Applying Runtime Verification Techniques to an
Enterprise Service Bus

Gabriel Dimech
Dept. of Computer Science
University of Malta
gabriel.dimech.06 @um.edu.mt

Abstract—An Enterprise Service Bus (ESB) integrates remote
components creating a distributed system from a centralised
location where certain aspects of the system are dynamic in
nature. These characteristics give rise to potential runtime issues
arising during the deployment of ESB applications. In this paper
we describe why some of these issues may not be addressed at
compile time; as current ESB solutions go a long way in providing
the right tools to setup integration tests which allow for testing
the integration logic, however are unable to guarantee correctness
beyond the scope of such tests. Due to the characteristics of
ESB applications, we discuss applying Runtime Verification (RV)
techniques in three separate approaches over an ESB with the
goal of giving a correctness guarantee for problems undetectable
at compile-time with the aim of minimising performance impacts
inhibited on the ESB system.

I. INTRODUCTION

As software becomes increasingly dependent on external
resources such as APIs, data sources and applications to
provide more overall value, integrating applications has be-
come increasingly important. Enterprises are now leveraging
a range of applications including legacy systems, on-premise
applications and cloud services both internal or external to
the organisation. As such enterprises evolve, so do their
requirements; producing a dynamic system of systems which
may not have been designed to communicate with each other,
resulting in integration challenges.

A. Background

In order to highlight some issues that may arise when
deploying ESB applications, we will take a closer look at the
architecture of an ESB and describe an example application.

1) Enterprise Service Bus: An ESB is a tool which inte-
grates systems in a bus-like architecture where the bus acts
as a point of reference to the overall distributed or localized
system [1]. Within the ESB, components may communicate
via a standard protocol. Having a centralised location from
which to manage the orchestrated service, allows the user to
maintain the system relatively easily when compared to say
point-to-point systems where connections are made between
components.

2) ESB Example Application: As an example of an ESB
application, consider an online flight booking system; were
third party airline services and a banking service are or-
chestrated to provide a flight booking application. A flight
booking component may only confirm the booking once the

Christian Colombo
Dept. of Computer Science
University of Malta
christian.colombo @um.edu.mt

Adrian Francalanza
Dept. of Computer Science
University of Malta
adrian.francalanza @um.edu.mt

bank component has verified that the payment details and
the airline component confirms that the dates specified are
permissible. Let us assume that the integration logic allows
for communication with just one banking system in order to
retrieve banking details, participate in financial transactions
and so on. The same application allows for communication
with one or more airline booking systems. This will allow
the user to get more competitive flight rates and also provide
a backup system in the case that one airline web service is
down. It is most likely that both the banking system and airline
systems are exposed as a service where we are only able to
see these systems as a black box. This is depicted in Figure 1
which shows how the flight booking application described
above may leverage the banking system and a number of
airline services in order to expose a flight booking service
to customers. The ESB allows for seamless communication
between these components.

Bank
Service
ESB
Rl §/\irline B
Flight
Booking e Airline C
Service

Fig. 1. Example ESB Application

B. Possible Issues affecting Correctness

Having described briefly some characteristics of ESB ap-
plications in general as well as the expected behaviour of
an example application above, we shall now look at some
potential issues that may affect the correct execution of ESB
applications. Correctness of an ESB application here relates
to the application behaving as intended during execution. For
example, this may include that for a given event in the ESB,
the application logic correctly transforms messages between
protocols, routes via the intended path to and from destinations
and in general the overall behaviour of the application is as
intended by the ESB application architect.

1) Dynamic Sources and Destinations: Some ESB im-
plementations provide a feature for service selection within

the integration logic [3]. This allows for deciding message
destinations at run-time where for example the HTTP path or
port number on which to send an HTTP request, is obtained
from the message currently being handled. For such a scenario,
it is not possible to test all possible message destinations.
This is depicted in Figure 1 where a connection to Airline
A has been lost at run-time (denoted by a cross over a solid
line), therefore we may forward the request to a backup airline
service (In Figure 1 connections to backup services are denoted
with dotted lines). An ESB application may be invoked via an
event received from a messaging queue data source where the
message producers may not necessarily be known at compile
time, hence it is not possible to test fully all possible message
types for such a scenario.

2) Third party Components and Libraries: Testing the
integration logic is usually done via mocking third party
components during the testing phase. This is very effective
for providing correctness of the ESB application logic whose
source code we have access to. By mocking the third party
components, in this case the banking and airline systems,
we are able to create "failure" scenarios and modify the
behaviour of the ESB accordingly to handle these issues. The
test engineer may create test cases for a number of scenarios
so as to verify that the ESB application logic is able to
handle the "happy" path/s and most of the "unhappy" paths.
Abstracting away implementation and communication details
from the application logic, relieves the ESB application de-
veloper from many potential mistakes in the application. That
said, integrating complex remote systems such as the airline
and banking systems, renders the process of writing compre-
hensive integration tests a laborious and perhaps impossible
task. When adding such remote systems, complexity increases
exponentially, so too does the risk of errors occurring. This is
also known as the state explosion problem in model checking
rendering this technique unfeasible for such applications. Also,
third party components, such as the airline and bank services,
may be updated from time to time. If this happens without the
corresponding updates being included in the existing version
of the application, this may cause unexpected behaviour in the
application.

Besides communicating with third party components as
explained above, ESBs include a large number of third party
libraries which are required to enable key features such as
transformation, consuming/exposing web services, clustering,
data source connections and so on. This means that whilst an
ESB application is running, there is also the likelihood that one
of these third party libraries (sometimes these may be closed
source) may fail (for example memory leaks).

Figure 1 depicts the flight booking system example where
we do have access to the code inside the flight booking applica-
tion as well as the integration logic (denoted by white boxes
in Figure 1), allowing developers to tweak the functionality
if required. The banking and airline components are seen as
black boxes (denoted by black boxes in Figure 1) and are
only visible to the ESB via a connection (for example via
HTTP), therefore we can only assume that these components
will function as expected.

3) Complex Integration Logic: A source of error for ESB
applications may arise from bugs in the integration logic done
by the system architect/engineer which go unnoticed during

the testing phase. As an example of such a scenario, consider
the flight booking system described earlier: The flight book-
ing application returns confirmation to the user without the
airline component having returned confirmation that the dates
requested are available. This is not the correct behaviour of the
application, even though the user has received confirmation.

4) Distributed Transactions: Typical ESB applications han-
dle a high throughput of sensitive information which may re-
quire to take part in some form of transaction. More often than
not, such a transaction may require participation of various
distributed resources such as databases and message queues.
The transaction manager which is in charge of overseeing
the success or rollback of a transaction makes use of the
two-phase commit protocol for such a scenario. This process
includes a ’prepare’ phase where participating resources are
asked to prepare for committing to the transaction. If not
all the participating resources return success for this prepare
phase, the transaction is rolled back, otherwise committed. In
the event that an error occurs after the participating resources
have successfully responded to the prepare phase, then the
participating resources risk entering an inconsistent state as the
transaction will be committed on some of the participating re-
sources. This is known as the "Two generals problem" whereby
consistency of all participating resources is not guaranteed [4].

The possible issues affecting correctness of ESB appli-
cations given here is by no means an exhaustive list. Such
issues are best identified on a per application basis, as each
application has a separate configuration in terms of routing
logic, data transformation, data resource connections, custom
code within the ESB and so on.

II. WHY RUNTIME VERIFICATION?

The scenarios and examples given above, for instance that
of dynamic destinations, may be tested during the testing
phase against a number of mocked destinations for any is-
sues in the integration logic, however this will not provide
correctness guarantees with message destinations decided at
runtime. Similarly, when testing integration with third party
components as mocked services, testing techniques are unable
to provide correctness guarantees in the event that say a remote
component returns incorrect data without an error being raised
in the ESB logic.

With the main aim of providing correctness guarantees to
ESB applications and the above considerations in mind, we
propose using testing techniques for scenarios where runtime
information is not required and complement this using runtime
verification techniques for scenarios where runtime informa-
tion is required.

System Specification

System
Instrumentation

Fig. 2. Runtime Verification Process

Runtime Verification (RV) is a technique used for monitor-
ing and analysis of software system runs [5], [6], [7], allowing
us to detect violations in system behaviour requiring runtime
information which is not possible using testing techniques.
At the same time, it circumvents state explosion problems
associated with model checking techniques by compromising
the extent of checking, limiting itself to ensuring only that
the current system execution is valid. It has proved to be
scalable enough to be applied to numerous real-world systems,
providing feasible ways how to leverage formal techniques
originating in academia. RV promises to be a suitable tech-
nique for checking correctness in ESB systems because it
can be performed at runtime, while the ESB is executing.
This allows it to obtain runtime information such as the
current components connected to the bus or the current thread
interleaving of components when checking for correctness,
instead of having to predict them upfront, which in turn rules
out potential execution states that would otherwise need to be
considered.

Figure 2 depicts the process of applying runtime verifica-
tion to a system where a user produces a specification which is
used to specify correctness properties and the instrumentation
code which will be deployed in parallel with the running target
system. The instrumentation code will intercept and forward
relevant system events to the monitor which verifies whether
the event violates a correctness property.

III. OVERHEADS

One consideration that must be taken when applying RV
is that of minimising overheads. A runtime verifier will ob-
serve a systems’ behaviour to verify whether the correctness
specification has been violated. This means that there will be a
performance impact on the target system if the runtime verifier
resides onboard, and/or a network performance impact if
messages are intercepted using proxies. In such a performance
critical system such as an ESB, we are tasked with finding the
optimal balance in a trade off between providing an adequate
correctness guaranteeing system and performance impact.

IV. THREE APPROACHES IDENTIFIED

In order to find an optimal solution (in terms of over-
heads) for applying runtime verification techniques to an
ESB application, we propose three separate approaches in
terms of the level at which we are instrumenting the code
for intercepting ESB events. A runtime verifier will allow a
user to specify correctness properties for the target system.
This way, the user is specifying which system events are
required to verify correctness of the system. The verifier is
responsible for intercepting these events and forwarding these
to the correctness logic code for verification, the level at
which we are intercepting ESB events is the main variable
between the three proposed approaches. These approaches
shall be evaluated against a real world ESB use case in order to
determine which approach produces least performance impact.

Figure 3 shows the three different levels at which we may
intercept ESB system events. In an ESB application a user may
connect two or more components in a configuration script. In
doing this, the script shall call the underlying ESB source code
for sending an event. This creates a connection with the second

component using the protocol specified by the user. The three
approaches discussed here relate to the three levels depicted
in Figure 3.

Component A Component B

Configuration Configuration

ESB Source ESB Source

Code Code

Protocol Protocol

Fig. 3. Three Levels for Intercepting Events

A. ESB Configuration Level

The first approach investigated is a variation of Larva [8],
with the difference being that a user will configure correctness
properties at a higher level of abstraction (than the source
code level). Most ESB solutions (including the open source
Mule ESB) provide a configuration layer where the integration
logic may be configured from one single point via a script
which is more intuitive than for example via source code.
This configuration provides a domain specific language which
may be grasped relatively quickly by developers as opposed
to learning the internals from source code. This approach will
allow users to specify correctness properties for the runtime
verifier requiring a knowledge of the ESB configuration, rather
than ESB source code.

B. ESB Source Code Level

The second approach is to allow the user to configure
correctness properties by specifying events intercepted in the
source code of the ESB. This approach will require the user to
have a deep understanding of the ESB source code, however it
also allows the user to intercept most event types identified in
the source code. The technology used for intercepting system
events at runtime is the AOP implementation Aspect]. This
technology provides separation of concerns in terms of source
code, allowing the user to invoke external code at certain points
within the target system code. This approach has been applied
to an ESB use case application using the research tool Larva.

C. Proxy Level

In both the previous two approaches, a performance impact
is inhibited over the ESB system directly for collecting system
events. In order to lessen this impact we may collect the events
via a proxy which intercepts requests and responses to and
from the ESB. Once the required system events have been
intercepted via proxies, these may be forwarded to the verifier
as in the two previously explained approaches. One limitation
that may affect the effectiveness of this approach is that
ESBs are designed to communicate with multiple protocols,
therefore proxies for multiple protocols shall be required for
this approach to be effective.

V. CONCLUSION

With the use of an example ESB application we have
shown that testing and model checking techniques are ideal
for addressing issues which require only information available
at compile time. Due to the nature of ESB applications, there
are circumstances where this will not suffice. For instance
when the ESB application is expected to communicate with
unknown remote components, we propose runtime verification
techniques where we are only interested in the current thread
of execution and have all runtime information available. We
also propose three separate approaches for applying runtime
verification techniques with the aim of evaluating which of
these approaches inhibits least performance impact on the
ESB.

REFERENCES

[1] David A. Chappell. Enterprise Service Bus: Theory in Practice. O’Reilly,
2004.

[2] Ross Mason. Mediation - separating business logic from messaging, May
2013. http://www.mulesoft.org/documentation/display/34X/Mediation

[3] Anne Thomas Mane. Enterprise service bus: A definition, May 2013.
http://i.i.cbsi.com/cnwk.1d/html/itp/burton_ESB.pdf

[4] Yousef J. Al-Houmaily and George Samaras. Two-phase commit. In
Encyclopedia of Database Systems, pages 3204-3209. 2009.

[5] Martin Leucker and Christian Schallhart. A brief account of runtime
verification. JLAP, 78(5):293-303, 2009.

[6] Séverine Colin and Leonardo Mariani. Run-time verification. In Model-
Based Testing of Reactive Systems, volume 3472 of Lecture Notes in
Computer Science, pages 525-555, 2004.

[71 Howard Barringer, Ylies Falcone, Bernd Finkbeiner, Klaus Havelund,
Insup Lee, Gordon J. Pace, Grigore Rosu, Oleg Sokolsky, and Nikolai
Tillmann, editors. RV, volume 6418 of LNCS, 2010.

[8] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Larva —
safer monitoring of real-time java programs (tool paper). In Seventh IEEE
International Conference on Software Engineering and Formal Methods
(SEFM), pages 33-37. IEEE Computer Society, November 2009.

https://www.researchgate.net/publication/262601843

