototype evaluator for our calculus, implemented
in Haskell; the implementation was based on parser com-
binators which allows us to easily extend it to handle the
modelling of more Erlang constructs. One of the aims of
the evaluator is that of assisting the automation of the dis-
cussion held in Section 3, by going through all the possible
interleavings that the program may take, thus, identifying
all the different ways in which the program may behave.
Once the different behaviours are identified, it returns the
sequences of reduction steps that cause the input program
to behave in a particular behaviour.

4. EVALUATION
Since the semantics of Section 2 was defined post-hoc, it
was important to ensure that it does indeed correspond to
the actual behaviour of the Erlang constructs it is trying
to model. The tool described in Section 3.1 was used as
a vehicle for this correctness analysis, since it was built to
reflect the semantics directly. The correctness of the model
was therefore assessed using the strategy described in Figure
2.

Figure 2: Evaluation Strategy

Considering a number of Erlang programs dealing with error
handling, the correctness of the model was analysed by:

1. Running the program on the Erlang VM, using the
inbuilt tracer function to record the intermediary steps
of the execution.

2. Translate the same Erlang program in terms of the
model.

3. Execute the the translated Erlang program on the Eval-
uator, which returns a documented sequences of re-
duction steps describing the different ways the input
program may be evaluated according to the defined
model.

4. Ensure that the recorded execution on the Erlang VM
corresponds to one of the possible reduction sequences
documented by the Evaluator.

Whenever the Evaluator tool returned a number of differing
possible outcomes for a particular translated program, we
also evaluated whether these reduction sequences do indeed
correspond to possible executions over the Erlang VM. This
required us to analyse the different sequences of reductions,
identify what actor interleaving let to the different behaviour
and then inject sleep(time) calls at strategic points in the
original code so as to induce a certain scheduling order that
matches the reduction sequence reported.

Our empirical tests so far supported our conjecture that the
model corresponded to the behaviour on the Erlang VM,
with the exception of certain simplifying shortcuts we con-
sciously chose to adopt in our model, so as to keep the cal-
culus and the tool analysis more tractable.

5. RELATED AND FUTURE WORK
The ultimate aim of our work is that of developing a be-
havioural theory for program equivalence for (a subset of)
Erlang, which would help us understand better the seman-
tics of the language and assist the construction of refactoring
tools such as [11, 9]. At present, our analysis is performed
under a “closed-world” setting, whereby a system of actors
is analysed in isolation. A proper theory of equivalence will
however require us to consider congruences of some sort,
which will probably entail a shift towards an “open-world”
setting, where reductions consider also interactions with the
context. We also plan to use the semantics to define for-
mally correct runtime-verification tools for Erlang[5]. Much
work still needs to be done in this regard.

For a start, we need to compare our work with existing work
on formalising the language [6, 4, 12, 13]. It appears that
our formalisation is more lightweight than [4, 12, 13], which
consists of a three-layered semantics, i.e., expressions, pro-
cesses/actors and nodes. Our semantics ignores distribution,
i.e., nodes and is more fine tuned to study error handling; de-
spite using a single-layer semantics it still seems to retain the
essential features of Erlang concurrent computation. Tech-
nically, the developments are slightly different as well, since
ours is given in terms of a reduction semantics, whereas ex-
isting work relies on labelled-transition systems.

Crucially however, the main focus of [12, 4] seems to be that
of understanding existing Erlang VM implementations, un-
ravelling subtle discrepancies between processes communica-
tions in a distributed setting; [13] is a follow-up, proposing
ways how to simplify this distributed semantics. The precur-
sor to [13, 12, 4] is [6] which is perhaps the closest in spirit
to our work. In his thesis, Fredlund focussed on developing
a logical framework for reasoning about Erlang programs in
terms of the modal µ-calculus[8]; program equivalence is not
central to this work. The calculus developed there does not
address the study of the different modes of error handling
in Erlang either; in fact, local error handling through the
try-catch construct is omitted.

6. CONCLUSION
We have reported on preliminary investigations of the Erlang
language and the behaviour of its constructs, focussing on
the various way how error handling can be carried out in the
language. We developed a calculus that can model Erlang
programs and showed how this can be used to determine
differing behaviour between seemingly equivalent programs.
We also outline the development of a tool based on this
calculus used to automate the process of program analysis
and to validate the correctness of the calculus developed.

7. REFERENCES
[1] Gul Agha. Actors: a model of concurrent computation

in distributed systems. PhD thesis, MIT, 1986.

[2] Joe Armstrong. Programming Erlang: Software for a
Concurrent World. Pragmatic Bookshelf, 2007.

[3] Francesco Cesarini and Simon Thompson. Erlang
Programming. O’Reilly, 2009.

[4] Koen Claessen and Hans Svensson. A semantics for
distributed erlang. In Proceedings of the 2005 ACM
SIGPLAN workshop on Erlang, ERLANG ’05, pages
78–87, New York, NY, USA, 2005. ACM.

[5] Christian Colombo, Adrian Francalanza, and Rudolph
Gatt. ELarva:A Monitoring tool for Erlang. In
Runtime Verification (RV) 2011, volume 7186 of
LNCS, pages 370–374. Springer, 2012.

[6] Lars-Ake Fredlund. A Framework for Reasoning about
Erlang Code. PhD thesis, Royal Institute of
Technology, Stockholm, Sweden, 2001.

[7] Jim Gray. Why do computers stop and what can be
done about it? Technical report, Tandem Computers,
1985.

[8] Dexter Kozen. Results on the propositional µ-calculus.
TCS, 27(3):333 – 354, 1983. Special Issue (ICALP)
1982.

[9] Huiqing Li and Simon Thompson. Refactoring support
for modularity maintenance in erlang. In Proceedings
of the 2010 10th IEEE Working Conference on Source
Code Analysis and Manipulation, SCAM ’10, pages
157–166, Washington, DC, USA, 2010. IEEE
Computer Society.

[10] J. H. Nyström, P. W. Trinder, and D. J. King.
High-level distribution for the rapid production of
robust telecoms software: comparing c++ and erlang.
Concurr. Comput. : Pract. Exper., 20:941–968, June
2008.

[11] Konstantinos Sagonas and Thanassis Avgerinos.
Automatic refactoring of Erlang programs. In
Proceedings of the Eleventh International ACM
SIGPLAN Symposium on Principles and Practice of
Declarative Programming, pages 13–24, New York,
NY, USA, September 2009. ACM.

[12] Hans Svensson and Lars-Ake Fredlund. A more
accurate semantics for distributed erlang. In
Proceedings of the 2007 SIGPLAN workshop on
ERLANG Workshop, ERLANG ’07, pages 43–54, New
York, NY, USA, 2007. ACM.

[13] Hans Svensson, Lars-Ake Fredlund, and Clara
Benac Earle. A unified semantics for future erlang. In
Proceedings of the 9th ACM SIGPLAN workshop on
Erlang, Erlang ’10, pages 23–32, New York, NY, USA,
2010. ACM.

View publication statsView publication stats

https://www.researchgate.net/publication/262601297

